Vector Semantics

« Word2vec

Natural Language Processing

TF-IDF and PPMI Vectors

« TF-IDF and PPMI vectors are

— long vectors with dimensions corresponding to the words in the vocabulary, i.e.
their lengths are [V| which is the number of words in the language and |V| can be

around 50,000.
— sparse, i.e most of the elements in those vectors are zero.

« In most of NLP tasks, dense vectors work better than sparse vectors.

« Dense vectors are short, and their lengths are between 50 and 1000.
— They are dense, i.e. their most-elements are non-zero.

Natural Language Processing

Sparse versus Dense Vectors

Why dense vectors?

Short vectors may be easier to use as features in machine learning (less weights to
tune).

Dense vectors may generalize better than storing explicit counts.

They may do better at capturing synonymy:
— car and automobile are synonyms; but they are distinct dimensions

— aneighboring word with car and a neighboring word with automobile should be
similar, but they are not similar.

In practice, dense vectors work better.

Natural Language Processing

Word2vec

One of the most popular embedding method is word2vec (Mikolov et al. 2013).

The word2vec methods are very fast, efficient to train and easily available online with
code and pretrained embeddings.

— Main dense vector idea: predict rather than count .

Popular dense embeddings:

— Word2vec (Mikolov et al.)
— Fasttext

— Glove (Manning et al.)

Natural Language Processing 4

https://code.google.com/archive/p/word2vec/
http://www.fasttext.cc/
http://nlp.stanford.edu/projects/glove/

Word2vec

« The intuition of word2vec is:
— Instead of counting how often each word w occurs near "apricot"
— Train a classifier on a binary prediction task:
 Isw likely to show up near "apricot"?

 We don’t actually care about this task
— But we'll take the learned classifier weights as the word embeddings.

Brilliant insight: Use running text (plain text) as implicitly supervised training data!

« A word s near apricot acts as gold ‘correct answer’ to the question “Is word w likely
to show up near apricot?”

* No need for hand-labeled supervision.

Natural Language Processing

Word2vec: Skip-Gram Algorithm

The intuition of skip-gram is:
1. Treat the target word and a neighboring context word as positive examples.
2. Randomly sample other words in the lexicon to get negative samples
3. Use logistic regression to train a classifier to distinguish those two cases

4. Use the regression weights as the embeddings

Natural Language Processing

Skip-Gram Training Data

« Asssume that context words are those in +/- 2 word window.
« A training sentence:
tablespoon of apricot jam a

cl c2 target c¢3 c4

Natural Language Processing

Skip-Gram Goal

Our goal is to train a classifier such that,
— Given a tuple (t,c) of a target word t paired with a context word ¢
* (apricot, jam)
* (apricot, aardvark)

— it will return the probability that c is a real context word (true for jam, false for
aardvark):

P(+ | t,c) Probability that word c is nota real context word for t

P(— | t,c) = 1-P(+|t,c) Probability that word c is not a real context word for t

Natural Language Processing 8

How to Compute P(+|t,c)?

The intuition of the skipgram model is to base this probability on similarity:
« A word is likely to occur near the target if its embedding is similar to the target
embedding.
« Two vectors are similar if they have a high dot product.
— Similarity(t,c) o« t-c

— The dot product t.c is not a probability, it’s just a number ranging from 0 to co.

Natural Language Processing

How to Compute P(+|t,c)?
Turning dot product into a probability

« To turn dot product into a probability, we’ll use logistic or sigmoid function c(X).

1.0

0.8}

B 1 0.6
1 te> o4

0.2}

« The probability that word c is a real context word for target word t is:

P(4ltc) = — P(~|t,c) = 1—P(+]t,c)

—t-c L
1+e et

1+4et¢

Natural Language Processing 10

How to Compute P(+|t,c)?

For all the context words:

We need to take account of the multiple context words in the window.

Skip-gram makes the strong but very useful simplifying assumption that all context
words are independent, allowing us to just multiply their probabilities:

k

I
P(+Irex) =]| —

i=1
k
l |
¥
i=1

— Skip-gram trains a probabilistic classifier that, given a test target word t and its context
window of k words c,.,, assigns a probability based on how similar this context window is
to the target word.

— The probability is based on applying the logistic (sigmoid) function to the dot product of the
embeddings of the target word with each context word.

log P(+|t,c1:k)

Natural Language Processing 11

|_earning skip-gram embeddings
Skip-Gram Training Data

« Training sentence:

tablespoon of apricot jam a

cl c2 t c3 c4

« Training data: pairs centering on apricot

e Asssume a +/- 2 word window Is used.

