
Vector Semantics

• Word2vec

Natural Language Processing 1

• TF-IDF and PPMI vectors are

– long vectors with dimensions corresponding to the words in the vocabulary, i.e.

their lengths are |V| which is the number of words in the language and |V| can be

around 50,000.

– sparse, i.e most of the elements in those vectors are zero.

• In most of NLP tasks, dense vectors work better than sparse vectors.

• Dense vectors are short, and their lengths are between 50 and 1000.

– They are dense, i.e. their most-elements are non-zero.

TF-IDF and PPMI Vectors

Natural Language Processing 2

Why dense vectors?

• Short vectors may be easier to use as features in machine learning (less weights to

tune).

• Dense vectors may generalize better than storing explicit counts.

• They may do better at capturing synonymy:

– car and automobile are synonyms; but they are distinct dimensions

– a neighboring word with car and a neighboring word with automobile should be

similar, but they are not similar.

• In practice, dense vectors work better.

Sparse versus Dense Vectors

Natural Language Processing 3

• One of the most popular embedding method is word2vec (Mikolov et al. 2013).

• The word2vec methods are very fast, efficient to train and easily available online with

code and pretrained embeddings.

– Main dense vector idea: predict rather than count .

• Popular dense embeddings:

– Word2vec (Mikolov et al.) https://code.google.com/archive/p/word2vec/

– Fasttext http://www.fasttext.cc/

– Glove (Manning et al.) http://nlp.stanford.edu/projects/glove/

Word2vec

Natural Language Processing 4

https://code.google.com/archive/p/word2vec/
http://www.fasttext.cc/
http://nlp.stanford.edu/projects/glove/

• The intuition of word2vec is:

– Instead of counting how often each word w occurs near "apricot"

– Train a classifier on a binary prediction task:

• Is w likely to show up near "apricot"?

• We don’t actually care about this task

– But we'll take the learned classifier weights as the word embeddings.

Brilliant insight: Use running text (plain text) as implicitly supervised training data!

• A word s near apricot acts as gold ‘correct answer’ to the question “Is word w likely

to show up near apricot?”

• No need for hand-labeled supervision.

Word2vec

Natural Language Processing 5

The intuition of skip-gram is:

1. Treat the target word and a neighboring context word as positive examples.

2. Randomly sample other words in the lexicon to get negative samples

3. Use logistic regression to train a classifier to distinguish those two cases

4. Use the regression weights as the embeddings

Word2vec: Skip-Gram Algorithm

Natural Language Processing 6

• Asssume that context words are those in +/- 2 word window.

• A training sentence:

... lemon, a tablespoon of apricot jam a pinch ...

c1 c2 target c3 c4

Skip-Gram Training Data

Natural Language Processing 7

• Our goal is to train a classifier such that,

– Given a tuple (t,c) of a target word t paired with a context word c

• (apricot, jam)

• (apricot, aardvark)

– it will return the probability that c is a real context word (true for jam, false for

aardvark):

P(+ | t,c) Probability that word c is nota real context word for t

P(− | t,c) = 1−P(+|t,c) Probability that word c is not a real context word for t

Skip-Gram Goal

Natural Language Processing 8

The intuition of the skipgram model is to base this probability on similarity:

• A word is likely to occur near the target if its embedding is similar to the target

embedding.

• Two vectors are similar if they have a high dot product.

– Similarity(t,c) ∝ t ∙ c

– The dot product t.c is not a probability, it’s just a number ranging from 0 to ∞.

How to Compute P(+|t,c)?

Natural Language Processing 9

• To turn dot product into a probability, we’ll use logistic or sigmoid function (x).

• The probability that word c is a real context word for target word t is:

How to Compute P(+|t,c)?
Turning dot product into a probability

Natural Language Processing 10

• We need to take account of the multiple context words in the window.

