
Neural Networks and

Neural Language Models

• Neural Networks

• Neural Language Models

Natural Language Processing 1

Neural Networks

Natural Language Processing 2

Neural Networks

• A neural network is a network of small computing units, each of which takes a vector

of input values and produces a single output value.

• Neural networks share much of the same mathematics as logistic regression.

– Neural networks are a more powerful classifier than logistic regression,

– A neural network can be shown to learn any function.

• In a feedforward network, the computation proceeds iteratively from one layer of

units to the next.

– The use of modern neural nets is often called deep learning, because modern networks are

often deep (have many layers).

Natural Language Processing 3

• The building block of a neural network is a single computational unit.

• A unit takes a set of real valued numbers as input, performs some computation on

them, and produces an output.

• A neural unit is taking a weighted sum of its inputs, with one additional term in the

sum called a bias term.

– Given a set of inputs x1…xn, a unit has a set of corresponding weights w1…wn and a bias

b, so the weighted sum z is computed, and activation function f is applied to the weighted

sum z. The output of activation function is the activation value of the unit.

Neural Networks - Units

Natural Language Processing 4

Neural Networks – Units
An Example

Natural Language Processing 5

• The sigmoid has a number of advantages; it maps the output into the range [0,1],

which is useful in squashing outliers toward 0 or 1.

• It’s differentiable, which as we saw is handy for learning

Neural Networks – Units
Non-Linear Activation Functions - sigmoid

Natural Language Processing 6

• tanh function that is very similar to sigmoid function but almost always better.

• tanh is a variant of the sigmoid that ranges from -1 to +1:

• It’s differentiable, which as we saw is handy for learning

Neural Networks – Units
Non-Linear Activation Functions - tanh

Natural Language Processing 7

• The simplest activation function, and perhaps the most commonly used, is the

rectified linear unit, called ReLU.

• It’s just the same as z when z is positive, and 0 otherwise:

Neural Networks – Units
Non-Linear Activation Functions - ReLU

Natural Language Processing 8

• The perceptron, is a very simple neural unit that has a binary output and it is not a

non-linear activation function. The

• Output y of a perceptron is 0 or 1.

Neural Networks – Units
Perceptron

Natural Language Processing 9

Σ
z

x1

xn

+1

w1

wn

b

...
y

• The power of neural networks comes from combining units into larger networks.

• A single neural unit cannot compute some very simple functions of its input.

• Can a perceptron represent each of the following boolean functions?

Neural Networks – XOR Problem

Natural Language Processing 10

4 CHAPTER 7 • NEURAL NETWORKS AND NEURAL LANGUAGE MODELS

(a) (b)

Figure7.3 The tanh and ReLU activation functions.

These activation functions have different properties that make them useful for

different languageapplications or network architectures. For example, thetanh func-

tion has the nice properties of being smoothly differentiable and mapping outlier

values toward themean. The rectifier function, on theother hand hasniceproperties

that result from it being very close to linear. In the sigmoid or tanh functions, very

high values of z result in values of y that are saturated, i.e., extremely close to 1,saturated

and have derivatives very close to 0. Zero derivatives cause problems for learning,

because as we’ ll see in Section 7.4, we’ ll train networks by propagating an error

signal backwards, multiplying gradients (partial derivatives) from each layer of the

network; gradients that arealmost 0 cause theerror signal to get smaller and smaller

until it is too small to be used for training, aproblem called the vanishing gradientvanishing
gradient

problem. Rectifiers don’ t have this problem, since the derivative of ReLU for high

values of z is 1 rather than very close to 0.

7.2 The XOR problem

Early in the history of neural networks it was realized that the power of neural net-

works, as with the real neurons that inspired them, comes from combining these

units into larger networks.

