
Recurrent Neural Networks (RNNs) and

Long Short Term Memory Networks (LSTMs)

• RNNs

• LSTMs

Natural Language Processing 1

Recurrent Neural Networks (RNNs)

Natural Language Processing 2

Recurrent Neural Networks (RNNs)

• Language is an inherently temporal phenomenon.

– Language is a sequence of events over time.

• This temporal nature is reflected in some language processing algorithms.

– HMM part-of-speech tagging proceeds through the input a word at a time.

– Text classification tasks don’t have this temporal nature. They assume simultaneous access

to all aspects of their input.

• The feedforward networks also assumed simultaneous access, although they also had

a simple model for time.

– Feedforward networks to language modeling look at a fixed-size window of words, and

then sliding this window over the input.

• Recurrent Neural Networks (RNNs), and their variants like LSTMs are deep

learning architectures that offers an alternative way of representing time.

Natural Language Processing 3

Recurrent Neural Networks (RNNs)

• RNNs have a mechanism that deals directly with the sequential nature of language,

allowing them to handle the temporal nature of language without the use of arbitrary

fixed-sized windows.

• The recurrent network represents the prior context, in its recurrent connections,

allowing the model’s decision to depend on hundreds of words in the past.

• A recurrent neural network (RNN) is any network that contains a cycle within its

network connections,

– An input value of some unit is depends on its own earlier outputs as an input.

Natural Language Processing 4

Recurrent Neural Networks (RNNs)
simple recurrent neural network

• Simple recurrent neural network

• The hidden layer includes a recurrent connection

as part of its input.

– the activation value of the hidden layer depends on

the current input as well as the activation value of

the hidden layer from the previous time step.

• The hidden layer from the previous time step provides a form of memory, or context,

that encodes earlier processing and decisions can be made at later points in time.

– This approach does not impose a fixed-length limit on this prior context.

– The context embodied in the previous hidden layer can include information extending back

to the beginning of the sequence

Natural Language Processing 5

Recurrent Neural Networks (RNNs)
Inference in RNNs

• Forward inference (mapping a sequence of inputs to a sequence of outputs) in an

RNN is nearly identical to what we’ve already seen with feedforward networks.

Natural Language Processing 6

Simple recurrent neural network

illustrated as a feedforward network

• Once we have the values for the hidden layer,

we proceed with the usual computation to

generate the output vector.

Recurrent Neural Networks (RNNs)
Inference in RNNs

• The matrices U, V and W are shared across time, while new values for h and y are

calculated with each time step.

Natural Language Processing 7

Recurrent Neural Networks (RNNs)
Inference in RNNs

Natural Language Processing 8

time

time

Recurrent Neural Networks (RNNs)
Training RNNs

• Fortunately, with modern computational frameworks and adequate computing

resources, there is no need for a specialized approach to training RNNs.

• Enrolling a recurrent network into a feedforward computational graph eliminates any

explicit recurrences, allowing the network weights to be trained directly.

• When presented with a specific input sequence, we can generate an unrolled

feedforward network specific to that input, and use that graph to perform forward

inference or training via ordinary backpropagation.

Natural Language Processing 9

Natural Language Processing 10

Recurrent Neural Networks (RNNs)
• RNNs as Language Models

• Language models predict the next word in a sequence given some preceding context.

• Language models can assign a conditional probability to every possible next word.

• They can also assign probabilities to entire sequences by combining these conditional

probabilities with the chain rule:

RNNs as Language Models

Natural Language Processing 11

RNNs as Language Models

Natural Language Processing 12

• The n-gram language models compute the probability of a word given counts of its

occurrence with the n-1 prior words. The context size is n-1.

• For the feedforward language models, the context size is the window size.

• RNNs thus don’t have the limited context problem, since the hidden state can in principle

represent information about all of the preceding words.

• RNN language models process the input sequence one word at a time, attempting to

predict the next word from the current word and the previous hidden state.

a feedforward neural

language model

an RNN language model

moving through a text

• Forward inference is the task, given an input, of running a forward pass on the

network to produce a probability distribution over possible outputs (next words).

• The input sequence X=[x1,…,xN] consists of a series of words each represented as a

one-hot vector of size |V|1,

• The output prediction, y, is a vector representing a probability distribution over the

vocabulary.

• At each step, the model uses the word embedding matrix E to retrieve the embedding

for the current word, and then combines it with the hidden layer from the previous step

to compute a new hidden layer.

• This hidden layer is then used to generate an output layer which is passed through a

softmax layer to generate a probability distribution over the entire vocabulary.