• Skip-gram makes the strong but very useful simplifying assumption that all context

words are independent, allowing us to just multiply their probabilities:

– Skip-gram trains a probabilistic classifier that, given a test target word t and its context

window of k words c1:k, assigns a probability based on how similar this context window is

to the target word.

– The probability is based on applying the logistic (sigmoid) function to the dot product of the

embeddings of the target word with each context word.

How to Compute P(+|t,c)?
For all the context words:

Natural Language Processing 11

• Training sentence:

... lemon, a tablespoon of apricot jam a pinch ...

c1 c2 t c3 c4

• Training data: pairs centering on apricot

• Asssume a +/- 2 word window is used.

Learning skip-gram embeddings
Skip-Gram Training Data

Natural Language Processing 12

• Training sentence:

... lemon, a tablespoon of apricot jam a pinch ...

c1 c2 t c3 c4

Learning skip-gram embeddings
Skip-Gram Training

Natural Language Processing 13

positive examples +

t c

apricot tablespoon

apricot of

apricot jam

apricot a

• For each positive example, we'll create k

negative examples.

• Using noise words

• Noise word is any random word that

isn't target word t (apricot)

• Training sentence:

... lemon, a tablespoon of apricot jam a pinch ...

c1 c2 t c3 c4

Learning skip-gram embeddings
Skip-Gram Training

Natural Language Processing 14

positive examples +

t c

apricot tablespoon

apricot of

apricot jam

apricot a

Create k (=2) negative examples.

negative examples -

t c t c

apricot aardvark apricot twelve

apricot puddle apricot hello

apricot where apricot dear

apricot coaxial apricot forever

• Could pick w as a noise word according to their unigram frequency P(w)

• More common to chosen then according to Pα(w)

• α= 0.75 works well because it gives rare noise words slightly higher probability

• To show this, imagine two events P(a)=.99 and P(b) = .01:

Learning skip-gram embeddings
Choosing noise words

Natural Language Processing 15

• Let's represent words as vectors of some length (say 300), randomly initialized.

• So, we start with 300*V random parameters

• Over the entire training set, we’d like to adjust those word vectors such that we

– Maximize the similarity of the target word, context word pairs (t,c) drawn

from the positive data

– Minimize the similarity of the (t,c) pairs drawn from the negative data.

• We’ll start with 0 or random weights

• Then adjust the word weights to make the positive pairs more likely and the

negative pairs less likely over the entire training set:

Learning skip-gram embeddings
Setup

Natural Language Processing 16

• We want to maximize

• Maximize the + label for the pairs from the positive training data, and the – label

for the pairs sample from the negative data.

Learning skip-gram embeddings
Objective Criteria

Natural Language Processing 17

• Focusing in on one word/context pair (t,c) with its k noise words n1…nk, the learning

objective L is:

• That is, we want to maximize the dot product of the word with the actual context

words, and minimize the dot products of the word with the k negative sampled

non-neighbor words.

Learning skip-gram embeddings
Objective Criteria

Natural Language Processing 18

• We can then use stochastic gradient descent to train to this objective,

– iteratively modifying the parameters (the embeddings for each target word t and

each context word or noise word c in the vocabulary) to maximize the objective.

• Skip-gram model actually learns two separate embeddings for each word w:

– target embedding t and

– context embedding c.

• These embeddings are stored in two matrices,

– target matrix W and

– context matrix C.

Learning skip-gram embeddings
Train using gradient descent

Natural Language Processing 19

• The skip-gram model tries to shift embeddings so the target embedding (apricot) are

closer to (have a higher dot product with) context embeddings for nearby words (jam)

and further from (have a lower dot product with) context embeddings for words that

don’t occur nearby (aardvark).

Learning skip-gram embeddings
Train using gradient descent

Natural Language Processing 20

• Just as in logistic regression, the learning algorithm starts with randomly initialized W

and C matrices, and then walks through the training corpus using gradient descent to

update W and C so as to maximize the objective criteria.