One of the most clever demonstrations of the need for multi-layer networks was

the proof by Minsky and Papert (1969) that a single neural unit cannot compute

some very simple functions of its input. Consider the task of computing elementary

logical functions of two inputs, like AND, OR, and XOR. As a reminder, here are

the truth tables for those functions:

AND OR XOR

x1 x2 y x1 x2 y x1 x2 y
0 0 0 0 0 0 0 0 0
0 1 0 0 1 1 0 1 1
1 0 0 1 0 1 1 0 1
1 1 1 1 1 1 1 1 0

This example wasfirst shown for the perceptron, which is avery simple neuralperceptron

unit that has abinary output and does not haveanon-linear activation function. The

• It’s very easy to build a perceptron that can compute the logical AND and OR

functions of its binary inputs

Neural Networks – XOR Problem

Natural Language Processing 11

4 CHAPTER 7 • NEURAL NETWORKS AND NEURAL LANGUAGE MODELS

(a) (b)

Figure7.3 The tanh and ReLU activation functions.

These activation functions have different properties that make them useful for

different languageapplications or network architectures. For example, thetanh func-

tion has the nice properties of being smoothly differentiable and mapping outlier

values toward themean. The rectifier function, on theother hand hasniceproperties

that result from it being very close to linear. In the sigmoid or tanh functions, very

high values of z result in values of y that are saturated, i.e., extremely close to 1,saturated

and have derivatives very close to 0. Zero derivatives cause problems for learning,

because as we’ ll see in Section 7.4, we’ ll train networks by propagating an error

signal backwards, multiplying gradients (partial derivatives) from each layer of the

network; gradients that arealmost 0 cause theerror signal to get smaller and smaller

until it is too small to be used for training, aproblem called the vanishing gradientvanishing
gradient

problem. Rectifiers don’ t have this problem, since the derivative of ReLU for high

values of z is 1 rather than very close to 0.

7.2 The XOR problem

Early in the history of neural networks it was realized that the power of neural net-

works, as with the real neurons that inspired them, comes from combining these

units into larger networks.

One of the most clever demonstrations of the need for multi-layer networks was

the proof by Minsky and Papert (1969) that a single neural unit cannot compute

some very simple functions of its input. Consider the task of computing elementary

logical functions of two inputs, like AND, OR, and XOR. As a reminder, here are

the truth tables for those functions:

AND OR XOR

x1 x2 y x1 x2 y x1 x2 y
0 0 0 0 0 0 0 0 0
0 1 0 0 1 1 0 1 1
1 0 0 1 0 1 1 0 1
1 1 1 1 1 1 1 1 0

This example wasfirst shown for the perceptron, which is avery simple neuralperceptron

unit that has abinary output and does not haveanon-linear activation function. The

OR AND

Σ

z

x1

x2

+1

w1

w2

b

y

• Not possible to capture XOR with perceptrons.

• Perceptron equation given x1 and x2, is the equation of a line

w1x1 + w2x2 + b = 0

in standard linear format: x2 = (−w1/w2)x1 + (−b/w2)

• This line acts as a decision boundary
– 0 if input is on one side of the line

– 1 if on the other side of the line

Neural Networks – XOR Problem

Natural Language Processing 12

4 CHAPTER 7 • NEURAL NETWORKS AND NEURAL LANGUAGE MODELS

(a) (b)

Figure7.3 The tanh and ReLU activation functions.

These activation functions have different properties that make them useful for

different languageapplications or network architectures. For example, thetanh func-

tion has the nice properties of being smoothly differentiable and mapping outlier

values toward themean. The rectifier function, on theother hand hasniceproperties

that result from it being very close to linear. In the sigmoid or tanh functions, very

high values of z result in values of y that are saturated, i.e., extremely close to 1,saturated

and have derivatives very close to 0. Zero derivatives cause problems for learning,

because as we’ ll see in Section 7.4, we’ ll train networks by propagating an error

signal backwards, multiplying gradients (partial derivatives) from each layer of the

network; gradients that arealmost 0 cause theerror signal to get smaller and smaller

until it is too small to be used for training, aproblem called the vanishing gradientvanishing
gradient

problem. Rectifiers don’ t have this problem, since the derivative of ReLU for high

values of z is 1 rather than very close to 0.

