
Transformers and

Large Language Models

• Transformers – Self Attention Networks

• Large Language Models

Natural Language Processing 1

Transformers – Self Attention Networks

Natural Language Processing 2

Transformer – A Self Attention Network

Pretraining: learning knowledge about language and world from vast amounts of text.

• The resulting pretrained language models are called as large language models.

• The transformer is a standard architecture for building large language models.

• The transformer makes use of a novel mechanism called self-attention, which

developed out of the idea of attention that was introduced for RNNs.

• Generally, the input to a transformer is a sequence of words, and the output is a

prediction for what word comes next, as well as a sequence of contextual embedding

that represents the contextual meaning of each of the input words.

Natural Language Processing 3

• Like the LSTMs, transformers can handle distant information

• But unlike LSTMs, transformers are not based on recurrent connections

– Transformers can be more efficient to implement at scale. The training can be parallelized.

• Transformers are made up of stacks of transformer blocks,

• Each transformer block which is a multilayer network maps sequences of input

vectors (x1,…,xn) to output vectors (x1,…,xn) of the same length.

• These transformer blocks are made by combining:

– simple linear layers

– feedforward networks

– self-attention layers

• Self-attention allows a network to directly extract and use information from arbitrarily

large contexts without the need to pass it through intermediate recurrent connections as

in RNNs

Transformers vs. LSTMs

Natural Language Processing 4

Intuition of a transformer: Using a series of layers, a transformer can build up richer

and richer contextualized representations of the meanings of input words or tokens.

– Although input is referred as a sequence of words for convenience, technically input is first

tokenized by an algorithm like BPE, so it is a series of tokens rather than words.

• At each layer of a transformer, to compute the representation of a word i:

– Its representation at the previous layer is combined with information from the

representations of the neighboring words.

– The goal is to produce a contextualized representation for each word at each position.

• Transformers produce contextualized versions of word vectors.

• A contextualized representation represents what this word means in the particular

context in which it occurs.

Transformers - intuition

Natural Language Processing 5

• The concept of context can be used in two ways in self-attention.

– In backward looking (casual) self-attention, the context is any of the prior words.

– In bidirectional self-attention, the context can include future words (like in BERT).

• When processing each item in the input (in backward looking self-attention):

– The model has access to all the inputs up to and including the one under consideration

– No access to information about inputs beyond the current one (only left context)

– The computation performed for each item is independent of all the other computations

• Easily parallelize both forward inference and training of such models

Self-Attention
backward-looking (causal) self-attention

Natural Language Processing 6

Attention-based approach: Compare an item to a collection of other items in a way that

reveals their relevance in the current context.

Self-Attention: The set of comparisons is made to other elements within a given

sequence;

• the result of these comparisons is then used to compute an output for the current input

Self-Attention

Natural Language Processing 7

• Computation of the output value ai is based on a set of comparisons (dot product)

between the input xi and its preceding elements x1 and x2, and to xi itself.

1. The first step is to compute a similarity between xi and xj : score(xi,xj) = xi.xj

2. Normalize them with a softmax to create a vector of weights, αij

3. Generate ai

Self-Attention
Simple Variant

Natural Language Processing 8

ij is a proportional relevance of each input

to input i (current focus of attention).
• weight will likely be highest for the current

focus element i, since xi is very similar to itself.

• Other context words may also be similar to i,

and softmax also assign some weight to them.

Attention

Value

• Transformers allow us to create a more sophisticated way of representing how words

can contribute to the representation of longer inputs.

• Each input embedding plays three different roles during attention process :

– Query : The current focus of attention when being compared to all the other

preceding inputs.

– Key : In its role as a preceding input being compared to the current focus of

attention.

– Value : As used to compute the output for the current focus of attention.

• To capture these three different roles, transformers introduce weight matrices WQ,

WK, and WV.

• These weights project each input vector xi into a representation of its role as a query,

key, or value.

Self-Attention

Natural Language Processing 9

• The inputs x and outputs y of transformers, as well as the intermediate vectors after the

various layers, all have the same dimensionality 1×d

• Let’s assume the dimensionalities of the transform matrices are WQ∈Rd×dk, WK∈Rd×dk,

and WV∈Rd×d

– The dimension of WV can be Rd×dv. In this case, we may need projection from dv to d dimension.

