
Masked Language Models:

Bidirectional Transformer Encoders

• Bidirectional Transformer Encoders

• BERT - Bidirectional Encoder Representations

from Transformers

• Fine-Tuning Language Models

Natural Language Processing 1

Bidirectional Transformer Encoders

Natural Language Processing 2

Bidirectional Transformer Encoders

• Bidirectional Transformer Encoders are pretrained language models, trained via

masked language modeling, a method that allows the model to see entire texts at a

time, including both the right and left context.

– The most widely-used masked language modeling architecture is BERT (Bidirectional

Encoder Representations from Transformers)

• With Contextual Embeddings, each word w will be represented by a different vector

each time it appears in a different context.

– contextual embeddings are learned by masked language models like BERT.

– static embeddings: word2vec (or GloVe) learns a single vector embedding for each unique

word w in the vocabulary.

Natural Language Processing 3

Bidirectional Transformer Encoders

• The focus of bidirectional encoders is on computing contextualized representations

of the tokens in an input sequence that are useful in many NLP applications.

Natural Language Processing 4

A self-attention layer in backward looking

transformer model

• Each output is computed using only

information seen earlier in the context.

A self-attention layer in bidirectional

encoder model

• Each output is computed using all inputs,

both before and after the current.

Bidirectional Transformer Encoders

• Bidirectional Encoders (such as BERT) make use of Transformer, an attention

mechanism that learns contextual relations between words (or sub-words) in a text.

➔ contextualized representations

• Encoder that reads the text input and Decoder that produces a prediction for the task.

• Since BERT’s goal is to generate a language model, only the encoder mechanism is

necessary.

– Bidirectional Encoders produce an encoding for each input token but generally aren’t used

to produce running text by decoding/sampling.

Natural Language Processing 5

• Bidirectional encoders use self-attention to map input

embeddings (x1,…,xn) to output embeddings (a1,…,an) the same

length, where the output vectors have been contextualized

using information from the entire input sequence.

Bidirectional Transformer Encoder Architecture

Natural Language Processing 6

• Bidirectional Encoders use same transformer

architecture except that

• They contextualize each token using information

from the entire input.

• We can multiply input embeddings X by key, query, and

value matrices to produce matrices Q, K and V

containing all the query, key and value vectors:

• We can reduce the entire self-attention step for an entire

sequence of N tokens to the following computation

NN QKT matrix showing

complete set of qi.kj comparisons

• Original English-only bidirectional transformer encoder model, BERT consisted of:
– An English-only subword vocabulary consisting of 30,000 tokens generated using the

WordPiece algorithm (Schuster and Nakajima, 2012).

– Hidden layers of size of 768,

– 12 layers of transformer blocks, with 12 multihead attention layers each.

– The resulting model has about 100M parameters.

• The larger multilingual XLM-RoBERTa model, trained on 100 languages, has
– A multilingual subword vocabulary with 250,000 tokens generated using SentencePiece

Unigram LM algorithm (Kudo and Richardson, 2018b).

– 24 layers of transformer blocks, with 16 multihead attention layers each

– Hidden layers of size 1024

– The resulting model has about 550M parameters.

• The size of the input layer dictates the complexity of the model.
– Both time and memory requirements in transformer grow quadratically with input length.

– The input length should be long enough to provide sufficient context for the model to

function and yet still be computationally tractable.

– For BERT and XLM-RoBERTa, a fixed input size of 512 subword tokens was used.

BERT Architecture

Natural Language Processing 7

Training Bidirectional Encoders

Natural Language Processing 8

• A causal (backward looking) transformer language model is trained by iteratively

predicting the next word in a text.

– This approach does not work with biderectional encoders because the next word is given in

the context.

• Biderectional transformer encoder language models are trained by predicting the

missing elements in a text.

– Given an input sequence with one or more elements missing, the learning task is to predict

the missing elements.

– During training, the model must generate a probability distribution over the vocabulary for

each of the missing items.

– Example: the model is asked to predict a missing item in the sentence.

Please turn _____ homework in.

Training Bidirectional Encoders

Natural Language Processing 9

• The original approach to training bidirectional encoders is called

Masked Language Modeling (MLM).