Natural Language Processing

12

|_earning skip-gram embeddings
Skip-Gram Training

« Training sentence:
tablespoon of apricot jam a

cl c2 t c3 c4

» For each positive example, we'll create k

positive examples + :
negative examples.

t C _ _
apricot tablespoon * Using noise words

apricot of . !\Iollse word is any ranc_lom word that
apricot jam Isn't target word t (apricot)

apricot a

Natural Language Processing

|_earning skip-gram embeddings
Skip-Gram Training

« Training sentence:
tablespoon of apricot jam a

cl c2 t c3 c4

Create k (=2) negative examples.

positive examples + negative examples -

t C t C t C
apricot tablespoon apricot aardvark apricot twelve
apricot of apricot puddle apricot hello
apricot jam apricot where apricot dear

apricot a apricot coaxial apricot forever

Natural Language Processing

|_earning skip-gram embeddings
Choosing noise words

Could pick w as a noise word according to their unigram frequency P(w)

More common to chosen then according to P (w)

count(w)?

- >, count(w)®

Py (w)

a= 0.75 works well because it gives rare noise words slightly higher probability

To show this, imagine two events P(a)=.99 and P(b) = .01:

.99.75

~ 997540175
001.75

T 997540175

97

.03

Natural Language Processing

15

|_earning skip-gram embeddings
Setup

Let's represent words as vectors of some length (say 300), randomly initialized.
So, we start with 300*V random parameters

Over the entire training set, we’d like to adjust those word vectors such that we

— Maximize the similarity of the target word, context word pairs (t,c) drawn
from the positive data

— Minimize the similarity of the (t,c) pairs drawn from the negative data.

We’ll start with O or random weights

Then adjust the word weights to make the positive pairs more likely and the
negative pairs less likely over the entire training set:

Natural Language Processing 16

|_earning skip-gram embeddings
Objective Criteria

We want to maximize

L(O)=) logP(+|r,c)+ > logP(—lt.c)

(£,c)E+ (1.C)€E-

Maximize the + label for the pairs from the positive training data, and the — label
for the pairs sample from the negative data.

Natural Language Processing 17

|_earning skip-gram embeddings
Objective Criteria

Focusing in on one word/context pair (t,c) with its k noise words n,...n,, the learning
objective L is:
k
L(6) = logP(+|r.c)+) logP(—lt,n;)
i=1
k
= logo(c 1)+ Z logo(—n;-1)

=1

k
| l
= log — — E log
J=

That is, we want to maximize the dot product of the word with the actual context
words, and minimize the dot products of the word with the k negative sampled
non-neighbor words.

Natural Language Processing 18

|_earning skip-gram embeddings
Train using gradient descent

We can then use stochastic gradient descent to train to this objective,
— Iteratively modifying the parameters (the embeddings for each target word t and
each context word or noise word c in the vocabulary) to maximize the objective.
Skip-gram model actually learns two separate embeddings for each word w:
— target embedding t and
— context embedding c.

These embeddings are stored in two matrices,
— target matrix W and
— context matrix C.

Natural Language Processing

19

|_earning skip-gram embeddings
Train using gradient descent

The skip-gram model tries to shift embeddings so the target embedding (apricot) are
closer to (have a higher dot product with) context embeddings for nearby words (jam)
and further from (have a lower dot product with) context embeddings for words that
don’t occur nearby (aardvark).

similarity(apricot , jam) C
W I_,.--'_‘-_ ------- T '-..____L.':'l:.-i.'.:l_; 1 d
1.2.?9?99t_.v 1
1 _ . k[@e-e-es)] jam neighbor word
. . klee-o- 00
. ‘...apricot jam...” *
: ,N[@e:e-es)aardvark random noise
: T word
g v

decrease

“““similarity(apricot , aardvark)

WY - L
-
|]

Natural Language Processing 20

|_earning skip-gram embeddings
Train using gradient descent

Just as in logistic regression, the learning algorithm starts with randomly initialized W
and C matrices, and then walks through the training corpus using gradient descent to
update W and C so as to maximize the objective criteria.

Thus matrices W and C function as the parameters 0 that logistic regression is tuning.

Once embeddings are learned, we’ll have two embeddings for each word w;: t; and c;.

— We can choose to throw away the C matrix and just keep W, in which case each
word i will be represented by the vector t;.

— Alternatively we can add the two embeddings together, using the summed
embedding t; + ¢; as the new d-dimensional embedding

Natural Language Processing 21

Evaluating Vector Models

Compare to human scores on word similarity-type tasks:
« WordSim-353 (Finkelstein et al., 2002)
« SimLex-999 (Hill et al., 2015)
« Stanford Contextual Word Similarity (SCWS) dataset (Huang et al., 2012)
« TOEFL dataset:

» Levied is closest in meaning to: imposed, believed, requested, correlated

Natural Language Processing

22

Semantic properties of embeddings

Similarity depends on window size C

« One parameter that is relevant to both sparse tf-idf vectors and dense word2vec vectors
IS the size of the context window used to collect counts.