• Both query qi and key ki are of dimensionality of 1×dk.

• Given these projections, the score between a current focus of attention xi and xj

(preceding context) consists of a dot product between its query vector qi and the

preceding element’s key vectors kj.

• The result of a dot product can be an arbitrarily large divide the dot product by the

square root of the dimensionality of the query and key vectors

Self-Attention Layer

Natural Language Processing 10

Self-Attention Layer

Natural Language Processing 11

Calculating the value of a3, the third element of a

sequence using causal (left-to-right) self-attention.

• The input of a transformer is a sequence of embeddings of N tokens : XRN×d

– Transformers for large language models can have an input length N=1024,2048 or 4096.

• We can multiply X by the key, query, and value matrices to produce matrices Q, K

and V containing all the query, key, and value vectors:

• We can reduce the entire self-attention step for an entire sequence of N tokens to the

following computation

Self-Attention Layer

Natural Language Processing 12

• It would be difficult for a single self-attention model to learn to capture all of the

different kinds of parallel relations among its inputs.

• Transformers address this issue with multihead self-attention layers.

• Sets of self-attention layers, called heads, that reside in parallel layers at the same

depth in a model, each with its own set of parameters

• Given these distinct sets of parameters, each head can learn different aspects of the

relationships that exist among inputs at the same level of abstraction.

• To implement this notion, each head i, in a self-attention layer is provided with its own

set of key, query and value matrices: Wi
K, Wi

Q and Wi
V.

Multihead Attention

Natural Language Processing 13

• In multi-head attention, model dimension is still d, key and query embeddings have

dimensionality dk, and value embeddings are of dimensionality dv

– in the original transformer paper dk = dv = 64, h = 8, and d = 512.

• Thus for each head i, we have weight layers:

• These weights are multiplied by N input embeddings packed into XRN×d to produce

Q, K and V matrices: QRN×dk, KRN×dk and VRN×dv

• The output of the multi-head layer with h heads consists of h matrices of shape N×dv.

• Another linear projection WORh.dv×d, that reshape it to the original output dimension

for each token.

• Multiplying the concatenated matrix output by WO yields the self-attention output of

shape N×d, suitable to be passed through layers.

Multihead Attention

Natural Language Processing 14

Multihead Attention

Natural Language Processing 15

•Each of the multihead self-
attention layers is provided with
its own set of key, query and
value weight matrices.

•The outputs from each of the
layers are concatenated and then
projected to d, thus producing an
output of the same size as the
input so the attention can be
followed by layer norm and
feedforward and layers can be
stacked.

Transformer Blocks

Natural Language Processing 16

• Self-attention (multihead attention) layer is at the core of a transformer block.

• In addition to the self-attention layer, a transformer block also includes a

feedforward layer, residual connections and normalizing layers (layer norm).

Feedforward layer contains N position-wise

networks, one at each position.

• Each is a fully-connected 2-layer network.

Residual connections are connections that pass

information from a lower layer to a higher layer

without going through the intermediate layer;

• gives higher level layers direct access to

information from lower layers

Layer Norm: Forms of normalization that can be

used to improve training performance in deep

neural networks by keeping the values of a

hidden layer in a range that facilitates gradient-

based training

The function computed by a transformer block can be expressed as:

Transformer Blocks

Natural Language Processing 17

Input and output dimensions of transformer

blocks are matched so they can be stacked.

• Each token xi at the input to the block has

dimensionality d, and so input X and output H

are both of shape [Nd].

• Transformers for large language models stack

many of these blocks.

– 12 layers are used for the T5 or GPT-3-small

language models to 96 layers are used for GPT-

3 large, to even more for more recent models.

• As embedding vectors pass up through the

transformer layers, embedding representation

will change and grow, incorporating context.

Transformer Blocks

Natural Language Processing 18

...

Stacked Transformer Blocks

Input : Given a sequence of N tokens (N is the context length in tokens), the input is the

matrix of shape [Nd] which has an embedding for each word in the context.

• The initial embeddings are stored in the embedding matrix E, which has a row for each

of the |V| tokens in the vocabulary.

• Each each word is a row vector of d dimensions, and E has shape [|V|d].