• Thus matrices W and C function as the parameters  that logistic regression is tuning.

• Once embeddings are learned, we’ll have two embeddings for each word wi: ti and ci.

– We can choose to throw away the C matrix and just keep W, in which case each

word i will be represented by the vector ti.

– Alternatively we can add the two embeddings together, using the summed

embedding ti + ci as the new d-dimensional embedding

Learning skip-gram embeddings
Train using gradient descent

Natural Language Processing 21

• Compare to human scores on word similarity-type tasks:

• WordSim-353 (Finkelstein et al., 2002)

• SimLex-999 (Hill et al., 2015)

• Stanford Contextual Word Similarity (SCWS) dataset (Huang et al., 2012)

• TOEFL dataset:

• Levied is closest in meaning to: imposed, believed, requested, correlated

Evaluating Vector Models

Natural Language Processing 22

Similarity depends on window size C

• One parameter that is relevant to both sparse tf-idf vectors and dense word2vec vectors

is the size of the context window used to collect counts.

Short context windows most similar words to a target word w tend to be semantically

similar words with same parts of speech.

Long context windows  the highest cosine words to a target word w tend to be words that

are topically related but not similar.

Example:

window of +/-2  the most similar words to the word Hogwarts (from the Harry Potter

series) were names of other fictional schools: Sunnydale (from Buffy the Vampire

Slayer) or Evernight (from a vampire series).

window of +/-5  the most similar words to Hogwarts were other words topically related to

the Harry Potter series: Dumbledore, Malfoy, and half-blood.

Semantic properties of embeddings

Natural Language Processing 23

• Another semantic property of embeddings is their ability to capture relational

meanings.

vector(‘king’) - vector(‘man’) + vector(‘woman’) ≈ vector(‘queen’)

vector(‘Paris’) - vector(‘France’) + vector(‘Italy’) ≈ vector(‘Rome’)

Analogy: Embeddings capture relational meaning!

Natural Language Processing 24

• Relational properties of the vector space, shown by projecting vectors onto two

dimensions

Analogy: Embeddings capture relational meaning!

Natural Language Processing 25

• offsets seem to capture comparative and superlative morphology

Analogy: Embeddings capture relational meaning!

Natural Language Processing 26

• Train embeddings on old books to study changes in word meaning!!

Embeddings and Historical Semantics

Natural Language Processing 27

• In vector semantics, a word is modeled as a vector — a point in high-dimensional space, also

called an embedding.

• Vector semantic models fall into two classes: sparse and dense.

Sparse Models:

• In sparse models like tf-idf each dimension corresponds to a word in the vocabulary.

• Cell in sparse models are functions of co-occurrence counts.

• The term document matrix has rows for each word (term) in the vocabulary and a column for

each document.

• The word-context matrix has a row for each (target) word in the vocabulary and a column for

each context term in the vocabulary.

• A common sparse weighting is tf-idf, which weights each cell by its term frequency and

inverse document frequency.

• Word and document similarity is computed by computing the dot product between vectors.

The cosine of two vectors—a normalized dot product—is the most popular such metric.

• PPMI (pointwise positive mutual information) is an alternative weighting scheme to tf-idf.

Vector Semantics: Summary

Natural Language Processing 28

Dense Models:

• Dense vector models have dimensionality 50-300 and the dimensions are harder to interpret.

• The word2vec family of models, including skip-gram, is a popular efficient way to compute

dense embeddings.

• Skip-gram trains a logistic regression classifier to compute the probability that two words are

‘likely to occur nearby in text’.

– This probability is computed from the dot product between the embeddings for the two words,

• Skip-gram uses stochastic gradient descent to train the classifier, by learning embeddings

that have a high dot-product with embeddings of words that ocur nearby and a low dot-product

with noise words.

• Other important embedding algorithms include GloVe, and fasttext.

Vector Semantics: Summary

Natural Language Processing 29