RNNs as Language Models
Forward Inference

Natural Language Processing 13

• At time t:

• E is embeddings (size: d|V|), xt is one-hot vector (size: |V|1) for the word wt in the

input sequence, et is the embedding (size: d1) of the word wt.

• ht is the hidden layer output at time t (size: dh1), W is the weight matrix for the input

word (size: dhd), U is the weight matrix for the context (size: dhdh).

• V is the weight matrix for the output layer (size: |V|dh).

• Vht can be thought of as a set of scores over the vocabulary given the evidence provided in ht.

• yt : Passing these scores through the softmax normalizes the scores into a probability

distribution over the vocabulary.

RNNs as Language Models
Forward Inference

Natural Language Processing 14

• At time t:

• The probability that a particular word k in the vocabulary is the next word at time t is

represented by yt[k], the kth component of yt :

• The probability of an entire sequence is just the product of the probabilities of each

item in the sequence, where yi[wi] is the probability of the true word wi at time step i.

RNNs as Language Models
Forward Inference

Natural Language Processing 15

• self-supervision: To train an RNN as a language model, we take a corpus of text as

training material and at each time step t ask the model to predict the next word.

• We train the model to minimize the error in predicting the true next word in the

training sequence, using cross-entropy as the loss function.

– Recall that the cross-entropy loss measures the difference between a predicted probability

distribution and the correct distribution.

– The correct distribution yt comes from knowing the next word.

– At time t the CE loss is the negative log probability the model assigns to the next word in

the training sequence.

RNNs as Language Models
Training an RNN language model

Natural Language Processing 16

• At each word position t, the model takes the correct sequence of tokens w1:t , and computes a

probability distribution over possible next words to compute model’s loss for next token wt+1.
– Then we ignore what the model predicted for the next word and instead use the correct sequence of

tokens w1:t+1 to estimate the probability of token wt+2.

– The idea that the model use the correct history sequence to predict the next word (rather than feeding

the model its best case from the previous time step) is called teacher forcing.

RNNs as Language Models
Training an RNN language model

Natural Language Processing 17

The weights in
the network are
adjusted to
minimize the
average CE loss
over the training
sequence via
gradient descent.

Natural Language Processing 18

Recurrent Neural Networks (RNNs)
• RNNs for other NLP tasks

• In sequence labeling, the network’s task is to assign a label chosen from a small fixed

set of labels to each element of a sequence, like the part-of-speech tagging.

• Part-of-speech tagging as sequence labeling with a simple RNN.
– Pre-trained word embeddings serve as inputs and a softmax layer provides a probability

distribution over the part-of-speech tags as output at each time step.

RNNs for Other NLP Tasks
Sequence Labeling

Natural Language Processing 19

This RNN represents an
unrolled simple recurrent
network consisting of an
input layer, hidden layer,
and output layer at each
time step, as well as the
shared U, V and W weight
matrices that comprise the
network.

• RNNs can classify entire sequences rather than the tokens within them.

– The text to be classified is passed through the RNN a word at a time generating a new

hidden layer at each time step.

– The hidden layer for the last token of the text, hn, to constitute a compressed representation

of the entire sequence.

– hn is given to a feedforward network that chooses a class via a softmax function.

RNNs for Other NLP Tasks
RNNs for Sequence Classification – Text Classification

Natural Language Processing 20

h1 h2

Sequence classification using a simple RNN

combined with a feedforward network.

• No need intermediate outputs for the words in the sequence preceding the last element.

– Therefore, there are no loss terms associated with those elements.

– Instead, the loss function used to train the weights in the network is based entirely on the

final text classification task.

– The output from the softmax output from the feedforward classifier together with a cross-

entropy loss drives the training.

– The error signal from the classification is backpropagated all the way through the weights in

the feedforward classifier through, and then through to the three sets of weights in the RNN

RNNs for Other NLP Tasks
RNNs for Sequence Classification – Text Classification

Natural Language Processing 21

h1 h2

• Instead of using just last token hn to represent

the whole pooling sequence, we can use a

pooling function of all hidden states hi.

• A representation that pools all the n hidden

states by taking their element-wise mean:

• RNN-based language models can also be used to generate text.

– Text generation is of enormous practical importance any task where a system needs to

produce text such as question answering, machine translation, text summarization.

– Text generation constitute a new area of AI that is often called generative AI.

• Using a language model to incrementally generate words by repeatedly sampling the

next word conditioned on our previous choices is called autoregressive generation.

RNNs for Other NLP Tasks
Generation with RNN-Based Language Models

Natural Language Processing 22

• Autoregressive generation architecture is applicable to many NLp applications such as

machine translation, summarization, and question answering.