• MLM uses unannotated text from a large corpus

• Model is presented with a series of sentences from the training corpus, where a

random sample of tokens from each training sequence is selected for use in the

learning task. Once chosen, a token is used in one of three ways:

a. It is replaced with the unique vocabulary token [MASK]

b. It is replaced with another token from the vocabulary, randomly sampled based on

token unigram probabilities

c. It is left unchanged

• In BERT, 15% of the input tokens in a training sequence are sampled for learning

– Of these, 80% are replaced with [MASK], 10% are replaced with randomly selected tokens,

and the remaining 10% are left unchanged

Training Bidirectional Encoders
Masked Language Modeling (MLM)

Natural Language Processing 10

The MLM training objective is to predict the original inputs for each of the masked

tokens using a bidirectional encoder

• The cross-entropy loss from these predictions drives the training process for all the

parameters in the model

• Note that all the input tokens play a role in the self-attention process, but only the

sampled tokens are used for learning

Input:

• Original input sequence is first tokenized using a subword model

• The sampled items which drive the learning process are chosen from among the set of

tokenized inputs

• Word embeddings for all the tokens in the input are retrieved from the word

embedding matrix and then combined with positional embeddings to form the input to

the transformer

Training Bidirectional Encoders
Masked Language Modeling (MLM)

Natural Language Processing 11

• Three of the input tokens (long, thanks, the) are selected, two of them (long, thanks) are

masked and the third (the) is replaced with an unrelated word (apricot) .

• The probabilities assigned by the model to these three items are used as the training loss. The

other 5 words don’t play a role in training loss.
– In BERT, words are subword tokens

Training Bidirectional Encoders
Masked Language Modeling (MLM) Example

Natural Language Processing 12

• In this example, long, thanks and the have been sampled from the training sequence, with the

first two masked and the replaced with the randomly sampled token apricot.

• Resulting embeddings are passed through a stack of bidirectional transformer blocks.

• To produce a probability distribution over the vocabulary for each of the masked (sampled)

tokens,

– the output vector zi from the final transformer layer for each masked token i is multiplied by

a learned set of classification weights WVR|V|dh and

– then through a softmax to yield the required predictions over the vocabulary.

yi = softmax(WV zi)

Training Bidirectional Encoders
Masked Language Modeling (MLM) Example

Natural Language Processing 13

• With a predicted probability distribution for

each masked item, we can use cross-entropy to

compute the loss for each masked item

• the negative log probability assigned to the

actual masked word,

• For a given vector of input tokens x, let

– M be the set of tokens that are masked (sampled),

– z be the sequence of output vectors.

• For a given masked input token xi, the loss is :

• The gradients that form the basis for the weight updates are based on the average loss

over the sampled learning items from a single training sequence.

– Only the tokens in M play a role in learning

Training Bidirectional Encoders
Masked Language Modeling (MLM)

Natural Language Processing 14

• The focus of mask-based learning is on predicting words from surrounding contexts

with the goal of producing effective word-level representations.

• An important class of applications involves determining the relationship between pairs

of sentences

– paraphrase detection (detecting if two sentences have similar meanings)

– entailment (detecting if the meanings of two sentences entail or contradict each other)

– discourse coherence (deciding if two neighboring sentences form a coherent discourse)

• To capture the kind of knowledge required for applications such as these, BERT

introduced a second learning objective called Next Sentence Prediction (NSP)

• Training: The model is presented with pairs of sentences and is asked to predict

whether each pair consists of an actual pair of adjacent sentences from the training

corpus or a pair of unrelated sentences

Training Bidirectional Encoders
Next Sentence Prediction (NSP)

Natural Language Processing 15

• In BERT, 50% of the training pairs consisted of positive pairs, and in the other 50%

the second sentence of a pair was randomly selected from elsewhere in the corpus

• The NSP loss is based on how well the model can distinguish true pairs from

random pairs

• BERT introduces two new tokens to the input representation

– After tokenizing the input with the subword model, the token [CLS] is prepended to

the input sentence pair, and the token [SEP] is placed between the sentences and after

the final token of the second sentence

– During training, the output vector from the final layer associated with the [CLS] token

represents the next sentence prediction

Training Bidirectional Encoders
Next Sentence Prediction (NSP)

Natural Language Processing 16

• The output vector ZCLS from the final layer associated with the [CLS] token represents the

next sentence prediction.

• A learned set of classification weights WNSPR2dh is used to produce a two-class prediction

from the raw [CLS] vector.

• Cross entropy is used to compute the NSP loss for each sentence pair presented to the model.

Training Bidirectional Encoders
Next Sentence Prediction (NSP)

Natural Language Processing 17

• In BERT, the NSP loss was used in conjunction with the MLM training objective to

form final loss.

• The original BERT models were trained on about 3.3 billion words.

– Modern masked language models are now trained on much larger datasets of web text

– The XLM-RoBERTa model was trained on about 300 billion tokens in 100 languages

• To train the original BERT models, pairs of text segments were selected from the

training corpus according to the next sentence prediction 50/50 scheme.

– Pairs were sampled so that their combined length was less than the 512 token input.

