Vector Semantics

• Word2vec

TF-IDF and PPMI Vectors

- **TF-IDF and PPMI vectors are**
 - long vectors with dimensions corresponding to the words in the vocabulary, i.e. their lengths are |V| which is the number of words in the language and |V| can be around 50,000.
 - sparse, i.e most of the elements in those vectors are zero.
- In most of NLP tasks, **dense vectors** work better than **sparse vectors**.
- Dense vectors are short, and their lengths are between 50 and 1000.
 They are dense, i.e. *their most-elements are non-zero*.

Sparse versus Dense Vectors

Why dense vectors?

- Short vectors may be easier to use as **features** in machine learning (less weights to tune).
- Dense vectors may generalize better than storing explicit counts.
- They may do better at **capturing synonymy**:
 - *car* and *automobile* are synonyms; but they are distinct dimensions
 - a neighboring word with *car* and a neighboring word with **automobile** should be similar, but they are not similar.
- In practice, dense vectors work better.

Word2vec

- One of the most popular embedding method is **word2vec** (Mikolov et al. 2013).
- The **word2vec methods** are very fast, efficient to train and easily available online with code and pretrained embeddings.
 - Main dense vector idea: predict rather than count .
- Popular dense embeddings:
 - Word2vec (Mikolov et al.) <u>https://code.google.com/archive/p/word2vec/</u>
 - Fasttext <u>http://www.fasttext.cc/</u>
 - Glove (Manning et al.) <u>http://nlp.stanford.edu/projects/glove/</u>

Word2vec

- The intuition of word2vec is:
 - Instead of **counting** how often each word *w* occurs near "*apricot*"
 - Train a classifier on a binary **prediction** task:
 - Is *w* likely to show up near "*apricot*"?
- We don't actually care about this task
 - But we'll take the **learned classifier weights as the word embeddings**.

Brilliant insight: Use running text (plain text) as implicitly supervised training data!

- A word **s** near apricot acts as gold 'correct answer' to the question "Is word w likely to show up near apricot?"
- No need for hand-labeled supervision.

Word2vec: Skip-Gram Algorithm

The intuition of skip-gram is:

- **1.** Treat the target word and a neighboring context word as positive examples.
- 2. Randomly sample other words in the lexicon to get negative samples
- **3.** Use logistic regression to train a classifier to distinguish those two cases
- 4. Use the regression weights as the embeddings

Skip-Gram Training Data

- Assume that **context words** are those in +/- 2 word window.
- A training sentence:

... lemon, a tablespoon of apricot jam a pinch ...

c1 c2 target c3 c4

Skip-Gram Goal

- Our goal is to train a classifier such that,
 - Given a **tuple (t,c)** of a **target word t paired with a context word c**
 - (apricot, jam)
 - (apricot, aardvark)
 - it will return the probability that c is a real context word (true for jam, false for aardvark):

P(+ | t,c)Probability that word c is not areal context word for tP(- | t,c) = 1 - P(+|t,c)Probability that word c is not a real context word for t

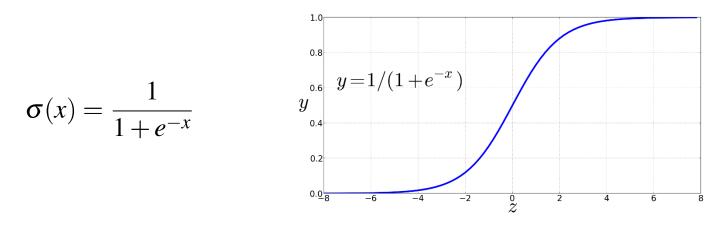
How to Compute P(+|t,c)?

The **intuition of the skipgram model** is to base this probability on similarity:

- A word is likely to occur near the target if its embedding is similar to the target embedding.
- Two vectors are similar if they have a high dot product.
 - Similarity(t,c) \propto t \cdot c
 - The dot product **t.c** is not a probability, it's just a number ranging from 0 to ∞ .

How to Compute P(+|t,c)? *Turning dot product into a probability*

• To turn **dot product** into a probability, we'll use **logistic** or **sigmoid function** $\sigma(x)$.