– The key is to prime the generation component with an appropriate context.

– Instead of simply using <s> to get things started we can provide a richer task-appropriate

context; for translation the context is the sentence in the source language; for

summarization it’s the long text we want to summarize.

RNNs for Other NLP Tasks
Generation with RNN-Based Language Models

Natural Language Processing 23

Autoregressive generation
with an RNN-based neural
language model.

Natural Language Processing 24

Recurrent Neural Networks (RNNs)
• Stacked and Bidirectional RNN architectures

• Recurrent networks are quite flexible.

– The entire sequence of outputs from one RNN as an input sequence to another one.

• Stacked RNNs consist of multiple networks where the output of one layer serves

as the input to a subsequent layer.

Stacked RNNs

Natural Language Processing 25

Stacked recurrent networks.

• The output of a lower level
serves as the input to higher
levels with the output of the
last network serving as the final
output.

• Stacked RNNs generally
outperform single-layer
networks.

• As the number of stacks is
increased the training costs rise
quickly.

• The RNN uses information from the left context to make its predictions at time t.

• But many NLP applications may require right context in addition to left context.

• A bidirectional RNN combines two independent RNNs, one where the input is

processed from the start to the end, and the other from the end to the start.

– We then concatenate the two representations computed by the networks into a single vector

that captures both the left and right contexts of an input at each point in time.

Bidirectional RNNs

Natural Language Processing 26

A bidirectional RNN

• Separate models are trained
in the forward and backward
directions, with the output
of each model at each time
point concatenated to
represent the bidirectional
state at that time point.

A bidirectional RNN for sequence classification:

• The final hidden units from the forward and backward passes are combined to

represent the entire sequence.

• This combined representation serves as input to the subsequent classifier.

Bidirectional RNNs

Natural Language Processing 27

Natural Language Processing 28

LSTM (long short-term memory) Network

• Distant information is critical to many language applications.

• To train RNNs is difficult to make use of information distant from the current point of

processing.

– Alhough RNNs access to the entire preceding sequence, the information encoded in hidden

states tends to be fairly local, more relevant to the most recent parts of the input.

Example: The flights the airline was canceling were full.

• Assigning a high probability to was following airline is straightforward since airline provides a

strong local context for the singular agreement.

• However, assigning an appropriate probability to were is quite difficult, not only because the

plural flights is quite distant, but also because the singular noun airline is closer in the

intervening context.

• Ideally, a network should be able to retain the distant information about plural flights until it

is needed, while still processing the intermediate parts of the sequence correctly.

LSTM
shortcomings of RNNs – distant information

Natural Language Processing 29

Reasons for the inability of RNNs to carry forward critical information

1. The weights in the hidden layer are being asked to perform two tasks simultaneously:
– provide information useful for the current decision, and

– updating and carrying forward information required for future decisions.

2. Training RNNs needs to backpropagate the error signal back through time.
– The hidden layer at time t contributes to the loss at the next time step since it takes part in

that calculation.

– During the backward pass of training, the hidden layers are subject to repeated

multiplications, as determined by the length of the sequence.

– A frequent result of this process is that the gradients are eventually driven to zero, a

situation called the vanishing gradients problem.

• More complex network architectures are designed to explicitly manage the task of

maintaining relevant context over time,
– by enabling the network to learn to forget information that is no longer needed and

– to remember information required for decisions still to come.

➔ LSTM

LSTM
shortcomings of RNNs – distant information

Natural Language Processing 30

• The long short-term memory (LSTM) networks which are extensions of RNNs are

designed to solve context management problem.

• LSTMs divide the context management problem into two subproblems:

– removing information no longer needed from the context, and

– adding information likely to be needed for later decision making.

• LSTMs accomplish the context management problem

– Adding an explicit context layer to the architecture (in addition to hidden layer), and

– Use of specialized neural units that make use of gates to control the flow of information

into and out of the units that comprise the network layers.

– These gates are implemented through the use of additional weights that operate sequentially

on the input, and previous hidden layer, and previous context layers.

LSTM

Natural Language Processing 31

The gates in an LSTM share a common design pattern:

• Each consists of a feedforward layer, followed by a sigmoid activation function,

followed by a pointwise multiplication with the layer being gated.

• The sigmoid activation function is preferred because it pushes its outputs to 0 or 1.

• A pointwise multiplication of the sigmoid function output and the layer being gated

has an effect similar to that of a binary mask of the layer.

• Values in the layer being gated that align with values near 1 in the mask are passed

through nearly unchanged; values corresponding to lower values are essentially erased.