7.2 The XOR problem

Early in the history of neural networks it was realized that the power of neural net-

works, as with the real neurons that inspired them, comes from combining these

units into larger networks.

One of the most clever demonstrations of the need for multi-layer networks was

the proof by Minsky and Papert (1969) that a single neural unit cannot compute

some very simple functions of its input. Consider the task of computing elementary

logical functions of two inputs, like AND, OR, and XOR. As a reminder, here are

the truth tables for those functions:

AND OR XOR

x1 x2 y x1 x2 y x1 x2 y
0 0 0 0 0 0 0 0 0
0 1 0 0 1 1 0 1 1
1 0 0 1 0 1 1 0 1
1 1 1 1 1 1 1 1 0

This example wasfirst shown for the perceptron, which is avery simple neuralperceptron

unit that has abinary output and does not haveanon-linear activation function. The

0

0 1

1

x1

x2

0

0 1

1

x1

x2

0

0 1

1

x1

x2

a) x1 AND x2 b) x1 OR x2 c) x1 XOR x2

?
XOR is not a linearly

separable function!

• XOR can't be calculated by a single perceptron

• XOR can be calculated by a layered network of units.

Neural Networks – XOR Problem
A Solution to XOR Problem

Natural Language Processing 13

• XOR can be calculated by a layered network of units.

Neural Networks – XOR Problem
A Solution to XOR Problem

Natural Language Processing 14

0

0 1

1

x1

x2

a) The original x space

0

0 1

1

h1

h2

2

b) The new (linearly separable) h space

• The hidden layer forming a new representation of the input.

• Notice that the input point [0, 1] has been collapsed with the input point [1, 0], making it

possible to linearly separate the positive and negative cases of XOR

• In other words, we can view the hidden layer of the network as forming a useful

representation for the input.

Neural Networks

- Feedforward Neural Networks

Natural Language Processing 15

• A feedforward neural network is a multilayer network in which the units are

connected with no cycles.

– The outputs from units in each layer are passed to units in the next higher layer, and no

outputs are passed back to lower layers.

– Later, we’ll introduce networks with cycles, called recurrent neural networks.

• Feedforward networks have three kinds of nodes:

– input units, hidden units, and output units.

• The core of the neural network is the hidden layer formed of hidden units.

– Each unit is a neural unit.

• Each layer is fully-connected, meaning that each unit in each layer takes as input the

outputs from all the units in the previous layer, and there is a link between every pair

of units from two adjacent layers.

– each hidden unit sums over all the input units.

Feedforward Neural Networks

Natural Language Processing 16

• A simple 2-layer feedforward network, with one

hidden layer, one output layer, and one input layer.

– input layer is not counted when enumerating layers

• A single hidden unit has as parameters an input

vector, a weight vector and a bias.

• The parameters for the entire hidden layer:

– input vector x xn0

– weight matrix W Wn1n0

– bias vector b bn1

• Each element Wji of weight matrix W is weight of

connection from input unit xi to hidden unit hj.

• Computation for hidden layer:

h = activationfunc(Wx + b)

hi = activationfunc(σ𝐢=𝟏
𝐧𝟎 𝐖𝐣𝐢 𝐱𝐢 + 𝐛𝐣)

Feedforward Neural Networks
2-layer feedforward neural network

Natural Language Processing 17

• A single output unit has:

– Hidden layer outputs as an input vector

– A weight vector

– Some networks don’t include a bias vector b in

the output layer, so we’ll not show it here.

• The parameters for the entire output layer:

– hidden unit outputs h as input vector hn1

– weight matrix U Un2n1

• Computation for output layer:

z = Uh

y = activationfunc(z)

Feedforward Neural Networks
2-layer feedforward neural network

Natural Language Processing 18

• In order to simplfy our notation, we will see bias as a part of input.

– In the input layer, will have a dummy node x0= 1

– This dummy node still has an associated weight which represents the bias value b.

• If hidden units are sigmoid units:

➔

➔

Feedforward Neural Networks
2-layer feedforward neural network - Replacing bias unit

Natural Language Processing 19

• multi-layer notation to make easier to talk about deeper networks of depth more than 2.