• For a given sequence of N tokens, the input matrix can be created using one-hot

vectors for tokens.

• Selecting the embedding matrix for the input sequence of token ids W by

multiplying a one-hot matrix corresponding to W by the embedding matrix E.

Positional Embeddings
input: embeddings for token

Natural Language Processing 19

How does a transformer model the position of each token in the input sequence?

• With RNNs, information about the order of the inputs was built into the structure of

the model, Not with Transformers

Solution: Positional Embeddings

• Modify the input embeddings by combining them with positional embeddings specific

to each position in an input sequence

How do we get them? Start with randomly initialized embeddings corresponding to each

possible input position up to some maximum length

• As with word embeddings, these positional embeddings are learned along with other

parameters during training.

• To produce an input embedding that captures positional information, we just add the

word embedding for each input to its corresponding positional embedding
– The individual token and position embeddings are both of size [1d], so their sum is also

[1d]. This new embedding serves as the input for further processing.

Positional Embeddings

Natural Language Processing 20

• A simple way to model position: add an embedding of the absolute position to the

token embedding to produce a new embedding of the same dimensionality.

Positional Embeddings

Natural Language Processing 21

Positional

Embeddings

• The language modeling head is the additional neural circuitry that we add on top of

the basic transformer architecture to enable the language modeling.

– The job of the language modeling head is to take the output of the final transformer layer

from the last token N and use it to predict the upcoming word at position N+1.

Language Modeling Head

Natural Language Processing 22

• Unembedding layer is a linear layer to project from the output 𝐡𝐍
𝐋 which is the output

token embedding at position N from the final block L, to a logit vector (a score vector

that has a single score for each of the |V| possible words in the vocabulary V.
– This linear layer can be learned, but more commonly this matrix is tied to (the transpose of)

the embedding matrix E.

– ➔ weight tying, we use the same weights for two different matrices in the model.

– In the learning process, E will be optimized to be good at doing both of these mappings.

– The transpose ET is called unembedding layer because it performs a reverse mapping.

– A softmax layer turns the logits u into the probabilities y over the vocabulary.

Language Modeling Head

Natural Language Processing 23

A transformer decoder-only model,

stacking transformer blocks and mapping

from input tokens w1 to wN to a predicted

next word wN+1.

The input to the first transformer block is

represented as X which is the N indexed

word embeddings + position embeddings,

but the input to all the other layers is the

output H from the layer just below the

current one.

Language Modeling Head
a transformer decoder-only model

Natural Language Processing 24

Large Language Models with Transformers

Natural Language Processing 25

• Many practical NLP tasks can be cast as word prediction task using transformer-based

large language models.

– A powerful-enough language model can solve them with a high degree of accuracy.

• Many NLP tasks are cases of conditional generation, the task of generating text conditioned on

an input piece of text, a prompt.

– The fact that transformers have such long contexts (4096 tokens) makes them very powerful

for conditional generation, because they can look back so far into the prompting text.

Large Language Models with Transformers

Natural Language Processing 26

Autoregressive text completion with

transformer-based large language models.

• A language model is given a text prefix and is

asked to generate a possible completion.

• The generation process proceeds, the model has

direct access to the priming context as well as to

all of its own subsequently generated.

• This ability to incorporate the entirety of the

earlier context and generated outputs at each time

step is the key to the power of large language

models built from transformers

Sentiment Analysis as language modeling by giving a language model a context like:

The sentiment of the sentence “I like Jackie Chan” is:

and comparing the conditional probability of the words “positive” and the word

“negative” to see which is higher:

P(positive | The sentiment of the sentence “I like Jackie Chan” is:)

P(negative | The sentiment of the sentence “I like Jackie Chan” is:)

If the word “positive” is more probable, we say the sentiment of the sentence is positive,

otherwise we say the sentiment is negative.

Large Language Models with Transformers
NLP tasks as word prediction task

Natural Language Processing 27

Question Answering as word prediction by giving a language model a question and a

token like A: suggesting that an answer should come next:

Q: Who wrote the book ``The Origin of Species"? A:

If we ask a language model to compute

P(w | Q: Who wrote the book ``The Origin of Species"? A:)

and look at which words w have high probabilities, we might expect to see that Charles is

very likely, and then if we choose Charles and continue and ask

P(w | Q: Who wrote the book ``The Origin of Species"? A: Charles)

we might now see that Darwin is the most probable word, and select it.

