
Syntactic Parsing

Natural Language Processing 1



Syntax

Machine Learning 2



• Syntax (of natural languages) describe how words are strung together to form 

components of sentences, and how those components are  strung together to form 

sentences.

• In the core of the description of the syntax of a natural language, we use context-free 

grammars (CFGs).

• Groups of words may behave as a single unit or phrases, called as constituent.

– noun phrase, 

– verb phrase

• CFGs will allow us to model these constituency facts.

Syntax

Natural Language Processing 3



• How do words group together? 

• Some noun phrases (noun groups) in English:

– three parties from Brooklyn  they    three books

• All noun phrases can appear in similar syntactic environments:

– three parties from Brooklyn arrive                 they arrive

• Although whole noun phrase can appear before a verb, its parts may not appear before 

verb.

– * from arrive

• A noun phrase can be placed in certain places in a sentence.

• A prepositional phrase can be placed in different places in the sentences.

– On September seventh, I’d like to fly from Atlanta to Denver

– I’d like to fly on September seventh from Atlanta to Denver

– I’d like to fly from Atlanta to Denver on September seventh

Constituency

Natural Language Processing 4



• CFGs capture constituency and ordering in natural language sentences.

• But we will need extra information to model:

– grammatical relations  such as agreement

– subcategorization of verbs

– dependency relations between words and phrases

• So, a CFG will be in the core of the description of the syntax of a natural language.

• Context-Free Grammars are also called as  Phrase-Structure Grammars.

Context Free Grammars

Natural Language Processing 5



• Why do we use CFG to describe the syntax of a natural language.

– Regular Grammars -- too weak

– Context Sensitive Grammars -- too strong.

– Turing Machines -- way too strong.

• Too weak means that they cannot capture/describe the syntactic structures which exist 

in natural languages.

• Too strong means that we do not need that much power to capture/describe the 

syntactic structures which exist in natural languages.

• For weaker methods, we have much efficient computational processes.

Why not Other Formalisms

Natural Language Processing 6



• A CFG consists of:

– Sets of terminals (either lexical items or parts of speech)

– Sets of non-terminals (the constituents of the language)

– Sets of rules of the form   A  α where α is a string of zero or more terminals 

and non-terminals.

– One of non-terminals is designated as a start symbol.

Definition of CFG

Natural Language Processing 7



S  NP VP

NP  Pronoun  |  NOM  |  Det NOM

NOM  Noun  |  Noun NOM

VP  Verb NP

-- Lexicon -- (parts of speech)

Prounoun  I  |  they

Noun  flight  |  morning  |  evening

Verb  prefer

Det  a  |  the  |  that

An Example of CFG

Natural Language Processing 8



• A derivation is a sequence of rule applications.

• In each rule application, a non-terminal in a string is re-written as α      if there is a rule 

in the form A  α.

βAγ  βαγ

• We say that α1 derives αm (α1 
* αm ) if:

α1  …  αm

• The language generated by a CFG G is:

LG = { w | w is a string of terminals and  S derives w }

• A derivation can be represented by a parse tree.

• Mapping from a string of terminals to its parse tree is called as parsing.

Derivation

Natural Language Processing 9



Parse Tree

Natural Language Processing 10

S  NP VP

NP  Pronoun  |  NOM  |  Det NOM

NOM  Noun  |  Noun NOM

VP  Verb NP

-- Lexicon -- (parts of speech)

Prounoun  I  |  they

Noun  flight  |  morning  |  evening

Verb  prefer

Det  a  |  the  |  that



• We have to do a lot to develop grammars for natural languages.            

– We will look some trivial parts of grammars.

• Here we look at some constituents (syntactic substructures) in natural languages.

• The key constituents are: (We will investigate)

– Sentences

– Noun Phrases

– Verb Phrases

– Prepositional Phrases

Developing Grammars

Natural Language Processing 11



• Declarative Sentences

– S  NP VP He left

• Imperative Sentences

– S  VP Get out!

• Yes-No Questions

– S  Aux NP VP Did you decide?

• WH-Questions

– S  WH-Word  Aux NP VP What did you decide?

Sentence Types

Natural Language Processing 12



• Each noun phrase has a head noun. -- a book

• A noun phrase the head noun may be preceded by pre-nominal modifiers and 

followed by post-nominal modifiers.