– superscripts in square brackets to mean layer numbers, starting at 0 for the input layer.

– W[1] means the weight matrix for the (first) hidden layer, and b[1] means the bias vector for

the (first) hidden layer.

– g(·) to stand for the activation function, which will tend to be ReLU or tanh for intermediate

layers and softmax for output layers.

– a[i] to mean the output from layer i, and z[i] to mean the combination of weights and biases.

The inputs x refer to more generally as a[0]

Feedforward Neural Networks
feedforward neural network – Multi-Layer Notation

Natural Language Processing 20

• multi-layer notation

Feedforward Neural Networks
feedforward neural network – Multi-Layer Notation

Natural Language Processing 21

W[1]

xnx1 +1

b[1]

xi

W[2] b[2]

𝑧[1] = 𝑊[1]𝑎[0] + 𝑏[1]

𝑎[0]

𝑎[1] = 𝑔 1 (𝑧 1)

𝑧[2] = 𝑊[2]𝑎[1] + 𝑏[2]
𝑎[2] = 𝑔 2 (𝑧 2)

𝑦 = 𝑎[2]

sigmoid or softmax

ReLU

• multi-layer notation

Feedforward Neural Networks
feedforward neural network – Multi-Layer Notation

Natural Language Processing 22

x1 x2 x3

y

w1 w2 w3

∑

b

σ

+1

z

a

Neural Networks

- Feedforward networks for NLP: Classification

Natural Language Processing 23

• Let's go back to logistic regression.

– We can think of binary logistic regression as a 1-layer network (we don't count the input

layer in counting layers!).

– input layer (we could call layer 0) consisting of a input vector x, a weight vector w, and a

scalar bias b.

– 1st layer (the output layer) computes a scalar y as σ(w.x+b) (sigmoid of weighted sum).

Feedforward Networks for NLP: Classification
Binary Logistic Regression as a 1-layer Network

Natural Language Processing 24

w

y = σ(w ∙ x + b)

w1 wn b

(y is a scalar)σOutput layer

(σ node)

(vector)
(scalar)

Input layer

vector x +1x1 xn

…

…

• Multinomial Logistic Regression, where instead of a single sigmoid at the output, we

have a softmax to turn the output values into probabilities.

Feedforward Networks for NLP: Classification
Multinominal Logistic Regression as a 1-layer Network

Natural Language Processing 25

W

y = softmax(W ∙ x + b)

w1 wn
b

(y is a vector)

y1Output layer

(softmax nodes)

(matrix) (vector)

Input layer

vector x +1x1 xn

…

…

yn
…

• We will look at again sentiment analysis as a classification task.

• The input element xi could be scalar features: x1=count(wordsdoc),

x2=count(positive lexicon wordsdoc), x3=1 if “no” 2 doc, and so on.

• The output layer ො𝐲 could have

– 2 nodes (one each for positive and negative)➔ sigmoid function

– 3 nodes (positive, negative, neutral), in which case ො𝐲1 would be the estimated probability of

positive sentiment, ො𝐲2 the probability of negative and ො𝐲3 the probability of neutral.

➔ softmax function

• In hidden layer, sigmoid (or tanh, ReLU,..) function can be used.

Feedforward Networks for NLP: Classification
2-layer Network

Natural Language Processing 26

• Feedforward network sentiment analysis using hand-built features of the input text.

Feedforward Networks for NLP: Classification
2-layer Network for sentiment analysis

Natural Language Processing 27

• Instead of using hand-built human-engineered features as the input to our classifier,

most applications of neural networks for NLP do something different.

• They use deep learning’s ability to learn features from the input data by representing

words as embeddings (like the word2vec or GloVe embeddings).

• There are various ways to represent an input for classification.

• One simple baseline pooling is to apply some sort of pooling function to the

embeddings of all the words in the input.