Short context windows =»most similar words to a target word w tend to be semantically
similar words with same parts of speech.

Long context windows =2 the highest cosine words to a target word w tend to be words that
are topically related but not similar.

Example:

window of +/-2 =» the most similar words to the word Hogwarts (from the Harry Potter
series) were names of other fictional schools: Sunnydale (from Buffy the Vampire
Slayer) or Evernight (from a vampire series).

window of +/-5 =» the most similar words to Hogwarts were other words topically related to
the Harry Potter series: Dumbledore, Malfoy, and half-blood.

Natural Language Processing 23

Analogy: Embeddings capture relational meaning!

« Another semantic property of embeddings is their ability to capture relational
meanings.

vector(‘king’) - vector(‘man’) + vector(‘woman’) = vector(‘queen’)

vector(‘Paris’) - vector(‘France’) + vector(‘Italy’) = vector(‘Rome”)

WOMAN

/ KR QUEENS
MAN /,

- KINGS \
QUEEN \ QUEEN

KING KING

Natural Language Processing 24

Analogy: Embeddings capture relational meaning!

« Relational properties of the vector space, shown by projecting vectors onto two
dimensions

0.5} rhwsirgss

D .

| i ! rgounbess
D3r *aunt ' rduchess

|.-| 2L] | . I.. 3 _' I_'!I'IF,ITI'_!GH
01l 1 " smadam

o
¢ Fugir

. nipHew

| + WOIman i A
0.1} uncla ' r qlfﬁﬁfl‘j
| prother ' . g, ot O

pmparor
I

! gir
05| Yman | kingy

0% -04 -03 -02 -01 © 01 @02 03 04 05

Natural Language Processing

Analogy: Embeddings capture relational meaning!

 offsets seem to capture comparative and superlative morphology

0.5 ! : L :
_ - - slowest
0.4}
- “slowar e - — —»ghortesal
Ak .7 < sharter
Bl ="
shart=
0.2
0.1
0F . '.E.:IFEHI;_EF B — = girgngas
4 _ < louder T - - - - . i

strong ¢ : loudest

=01 loud,. ~_ _ _ _
-~ clearer A S - = = gleares!
~ == aofler - = _
’ - = giofles)

D2+ [gar « = - T — - —

clear - L Carkar - — —

goft = " darkast

dark =
n..q 1 1 1 1

-01.4 —0.3 -0.2 ~07 0 0.1 0.2 0.3 0.4 0.5 0.8

Natural Language Processing

Embeddings and Historical Semantics

« Train embeddings on old books to study changes in word meaning!!

A

.1+ gay (1900s)

v Ygay (1950s)

gay (1990s)

broadcast (1850s)

broadcast (1900s)

. broadcast (1990s)

C " awful (1850s)

awful (1900s)

awful (1990s)

Natural Language Processing

27

Vector Semantics: Summary

« Invector semantics, a word is modeled as a vector — a point in high-dimensional space, also
called an embedding.

« Vector semantic models fall into two classes: sparse and dense.

Sparse Models:

« In sparse models like tf-idf each dimension corresponds to a word in the vocabulary.
« Cell in sparse models are functions of co-occurrence counts.

« The term document matrix has rows for each word (term) in the vocabulary and a column for
each document.

« The word-context matrix has a row for each (target) word in the vocabulary and a column for
each context term in the vocabulary.

« A common sparse weighting is tf-idf, which weights each cell by its term frequency and
inverse document frequency.

« Word and document similarity is computed by computing the dot product between vectors.
The cosine of two vectors—a normalized dot product—is the most popular such metric.

« PPMI (pointwise positive mutual information) is an alternative weighting scheme to tf-idf.

Natural Language Processing 28

Vector Semantics: Summary

Dense Models:

« Dense vector models have dimensionality 50-300 and the dimensions are harder to interpret.

The word2vec family of models, including skip-gram, is a popular efficient way to compute
dense embeddings.

SKkip-gram trains a logistic regression classifier to compute the probability that two words are
‘likely to occur nearby in text’.
— This probability is computed from the dot product between the embeddings for the two words,

Skip-gram uses stochastic gradient descent to train the classifier, by learning embeddings
that have a high dot-product with embeddings of words that ocur nearby and a low dot-product
with noise words.

Other important embedding algorithms include GloVe, and fasttext.

Natural Language Processing 29