Large Language Models with Transformers
NLP tasks as word prediction task

Natural Language Processing 28

• Text Summarization takes a long text, such as a full-length article, and produce an

effective shorter summary (still a long response) of it.
– We can cast summarization as language modeling by giving a large language model a text,

and follow the text by a token like tl;dr;

– We can then do conditional generation: give the language model this prefix, and then ask it

to generate the words, one by one, and take the entire response as a summary.

Large Language Models with Transformers
NLP tasks as word prediction task

Natural Language Processing 29

Summarization with large language models using the

tl;dr token and context-based autoregressive generation.

• What makes transformers able to succeed at Text Summarization task?

– The ability of self-attention to incorporate information from the large context windows.

• The model has access to the original article as well as to the newly generated text.

• Which words do we generate at each step?

– Greedy decoding: always generate the most likely word for a given the context.

– At each time step in generation, the output yt is chosen by computing the probability for

each possible outputs and then choosing the highest probability word.

– A major problem with greedy decoding is that because the words it chooses are extremely

predictable, the resulting text is generic and often quite repetitive.

– In most tasks, however, we prefer text which has been generated by more sophisticated

methods, called sampling methods, that introduce a bit more diversity into the generations.

Large Language Models with Transformers
NLP tasks as word prediction task - Text Summarization

Natural Language Processing 30

• The core of the generation process for large language models is the task of choosing

the single word to generate next based on the context and based on the probabilities

that the model assigns to possible words.

• Choosing a word to generate based on the model’s probabilities is called decoding.

• Repeatedly choosing the next word conditioned on our previous choices is called

autoregressive generation (or casual LM generation).

• The most common method for decoding in large language models is sampling.

– Sampling from a model’s distribution over words means to choose random words according

to their probability assigned by the model.

Large Language Models: Generation by Sampling

Natural Language Processing 31

• Random Sampling generates a sequence of words w1,w2,… until it hits the end of

sequence token.

– To generate text from a trained transformer language model: at each step we’ll sample

words according to their probability conditioned on our previous choices, and we’ll use a

transformer language model as the probability model that tells us this probability.

– Although random sampling mostly generates sensible, high-probable words, it may also

generate low probability rare words:

• Even though each rare word is low probability, if you add up all the rare words, they constitute a

large enough portion of the distribution, and they can be chosen often enough to result in

generating weird sentences.

• For this reason, instead of random sampling, we usually use sampling methods that

avoid generating the very unlikely words.

Large Language Models: Generation by Sampling
random sampling

Natural Language Processing 32

Top-k sampling is a simple generalization of greedy decoding.

• Instead of choosing the single most probable word to generate,

1. We first truncate the distribution to the top k most likely words,

2. Renormalize to produce a legitimate probability distribution for top k words,

3. Then randomly sample from within these k words according to their renormalized

probabilities.

• When k = 1, top-k sampling is identical to greedy decoding.

• Setting k to a larger number than 1 leads us to sometimes select a word which is not

necessarily the most probable, but is still probable enough, and whose choice results in

generating more diverse but still high-enough-quality text.

Large Language Models: Generation by Sampling
Top-k sampling

Natural Language Processing 33

• One problem with top-k sampling is that k is fixed, but the shape of the the probability

distribution over words differs in different contexts.

– If we set k=10, sometimes the top 10 words will be very likely and include most of the

probability mass, but other times the probability distribution will be flatter and the top 10

words will only include a small part of the probability mass.

• An alternative sampling method, called top-p sampling is to keep not the top k words,

but the top p percent of the probability mass.

– The goal is same: to truncate the distribution to remove the very unlikely words.

– But by measuring probability rather than the number of words, the hope is that the measure

will be more robust in very different contexts, dynamically increasing and decreasing the

pool of word candidates.

Large Language Models: Generation by Sampling
Top-p sampling

Natural Language Processing 34

• To train a transformer as a language model, we use self-supervision algorithm

– A corpus of text is training dataset and the model predicts next word at each time step t.