LSTM
gates

Natural Language Processing 32

• The purpose of forget gate is to delete information from the context that is no longer

needed.

– The forget gate computes a weighted sum of the previous state’s hidden layer and the

current input and passes that through a sigmoid.

– This mask is then multiplied element-wise () by the context vector to remove the

information from context that is no longer required.

LSTM
Gates – forget gate

Natural Language Processing 33

• Uf and Wf : weights for the forget gate

• ct-1 : the previous context

• ft : a binary mask for forget gate

• The next task is to compute the actual information we need to extract from the

previous hidden state and current inputs.

• We generate the mask for the add gate to select the information to add to the current

context. We add this to the modified context vector to get our new context vector.

LSTM
Gates – add gate

Natural Language Processing 34

• Ui and Wi : weights for the add gate

• it : a binary mask for add gate

• jt : the new context items to be added

• ct : the new context

• Ug and Wg : weights for possible context items

• gt : possible context items to be added

in the current state

• The output gate is used to decide what information is required for the current hidden

state.

LSTM
Gates – output gate

Natural Language Processing 35

• Uo and Wo : weights for output gate

• ot : binary mask for output gate

• ht : hidden layer at time t

LSTM
A single LSTM unit

Natural Language Processing 36

• A single LSTM unit displayed as a computation graph:

• The inputs to each unit consists of current input xt, previous hidden state ht-1,

and previous context ct-1.

• The outputs are a new hidden state ht and an updated context ct .

forget gate

add gate

output gate

LSTM
LSTM units

Natural Language Processing 37

The neural units used in LSTMs are obviously much more complex than those used in

basic feedforward networks, simple RNNs.

Feedforward Unit RNN Unit LSTM Unit

Natural Language Processing 38

Encoder-Decoder Model with RNNs

Encoder-Decoder Model with RNNs
Four architectures for NLP tasks

Natural Language Processing 39

In encoder-decoder model we have two

separate RNN models,

• First one maps input sequence to intermediate

representation called as context, and

• Second one maps from context to output

sequence.

In sequence labeling (POS

tagging) we map each input

token xi to an output token yi.

In sequence classification

we map the entire input

sequence to a single class.

In language modeling we

output next token conditioned

on previous tokens.

• The encoder-decoder model takes an input sequence and translates it to an output

sequence that is of a different length than the input.

– Encoder-decoder models are used especially for tasks like machine translation, where the

input sequence and output sequence can have different lengths and the mapping between a

token in the input and a token in the output can be very indirect.

• The key idea underlying these networks is the use of an encoder network that takes an

input sequence and creates a contextualized representation of it, often called the

context.

– This context representation is then passed to a decoder which generates a task specific

output sequence.

Encoder-Decoder Model with RNNs

Natural Language Processing 40

Encoder-Decoder Model with RNNs
The encoder-decoder architecture

Natural Language Processing 41

Encoder-decoder networks consist of three conceptual components:

1. An encoder that accepts an input sequence, x1:n, and generates a

corresponding sequence of contextualized representations, h1:n.

• LSTMs, and transformers can all be employed as encoders.

2. A context vector c, which is a function of h1:n, and conveys the

essence of the input to the decoder.

3. A decoder, which accepts c as input and generates an arbitrary

length sequence of hidden states h1:m, from which a

corresponding sequence of output states y1:m, can be obtained.

• Just as with encoders, decoders can be realized by any kind of

sequence architecture (RNNs, LSTMs, transformers).

• Translating a single sentence in the basic RNN version of encoder-decoder approach

to machine translation.

– Source and target sentences are concatenated with a separator token in between, and the

decoder uses context information from the encoder’s last hidden state.

Encoder-Decoder Model with RNNs

Natural Language Processing 42

• A formal version of translating a sentence in the basic RNN-based encoder-decoder

architecture:

– The final hidden state of the encoder RNN 𝐡𝐧
𝐞 , serves as the context c for the decoder in

its role as 𝐡𝟎
𝐝 in the decoder RNN, and

– The context is also made available to each decoder hidden state.

Encoder-Decoder Model with RNNs

Natural Language Processing 43

• The purpose of the encoder is to generate a contextualized representation of the input.

• This representation is embodied in the final hidden state of the encoder 𝐡𝐧
𝐞 , also

called c for context, and it is then passed to the decoder.

• Encoder can be a single network layer,

– Stacked architectures (such as stacked biLSTMs) are widely used to represent

encoders.

Encoder-Decoder Model with RNNs
basic RNN-based encoder-decoder architecture

Natural Language Processing 44

• The decoder network takes the context and use it just to initialize the first hidden state

of the decoder;

– The first decoder RNN cell would use c as its prior hidden state 𝐡𝟎
𝐝 .