• The probability that word c is a real context word for target word t is:

$$P(+|t,c) = \frac{1}{1+e^{-t\cdot c}} \qquad P(-|t,c) = 1-P(+|t,c) \\ = \frac{e^{-t\cdot c}}{1+e^{-t\cdot c}}$$

How to Compute P(+|t,c)? *For all the context words:*

- We need to take account of the multiple context words in the window.
- Skip-gram makes the strong but very useful simplifying assumption that all context words are independent, allowing us to just multiply their probabilities:

$$P(+|t,c_{1:k}) = \prod_{i=1}^{k} \frac{1}{1+e^{-t \cdot c_i}}$$
$$\log P(+|t,c_{1:k}) = \sum_{i=1}^{k} \log \frac{1}{1+e^{-t \cdot c_i}}$$

- Skip-gram trains a probabilistic classifier that, given a test target word t and its context window of k words $c_{1:k}$, assigns a probability based on how similar this context window is to the target word.
- The probability is based on applying the logistic (sigmoid) function to the dot product of the embeddings of the target word with each context word.

Learning skip-gram embeddings Skip-Gram Training Data

• Training sentence:

... lemon, a tablespoon of apricot jam a pinch ...

c1 c2 t c3 c4

- Training data: pairs centering on apricot
- Asssume a +/- 2 word window is used.

Learning skip-gram embeddings Skip-Gram Training

• Training sentence:

... lemon, a tablespoon of apricot jam a pinch ...

c1 c2 t c3 c4

positive examples +

t c apricot tablespoon apricot of apricot jam apricot a

- For each positive example, we'll create *k* **negative examples**.
- Using *noise* words
 - Noise word is any random word that isn't *target word t (apricot)*

Learning skip-gram embeddings Skip-Gram Training

• Training sentence:

... lemon, a tablespoon of apricot jam a pinch ...

c1 c2 t c3 c4

Create k (=2) negative examples.

positive examples +		negative examples -			
t	с	t	С	t	С
apricot	tablespoon	apricot	aardvark	apricot	twelve
apricot	of	apricot	puddle	apricot	hello
apricot	jam	apricot	where	apricot	dear
apricot	a	apricot	coaxial	apricot	forever

Learning skip-gram embeddings Choosing noise words

- Could pick w as a noise word according to their unigram frequency P(w)
- More common to chosen then according to $P_{\alpha}(w)$

$$P_{\alpha}(w) = \frac{count(w)^{\alpha}}{\sum_{w} count(w)^{\alpha}}$$

- $\alpha = 0.75$ works well because it gives rare noise words slightly higher probability
- To show this, imagine two events P(a)=.99 and P(b)=.01:

$$P_{\alpha}(a) = \frac{.99^{.75}}{.99^{.75} + .01^{.75}} = .97$$
$$P_{\alpha}(b) = \frac{.01^{.75}}{.99^{.75} + .01^{.75}} = .03$$

Learning skip-gram embeddings Setup

- Let's represent words as vectors of some length (say 300), randomly initialized.
- So, we start with 300*V random parameters
- Over the entire training set, we'd like to adjust those word vectors such that we
 - Maximize the similarity of the target word, context word pairs (t,c) drawn from the positive data
 - Minimize the similarity of the (t,c) pairs drawn from the negative data.
- We'll start with 0 or random weights
- Then adjust the word weights to make the positive pairs more likely and the negative pairs less likely over the entire training set:

Learning skip-gram embeddings Objective Criteria

• We want to maximize

$$L(\theta) = \sum_{(t,c)\in +} \log P(+|t,c) + \sum_{(t,c)\in -} \log P(-|t,c)$$

• Maximize the + label for the pairs from the positive training data, and the – label for the pairs sample from the negative data.

Learning skip-gram embeddings Objective Criteria

• Focusing in on one word/context pair (t,c) with its k noise words $n_1...n_k$, the learning objective L is:

$$\begin{aligned} d(\theta) &= \log P(+|t,c) + \sum_{i=1}^{k} \log P(-|t,n_i) \\ &= \log \sigma(c \cdot t) + \sum_{i=1}^{k} \log \sigma(-n_i \cdot t) \\ &= \log \frac{1}{1 + e^{-c \cdot t}} + \sum_{i=1}^{k} \log \frac{1}{1 + e^{n_i \cdot t}} \end{aligned}$$