– For a text with n input words/tokens w1,…,wn, we can turn the n embeddings e(w1),…,e(wn)

(each of dimensionality d) into a single embedding also of dimensionality d by just

summing the embeddings, or by taking their mean.

mean pooling:

– There are many other options. The element-wise max of a set of n vectors is a new vector

whose kth element is the max of the kth elements of all the n vectors.

Feedforward Networks for NLP: Classification
2-layer Network for sentiment analysis

Natural Language Processing 28

• Feedforward network sentiment analysis using a pooled embedding of input words.

– For binary classification, output layer is a single sigmoid unit instead of softmax units.

Feedforward Networks for NLP: Classification
2-layer Network for sentiment analysis

Natural Language Processing 29

Feedforward Networks for NLP: Classification
2-layer Network for sentiment analysis

Natural Language Processing 30

• The equations for this classifier

assuming mean pooling (for a

single example)

• The idea of using word2vec or GloVe embeddings as our input representation is

called pretraining.

• Using pretrained embedding representations, whether simple static word

embeddings like word2vec or the much more powerful contextual embeddings

like BERT is one of the central ideas of deep learning.

Neural Networks

- Training Feedforward Neural Networks

Natural Language Processing 31

• A feedforward neural net is an instance of supervised machine learning in which we

know the correct output y for each observation x, and the system produces ො𝐲, the

system’s estimate of the true y.

• The goal of the training procedure is to learn parameters W[i] and b[i] for each layer i

that make ො𝐲 for each training observation as close as possible to the true y.

• It’s common to use the loss function used for logistic regression, cross-entropy loss

function for neural networks too.

• To find the parameters that minimize this loss function, we can use the gradient

descent optimization algorithm

Training Feedforward Neural Networks

Natural Language Processing 32

• Gradient descent requires knowing the gradient of the loss function, the vector that

contains the partial derivative of the loss function with respect to each of the

parameters.

• In logistic regression, for each observation we could directly compute the derivative of

the loss function with respect to an individual w or b.

• But for neural networks, with millions of parameters in many layers, it’s much harder

to see how to compute the partial derivative of some weight in layer 1 when the loss is

attached to some much later layer.

• How do we partial out the loss over all those intermediate layers?

➔ The answer is the algorithm called error backpropagation or

backward differentiation.

Training Feedforward Neural Networks

Natural Language Processing 33

• The intuition of neural net training is the forward computation of the loss and the

backward computation of the weight updates.

• Given an input x, we run a forward pass through the network, computing the system

output ො𝐲.

• Then we compare ො𝐲 to the true answer y, to get a loss for this example.

• Then we do a backward pass through the network, computing the gradients we need to

update the weights.

Training Feedforward Neural Networks
Intuition: training a 2-layer Network

Natural Language Processing 34

• The intuition of neural net training is the forward computation of the loss and the

backward computation of the weight updates.

Training Feedforward Neural Networks
Intuition: training a 2-layer Network

Natural Language Processing 35

U

W

xnx1

System output ො𝐲

Actual answer 𝐲

Training instance

Loss function L(ොy, y)

Forward pass

Backward pass

For every training tuple (𝑥, 𝑦)

◦ Run forward computation to find our estimate ො𝑦

◦ Run backward computation to update weights:

◦ For every output node

◦ Compute loss 𝐿 between true 𝑦 and the estimated ො𝑦

◦ For every weight 𝑤 from hidden layer to the output layer

◦ Update the weight

◦ For every hidden node

◦ Assess how much blame it deserves for the current answer

◦ For every weight 𝑤 from input layer to the hidden layer

◦ Update the weight

Training Feedforward Neural Networks
Intuition: training a 2-layer Network

Natural Language Processing 36

• To adjust weights

– Find the gradients, the derivative of

the loss function with respect to weights

– Move weights in the opposite direction of the gradient

• Cross-entropy loss for multinomial logistic regression

• Gradient (for a single example) in multinomial logistic regression

Training Feedforward Neural Networks
Intuition: training a 2-layer Network

Natural Language Processing 37

• Where did that derivative come from?