– The decoder autoregressively generates a sequence of outputs, an element at a

time, until an end-of-sequence marker is generated.

– Each hidden state is conditioned on the previous hidden state and the output

generated in the previous state.

Encoder-Decoder Model with RNNs
basic RNN-based encoder-decoder architecture

Natural Language Processing 45

• The output y at each time step consists of a softmax computation over the set of

possible outputs (the vocabulary).

• We compute the most likely output at each time step by taking the argmax over the

softmax output:

Encoder-Decoder Model with RNNs
basic RNN-based encoder-decoder architecture

Natural Language Processing 46

Equations for the decoder, with context

available at each decoding timestep.

• Training the basic RNN encoder-decoder approach to machine translation.

– Note that in the decoder we usually don’t propagate the model’s softmax outputs ො𝐲𝐭 , but

use teacher forcing to force each input to the correct gold value for training.

– We compute the softmax output distribution over ˆ ො𝐲 in the decoder in order to compute the

loss at each token, which can then be averaged to compute a loss for the sentence.

Encoder-Decoder Model with RNNs
basic RNN-based encoder-decoder architecture - Training

Natural Language Processing 47

Natural Language Processing 48

Encoder-Decoder Model with RNNs
• Attention

• Requiring the context c to be only the encoder’s final hidden state forces all the

information from the entire source sentence to pass through this representational

bottleneck.

• The attention mechanism is a solution to the bottleneck problem,

• The attention mechanism allows the decoder to get information from all the hidden

states of the encoder, not just the last hidden state.

Encoder-Decoder Model with RNNs - Attention

Natural Language Processing 49

• The idea of attention is to create the single fixed-length vector c by taking a

weighted sum of all the encoder hidden states.

• The weights focus on (‘attend to’) a particular part of the source text that is relevant

for the token the decoder is currently producing.

• Attention thus replaces the static context vector with one that is dynamically derived

from the encoder hidden states, different for each token in decoding.

Encoder-Decoder Model with RNNs - Attention

Natural Language Processing 50

The attention mechanism allows each

hidden state of the decoder to see a

different, dynamic, context, which is a

function of all the encoder hidden states.

• How relevant each encoder state is to the decoder state.

– Similarity of jth encoder hidden state 𝐡𝐣
𝐞 with i-1th decoder hidden state 𝐡𝐢−𝟏

𝐝 : score(𝐡𝐢−𝟏
𝐝 ,𝐡𝐣

𝐞

• Simple score function is dot-product attention:

• To use othese scores, we create a vector of weights ij, that tells us the proportional

relevance of each encoder hidden state j to the prior hidden decoder state, 𝐡𝐢−𝟏
𝐝 .

• We can compute a fixed-length context vector for the current decoder state by

taking a weighted average over all the encoder hidden states.

Encoder-Decoder Model with RNNs - Attention

Natural Language Processing 51

The encoder-decoder network with attention, focusing on the computation of ci:

– The context value ci is one of the inputs to the computation of 𝐡𝐢
𝐝

– It is computed by taking the weighted sum of all the encoder hidden states, each weighted

by their dot product with the prior decoder hidden state 𝐡𝐢−𝟏
𝐝 .

Encoder-Decoder Model with RNNs - Attention

Natural Language Processing 52

Recurrent Neural Networks (RNNs) - Summary

Natural Language Processing 53

• In simple Recurrent Neural Networks sequences are processed one element at a time,

with the output of each neural unit at time t based both on the current input at t and the

hidden layer from time t-1.

• RNNs can be trained with a straightforward extension of the backpropagation

algorithm, known as backpropagation through time (BPTT).

• Simple recurrent networks fail on long inputs because of problems like vanishing

gradients; modern systems use more complex gated architectures such as LSTMs that

explicitly decide what to remember and forget in their hidden and context layers.

Recurrent Neural Networks (RNNs) - Summary

Natural Language Processing 54

Common language-based applications for RNNs include:

• Probabilistic language modeling: assigning a probability to a sequence, or to the next

element of a sequence given the preceding words.

• Auto-regressive generation using a trained language model.

• Sequence labeling like part-of-speech tagging, where each element of a sequence is

assigned a label.

• Sequence classification, where an entire text is assigned to a category, as in spam

detection, sentiment analysis or topic classification.

• Encoder-decoder architectures, where an input is mapped to an output of different

length and alignment.

Recurrent Neural Networks (RNNs) - Summary

Natural Language Processing 55