L

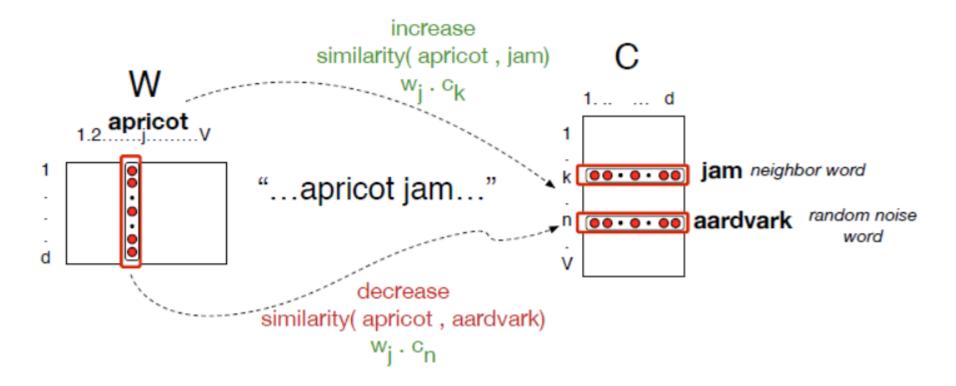
• That is, we want to maximize the dot product of the word with the actual context words, and minimize the dot products of the word with the k negative sampled non-neighbor words.

Learning skip-gram embeddings Train using gradient descent

- We can then use stochastic gradient descent to train to this objective,
 - iteratively modifying the parameters (the embeddings for each target word t and each context word or noise word c in the vocabulary) to maximize the objective.
- Skip-gram model actually learns two separate embeddings for each word w:
 - target embedding t and
 - context embedding c.
- These embeddings are stored in two matrices,
 - target matrix W and
 - context matrix C.

Learning skip-gram embeddings Train using gradient descent

• The skip-gram model tries to shift embeddings so the target embedding (**apricot**) are closer to (have a higher dot product with) context embeddings for nearby words (**jam**) and further from (have a lower dot product with) context embeddings for words that don't occur nearby (**aardvark**).



Learning skip-gram embeddings Train using gradient descent

- Just as in logistic regression, the learning algorithm starts with randomly initialized W and C matrices, and then walks through the training corpus using gradient descent to update W and C so as to maximize the objective criteria.
- Thus matrices W and C function as the parameters θ that logistic regression is tuning.
- Once embeddings are learned, we'll have two embeddings for each word w_i : t_i and c_i .
 - We can choose to throw away the C matrix and just keep W, in which case each word i will be represented by the vector t_i.
 - Alternatively we can add the two embeddings together, using the summed embedding $t_i + c_i$ as the new d-dimensional embedding

Evaluating Vector Models

- Compare to human scores on word similarity-type tasks:
 - WordSim-353 (Finkelstein et al., 2002)
 - SimLex-999 (Hill et al., 2015)
 - Stanford Contextual Word Similarity (SCWS) dataset (Huang et al., 2012)
 - TOEFL dataset:
 - Levied is closest in meaning to: imposed, believed, requested, correlated

Semantic properties of embeddings

Similarity depends on window size C

• One parameter that is relevant to both sparse tf-idf vectors and dense word2vec vectors is the **size of the context window** used to collect counts.

Short context windows \rightarrow most similar words to a target word w tend to be semantically similar words with same parts of speech.

Long context windows \rightarrow the highest cosine words to a target word w tend to be words that are topically related but not similar.

Example:

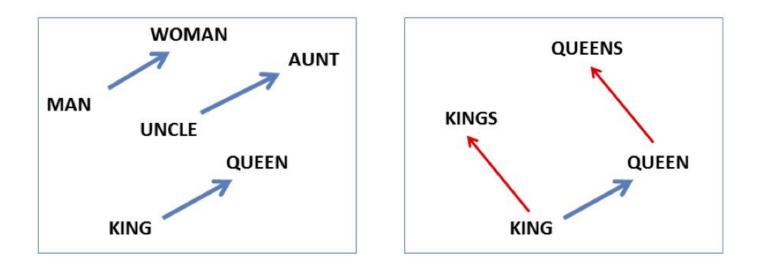
window of $+/-2 \rightarrow$ the most similar words to the word Hogwarts (from the Harry Potter series) were names of other fictional schools: Sunnydale (from Buffy the Vampire Slayer) or Evernight (from a vampire series).

window of $+/-5 \rightarrow$ the most similar words to **Hogwarts** were other words topically related to the Harry Potter series: **Dumbledore**, **Malfoy**, and **half-blood**.

Analogy: Embeddings capture relational meaning!