Training Feedforward Neural Networks
Intuition: training a 2-layer Network

Natural Language Processing 38

x1 x2 x3

y

w1 w2 w3

∑

b

σ

+1

z

a

Derivative of the Loss

Derivative of the Activation

Derivative of the weighted sum

𝜕𝐿

𝜕𝑤𝑖
=

𝜕𝐿

𝜕𝑦

𝜕𝑦

𝜕𝑧

𝜕𝑧

𝜕𝑤𝑖

Using the chain rule! f (x) = u(v(x))

• Gradients:

• But these derivatives only give correct updates for one weight layer

• For deep networks, computing the gradients for each weight is much more complex,

since we are computing the derivative with respect to weight parameters that appear all

the way back in the very early layers of the network, even though the loss is computed

only at the very end of the network.

• For training, we need the derivative of the loss with respect to each weight in

every layer of the network

– But the loss is computed only at the very end of the network!

• Solution: error backpropagation

– backpropagation is a special case of backward differentiation which relies on

computation graphs.

Training Feedforward Neural Networks
Intuition: training a 2-layer Network

Natural Language Processing 39

Neural Networks

- Training Feedforward Neural Networks: Computation Graphs

Natural Language Processing 40

• For training, we need the derivative of the loss with respect to each weight in every

layer of the network

– But the loss is computed only at the very end of the network!

• Solution: error backpropagation

– backpropagation is a backward differentiation which relies on computation graphs.

• A computation graph is a representation of the process of computing a mathematical

expression, in which the computation is broken down into separate operations, each of

which is modeled as a node in a graph.

Computation Graphs

Natural Language Processing 41

• Consider computing the function L(a, b, c) = c(a + 2b)

– If we make each of the component addition and multiplication operations explicit, and add

names (d and e) for the intermediate outputs, the resulting series of computations is:

• Computations: d = 2 * b e = a + d L = c * e

• Its computation graph:

Computation Graphs
Example

Natural Language Processing 42

e=a+d

d = 2b L=ce

a

b

c

• Function: L(a, b, c) = c(a + 2b)

• Computations: d = 2 * b e = a + d L = c * e

• Forward computation for inputs a=3, b=1, c=-2

Computation Graphs
Example – forward pass

Natural Language Processing 43

• The importance of the computation graph comes from the backward pass

• This is used to compute the derivatives that we’ll need for the weight update.

• In this example our goal is to compute the derivative of the output function L with

respect to each of the input variables,

∂L/∂a ∂L/∂b ∂L/∂c

• The derivative ∂L/∂a tells us how much a small change in a affects L, while holding

the others constant.

Computation Graphs
Example – backward pass

Natural Language Processing 44

• Chain Rule: Computing the derivative of a composite function:

f (x) = u(v(x))

f (x) = u(v(w(x)))

• Chain rule applies to our example:

L(a,b,c) = c(a+2b) d = 2*b e = a+d L = c*e

Computation Graphs
Example – backward pass – chain rule

Natural Language Processing 45

L(a,b,c) = c(a+2b) d = 2*b e = a+d L = c*e

Computation Graphs
Example – backward pass

Natural Language Processing 46

Computation Graphs
Example – backward pass

Natural Language Processing 47

Computation Graphs
Backward differentiation on a two layer network

Natural Language Processing 48

• Of course computation graphs for real neural networks are much more complex.

• A sample computation graph for a 2-layer neural network with n0=2, n1=2, n2=1

σ

W[2]

W[1]

ොy

Sigmoid activation

ReLU activation

1

1

b[1]

b[2]

The function that the computation

graph is computing is:

Computation Graphs
Backward differentiation on a two layer network – computation graph

Natural Language Processing 49

• The weights that need updating (those for which we need to know the partial

derivative of the loss function) are shown in orange .

– So for a particular example x1,x2, we would run the forward pass, assign values to each of

our nodes, and then starting with this last node, run backwards pass

Computation Graphs
Backward differentiation on a two layer network – backward pass

Natural Language Processing 50

• The weights that need updating (those for which we need to know the partial

derivative of the loss function) are shown in light blue.