– A model is called self-supervised because we don’t have to add any special gold labels to

the data; the natural sequence of words is its own supervision!

– We simply train the model to minimize the error in predicting the true next word in the

training sequence, using cross-entropy as the loss function.

• The cross-entropy loss measures the difference between a predicted probability

distribution and the correct distribution.

• At each word position t of the input, the model takes as input the correct sequence of

tokens w1:t , and uses them to compute a probability distribution over possible next

words so as to compute the model’s loss for the next token wt+1.

– Then we move to the next word, we ignore what the model predicted for the next word and

instead use the correct sequence of tokens w1:t+1 to estimate the probability of token wt+2.

– This idea that we always give the model the correct history sequence to predict the next

word is called teacher forcing.

Large Language Models: Training Transformers

Natural Language Processing 35

• During training, probability assigned to the correct word is used to calculate the cross-entropy

loss for each item in the sequence.

• The loss for a training sequence is the average cross-entropy loss over the entire sequence.

• The weights in the network are adjusted to minimize the average CE loss over the training

sequence via gradient descent.

Large Language Models: Training Transformers

Natural Language Processing 36

Training a transformer

as a language model

• The key difference between training transformes and training RNNs as language models,:

– The calculation of the outputs and the losses at each step is inherently serial in RNNs (given the

recurrence in the calculation of the hidden states).

– With transformers, each training item can be processed in parallel since the output for each element

in the sequence is computed separately.

• Large models are generally trained by filling the full context window

– For example 2048 or 4096 tokens for GPT3 or GPT4 with text.

– If documents are shorter than this, multiple documents are packed into the window with a

special end-of-text token between them.

Large Language Models: Training Transformers

Natural Language Processing 37

• Training corpora for large language models are so huge, they are likely to contain

many natural examples that can be helpful for NLP tasks.
– The GPT3 models, for example, are trained mostly on the web (429 billion tokens), some

text from books (67 billion tokens) and Wikipedia (3 billion tokens).

• The performance of large language models are mainly determined by 3 factors:
– Model size (the number of parameters not counting embeddings),

– Dataset size (the amount of training data), and

– Amount of computer used for training.

• The number of (non-embedding) parameters N can be roughly computed as follows

(with d as the input and output dimensionality of the model, dattn as the self-attention

layer size, and dff the size of the feedforward layer):

– Thus GPT-3, with n=96 layers and dimensionality d=12288,

has 1296128822  175 billion parameters.

Large Language Models: Training Transformers

Natural Language Processing 38

• Language models can generate texts that are false, this problem called hallucination.

– Language models are trained to generate text that is predictable and coherent, but the

training algorithms don’t have any way to enforce that the generated text is correct or true.

• A second source of harm is that language models can generate toxic language.

– Non-toxic prompts can lead large language models to output hate speech and abuse their

users.

– Language models can also generate stereotypes and negative attitudes about many

demographic groups.

• Language models also present privacy issues since they can leak information about

their training data.

– It is thus possible for an adversary to extract training-data text from a language model such

as an individual person’s name, phone number, and address.

– This is a problem if large language models are trained on private datasets such as electronic

health records.

Potential Harms from Language Models

Natural Language Processing 39

• Transformers are non-recurrent networks based on self-attention.

– A self-attention layer maps input sequences to output sequences of the same length, using

attention heads that model how the surrounding words are relevant for the current word.

• A transformer block consists of a single attention layer followed by a feedforward

layer with residual connections and layer normalizations.

• Transformer blocks can be stacked to make deeper and more powerful networks.

• Language models can be built out of stacks of transformer blocks, with a linear

(unembedding layer) and softmax max layer at the top.

• Transformer-based language models have a wide context window (as wide as 4096

tokens for current models) allowing them to draw on enormous amounts of context to

predict upcoming words.

Summary

Natural Language Processing 40

• Many NLP tasks (question answering, summarization, sentiment analysis,…) can be

cast as tasks of word prediction and hence addressed with large language models.

• The choice of which word to generate in large language models is generally done by

using a sampling algorithm.

• Because of their ability to be used in so many ways, language models also have the

potential to cause harms.

– Some harms include hallucinations, bias, stereotypes, misinformation and propaganda, and

violations of privacy and copyright.

Summary

Natural Language Processing 41