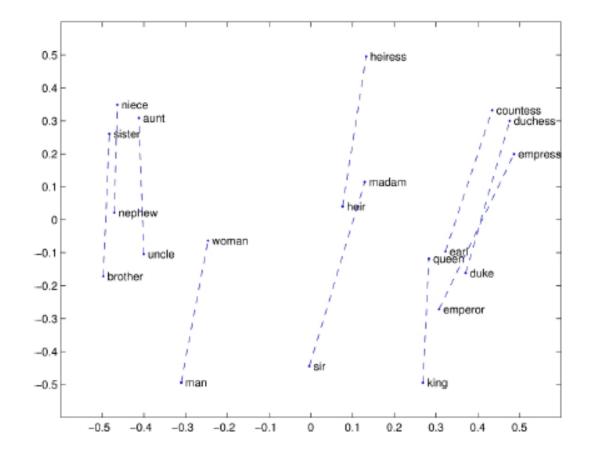
• Another semantic property of embeddings is their **ability to capture relational meanings.**

vector('king') - vector('man') + vector('woman') \approx vector('queen') vector('Paris') - vector('France') + vector('Italy') \approx vector('Rome')



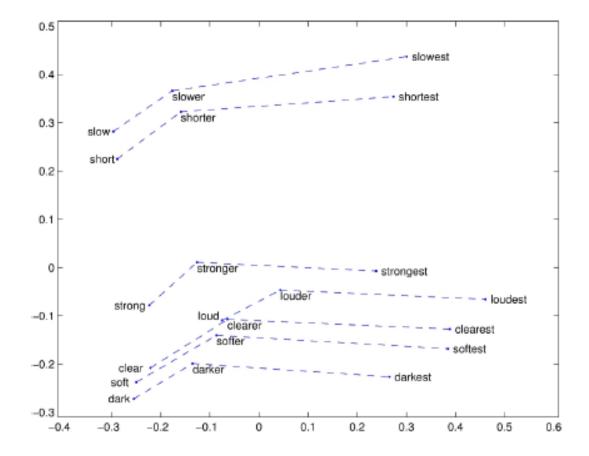
Analogy: Embeddings capture relational meaning!

• Relational properties of the vector space, shown by projecting vectors onto two dimensions



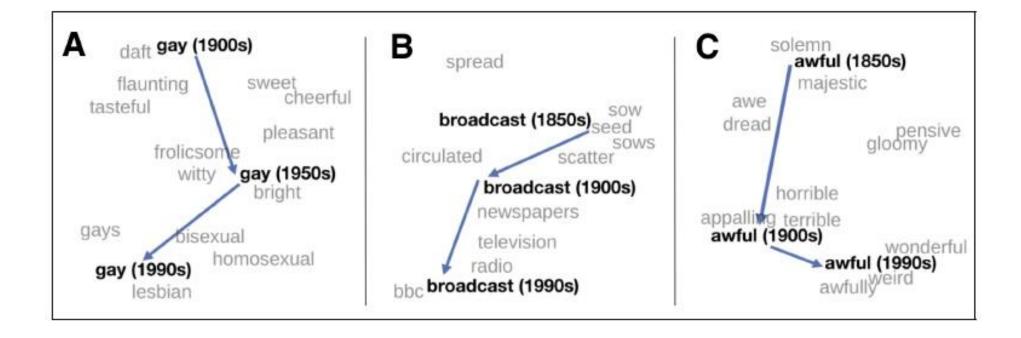
Analogy: Embeddings capture relational meaning!

• offsets seem to capture comparative and superlative morphology



Embeddings and Historical Semantics

• Train embeddings on old books to study changes in word meaning!!



Vector Semantics: Summary

- In vector semantics, a word is modeled as a vector a point in high-dimensional space, also called an embedding.
- Vector semantic models fall into two classes: sparse and dense.

Sparse Models:

- In sparse models like tf-idf each dimension corresponds to a word in the vocabulary.
- Cell in sparse models are **functions of co-occurrence counts**.
- The **term document matrix** has rows for each word (**term**) in the vocabulary and a column for each document.
- The **word-context matrix** has a row for each (target) word in the vocabulary and a column for each context term in the vocabulary.
- A common sparse weighting is tf-idf, which weights each cell by its term frequency and inverse document frequency.
- Word and document similarity is computed by computing the dot product between vectors. The cosine of two vectors—a normalized dot product—is the most popular such metric.
- **PPMI (pointwise positive mutual information)** is an alternative weighting scheme to tf-idf.

Vector Semantics: Summary

Dense Models:

- Dense vector models have dimensionality 50-300 and the dimensions are harder to interpret.
- The word2vec family of models, including skip-gram, is a popular efficient way to compute dense embeddings.
- **Skip-gram** trains a **logistic regression classifier** to compute the probability that two words are 'likely to occur nearby in text'.
 - This probability is computed from the dot product between the embeddings for the two words,
- Skip-gram uses **stochastic gradient descent to train the classifier**, by learning embeddings that have a high dot-product with embeddings of words that ocur nearby and a low dot-product with noise words.
- Other important embedding algorithms include **GloVe**, and **fasttext**.