– In order to do the backward pass, we need the derivatives of all the functions in the graph.

Computation Graphs
Backward differentiation on a two layer network – backward pass

Natural Language Processing 51

• Derivative of the loss function L

with respect to z[2],

[2][2]

[2]

[2] [2]

Let log=ln

𝑑 ln(𝑥)

𝑑𝑥
=

1

𝑥

𝑑 ln(𝑓(𝑥))

𝑑𝑥
=

1

𝑓(𝑥)

𝑑𝑓(𝑥)

𝑑𝑥

Computation Graphs
Backward differentiation on a two layer network – backward pass

Natural Language Processing 52

• Derivative of the loss function L

with respect to output layer weights

𝜕𝐿

𝜕𝑤11
[2] =

𝜕𝐿

𝜕𝑧[2]
𝜕𝑧2

𝜕𝑤11
[2]

𝜕𝐿

𝜕𝑤11
[2]

= 𝑎 2 − 𝑦 𝑎1
[1] 𝜕𝐿

𝜕𝑤12
[2]

= 𝑎 2 − 𝑦 𝑎2
[1] 𝜕𝐿

𝜕𝑏1
[2]

= 𝑎 2 − 𝑦

𝑧[2] = 𝑤11
[2]

∗ 𝑎1
1
+ 𝑤12

2
∗ 𝑎2

1
+ 𝑏1

[2]

𝜕𝐿

𝜕𝑧[2]
= 𝑎[2] − 𝑦

𝜕𝑧2

𝜕𝑤11
[2] = 𝑎1

[1] 𝜕𝑧2

𝜕𝑤12
[2] = 𝑎2

[1] 𝜕𝑧2

𝜕𝑏1
[2] = 1

• Overfitting: Various forms of regularization are used to prevent overfitting.

– One of the most important is dropout:

– Randomly dropping some units and their connections from the network during

training

• Tuning of hyperparameters is also important.

– The parameters of a neural network are weights W and biases b; those are learned

by gradient descent.

– The hyperparameters are things that are chosen by the algorithm designer;

optimal values are tuned on a devset rather than by gradient descent learning on

the training set.

– Hyperparameters include the learning rate, the mini-batch size, the model

architecture (the number of layers, the number of hidden nodes per layer, the

choice of activation functions), how to regularize, and so on.

Computation Graphs
More details on learning

Natural Language Processing 53

Neural Networks

- Feedforward Neural Language Modeling

Natural Language Processing 54

• Language Modeling: Calculating the probability of the next word in a sequence given

some history.

• We've seen N-gram based LMs

• But neural network LMs far outperform n-gram language models

• State-of-the-art neural LMs are based on more powerful neural network technology

like Transformers

• But simple feedforward LMs can do almost as well!

Feedforward Neural Language Modeling

Natural Language Processing 55

• Neural language models have many advantages over the n-gram language models.

Advantages: Compared to n-gram models, neural language models

• can handle much longer histories,

• can generalize better over contexts of similar words, and

• are more accurate at word-prediction.

Disadvantages. On the other hand, neural net language models

• are much more complex,

• are slower and need more energy to train,

• and are less interpretable than n-gram models, so for some smaller tasks an n-gram

language model is still the right tool.

Feedforward Neural Language Modeling

Natural Language Processing 56

• A feedforward neural language model (LM) is a feedforward network that takes a

representation of some number of previous words (wt-1,wt-2,..) as input and outputs a

probability distribution over possible next words.

– Like a N-gram LM, a feedforward neural LM approximates the probability of a word:

• Neural language models represent words in this prior context by their embeddings,

rather than just by their word identity as used in n-gram language models.

• Using embeddings allows neural language models to generalize better to unseen data.