– Tokens within these sentence pairs were then masked using the MLM approach with the

combined loss from the MLM and NSP objectives used for a final loss.

• Some models, like the RoBERTa model, drop the next sentence prediction objective,

and therefore change the training regime a bit.

– Instead of sampling pairs of sentence, the input is simply a series of contiguous sentences.

– If the document runs out before 512 tokens are reached, an extra separator token is added,

and sentences from the next document are packed in, until we reach a total of 512 tokens.

Training Bidirectional Encoders
BERT Training

Natural Language Processing 18

Fine-Tuning Language Models

Natural Language Processing 19

• The power of pretrained language models lies in their ability to extract generalizations from

huge amounts of text and these generalizations are useful for many NLP applications.

• Fine-tuning is the process of taking the network learned by pretrained models, and further

training the model, via an added neural net classifier that takes the top layer of the network as

input, to perform some task like sequence classification or named entity tagging.

– The pretraining phase learns a language model that instantiates rich representations of

word meaning, that thus enables the model to more easily learn (‘be fine-tuned to’) the

requirements of a downstream language understanding task.

– The pretrain-finetune paradigm is an instance of what is called transfer learning in

machine learning: the method of acquiring knowledge learning from one task or domain,

and then applying it (transferring it) to solve a new task

• The fine-tuning process consists of using labeled data about the application to train these

additional application-specific parameters.

– This training will either freeze or make only minimal adjustments to the pretrained

language model parameters.

Fine-Tuning Language Models

Natural Language Processing 20

• Sequence classification applications often represent an input sequence with a single

consolidated representation.

• In transformer models, an additional vector is added to the model to stand for the

entire sentence sequence.

– This vector is called the sentence embedding since it refers to the entire sequence.

– In BERT, the [CLS] token plays the role of this embedding.

– This unique token is added to the vocabulary and is prepended to the start of all input

sequences, both during pretraining and encoding.

• The output vector in the final layer of the model for the [CLS] input represents the

entire input sequence and serves as the input to a classifier head, a logistic regression

or neural network classifier that makes the relevant decision.

Fine-Tuning Language Models
Sequence Classification

Natural Language Processing 21

• A simple approach to fine-tuning a classifier involves learning a set of weights WC to

map output vector ZCLS for token [CLS] to a set of scores over the possible classes.

Fine-Tuning Language Models
Sequence Classification

Natural Language Processing 22

WC

classifier head

• Assuming a three-way sentiment classification task (positive, negative, neutral) and

dimensionality dh for the size of the language model hidden layers gives WCR3dh .

• Classification of unseen documents proceeds by passing the input text through the

pretrained language model to generate ZCLS, multiplying it by WC, and finally passing

the resulting vector through a softmax.

• Finetuning the values in WC requires supervised training data consisting of input

sequences labeled with the appropriate class.

– Training proceeds in the usual way: cross-entropy loss between the softmax output and the

correct answer is used to drive the learning that produce WC.

Fine-Tuning Language Models
Sequence Classification

Natural Language Processing 23

WC

• Normally, finetuning learns the values in WC .

• The loss can be used to not only learn the weights of the classifier, but also to update

the weights for the pretrained language model itself.

– In practice, reasonable classification performance is typically achieved with only minimal

changes to the language model parameters, often limited to updates over the final few layers

of the transformer.

Fine-Tuning Language Models
Sequence Classification

Natural Language Processing 24

WC

• Sequence labelling tasks, such as part-of-speech tagging (or BIO-based named entity

recognition), follow the same basic classification approach.

• The final output vector corresponding to each input token is passed to a classifier that produces

a softmax distribution over the possible set of tags.

Fine-Tuning Language Models
Sequence Labelling

Natural Language Processing 25

Sequence labeling for

part-of-speech tagging with a

bidirectional transformer encoder

• The output vector for each

input token is passed to a

simple k-way classifier.

• Assuming a simple classifier consisting of a single feedforward layer followed by a softmax,

the set of weights to be learned for this additional layer is WKRkdh , where k is the number

of possible tags for the task.

• A greedy approach, where the argmax tag for each token is taken as a likely answer, can be used

to generate the final output tag sequence.

Fine-Tuning Language Models
Sequence Labelling

Natural Language Processing 26

• Bidirectional encoders can be used to generate contextualized representations of

input embeddings using the entire input context.

• Pretrained language models based on bidirectional encoders can be learned using a

masked language model objective where a model is trained to guess the missing

information from an input.

• Pretrained language models can be fine-tuned for specific applications by adding

lightweight classifier layers on top of the outputs of the pretrained model.

Summary

Natural Language Processing 27