– Training data: I have to make sure that the cat gets fed

– Never seen in training: dog gets fed

– Test data: I forgot to make sure that the dog gets ___

– N-gram LM can NOT predict ‘fed’ in this test data

– Neural LM can use similarity ‘cat’ and ‘dog’ embeddings to generalize and predict ‘fed’

after ‘dog’

Feedforward Neural Language Modeling
Why Neural LMs work better than N-gram LMs

Natural Language Processing 57

• Forward inference is the task, given an input, of running a forward pass on the

network to produce a probability distribution over possible outputs (next words).

• First represent each of the N previous words as a one-hot vector of length |V|

• A one-hot vector is a vector that has one element equal to 1 corresponding to word’s

index in vocabulary, while all other elements are set to zero.

• Multiplying embedding weight matrix E by a one-hot vector that has only one non-

zero element xi=1 simply selects out the relevant column vector for word i, resulting in

the embedding for word i.

Feedforward Neural Language Modeling
Forward inference in a feedforward neural language model

Natural Language Processing 58

embedding

weight matrix
one-hot vector

embedding of word 5

Feedforward Neural Language Modeling
a feedforward neural language model with a window size of 3

Natural Language Processing 59

• At each timestep t the network

computes a d-dimensional

embedding for each context

word

• Concatenates 3 resulting

embeddings to get embedding

layer e.

• Embedding vector e is

multiplied by a weight matrix

W and then an activation

function is applied element-

wise to produce the hidden

layer h.

• then h is multiplied by another

weight matrix U.

• Finally, a softmax output layer

predicts at each node i the

probability that the next word

wt will be vocabulary word Vi.

• Equations for a neural language

model with a window size of 3,

given one-hot input vectors for

each input context word

Feedforward Neural Language Modeling
a feedforward neural language model with a window size of 3

Natural Language Processing 60

Feedforward Neural Language Modeling
Training Feedforward Language Model

Natural Language Processing 61

• In self-training for language modeling, we take a corpus of text as training material

and at each time step t ask the model to predict the next word.

– We simply train the model to minimize the error in predicting the true next word in the

training sequence.

• In practice, training the model means setting the parameters θ = E,W,U,b.

• It’s ok to freeze the embedding layer E with initial word2vec values.

– Freezing means we use word2vec or some other pretraining algorithm to compute the initial

embedding matrix E, and then hold it constant while we only modify W, U, and b.

– Often we’d like to learn the embeddings simultaneously with training the network.

• To train the entire model including E, i.e. to set all the parameters θ = E,W,U,b.

– We can do this via gradient descent using error backpropagation on the computation graph

to compute the gradient.

– Training thus not only sets the weights W and U of the network, but also as we’re

predicting upcoming words, we’re learning the embeddings E for each word that best

predict upcoming words.

Feedforward Neural Language Modeling
Training Feedforward Language Model

Natural Language Processing 62

• Training proceeds by taking as input a very long text,

concatenating all the sentences, starting with random

weights, and then iteratively moving through

the text predicting each word wt .

• At each word wt, we use the cross-entropy loss

• The parameter update for stochastic gradient descent for this loss from step s to s+1:

• This gradient can be computed in any standard neural network framework which will

then backpropagate through θ = E,W,U,b.

Feedforward Neural Language Modeling
Training Feedforward Language Model

Natural Language Processing 63

• Neural networks are built out of neural units, originally inspired by biological

neurons but now simply an abstract computational device.

• Each neural unit multiplies input values by a weight vector, adds a bias, and then

applies a non-linear activation function like sigmoid, tanh, or rectified linear unit.

• In a fully-connected, feedforward network, each unit in layer i is connected to each

unit in layer i+1, and there are no cycles.

• The power of neural networks comes from the ability of early layers to learn

representations that can be utilized by later layers in the network.

• Neural networks are trained by optimization algorithms like gradient descent.

• Error backpropagation, backward differentiation on a computation graph, is used to

compute the gradients of the loss function for a network.

• Neural language models use a neural network as a probabilistic classifier, to compute

the probability of the next word given the previous n words.

• Neural language models can use pretrained embeddings, or can learn embeddings

from scratch in the process of language modeling.

Nueral Networks and Neural Language Models

Summary

Natural Language Processing 64