• Pre-Nominal Modifiers:

– Determiner -- a, the, that, this, any, some -- a book

• mass-nouns do not require determiners

– Pre-Determiners -- all -- all the flights, all flights

– Cardinal Numbers -- one, two -- two friends, one man

– Ordinal Numbers -- first,second,next,last,other -- the last flight

– Quantifiers -- many,several,few -- many fares

– Adjective Phrases -- the least expensive fare

• Adjectives can be grouped into a phrase called an adjective phrase.

• A simplified rule:

– NP  (PreDet) (Det) (Card) (Ord) (Quan) (AP) NOM

Noun Phrases

Natural Language Processing 13



• Three common post-modifiers:

– prepositional phrases -- all flights from Ankara

– non-finite clauses -- any flight arriving after 5 p.m.

• three common non-finite post-modifiers: gerundive, -ed, and infinitive forms.

– relative clauses -- a flight that serves dinner

NOM  NOM PP (PP) (PP)

NOM  NOM GerundVP

NOM  NOM RelClause

GerundVP  GerundV |  GerundV NP  |  GerundV PP  |  GerundV NP PP

GerundV  arriving  |  preferring  | …

RelClause  who VP  |  that VP

Noun Phrases -- Post-Modifiers

Natural Language Processing 14



• Noun phrases and other phrases can be conjoined with conjunctions such as and, or, 

but, …

– table and chair ...

– the flights that leaving Ankara and arriving in Istanbul

– he came from Ankara and he went to Istanbul.

NP  NP and NP

VP  VP and VP

S  S and S

Conjunctions

Natural Language Processing 15



• Recursive rules may appear in our grammars.

– NP  NP PP the flight from Ankara

– VP  VP PP departed Ankara at 5 p.m.

• These rules allow us the following:

– Flights to Ankara

– Flights to Ankara from Istanbul

– Flights to Ankara from Istanbul in March

– Flights to Ankara from Istanbul in March on Friday 

– Flights to Ankara from Istanbul in March on Friday under $100

– Flights to Ankara from Istanbul in March on Friday under $100 with lunch

Recursive Structures

Natural Language Processing 16



• When we use CFGs to describe the syntax of a natural language, we may encounter 

certain difficulties in the expression of some structures in natural languages.

• Some of these difficulties are:

– Agreement 

• he flies … * he fly

• I fly .. * I flies

• this book * this books

• those books * those book

– Subcategorization 

• * I disappeared the cat.   (disappear cannot be followed by a noun phrase)

Some Difficulties in Grammar Development

Natural Language Processing 17



• How can we modify our grammar to handle these agreement phenomena?

• We may expand our with multiple set of rules

– 3SgNP  …

– Non3SgNP  …

• But this will double the size of the grammar.

• A better way to deal with agreement problems without exploding the size of the 

grammar by parameterizing each non-terminal with feature structures.

Agreement

Natural Language Processing 18



• A verb phrase may consists of a verb and a number of constituents.

– VP  Verb -- disappear

– VP  Verb NP -- prefer a morning flight

– VP  Verb NP PP -- leave Ankara in the morning

– VP  Verb PP -- leaving on Monday

– VP  Verb S -- You said there is only one flight

• Although a verb phrase can have many possible of constituents, not every verb is 

compatible with every verb phrase.

• Verbs have preferences for the kinds of constituents they co-occur with.

– Transitive verbs

– Intransitive verbs

– Modern grammars distinguish too many subcategories (100 subcategories)

SubCategorization

Natural Language Processing 19



Frame Verb Example

 eat, sleep I want to eat

NP prefer I prefer a morning flight

NP NP show Show me all flights from Ankara

PPfrom PPto fly I would like to fly from Ankara to Istanbul

NP PPwith help Can you help me with a flight

VPto prefer I would prefer to go by THY

S mean This means THY has a hub in Istanbul

Some SubCategorization Frames

Natural Language Processing 20



Parsing

Machine Learning 21



• Parsing with a CFG is the task of assigning a correct parse tree (or derivation) to 

a string given some grammar.

• The correct means that it is consistent with the input and grammar.       

– It doesn’t mean that it’s the “right” tree in global sense of correctness.

• The leaves of the parse tree cover all and only the input, and that parse tree 

corresponds to a valid derivation according to the grammar.

• The parsing can be viewed as a search. 

– The search space corresponds to the space of parse trees generated by the grammar. 

– The search is guided by the structure of space and by the input.

• First, we will look at basic (bad) methods of the parsing.

– After seeing what’s wrong with them, we will look at better methods.

Parsing

Natural Language Processing 22



S  NP VP Det  that  |  this  |  a  |  the 

S  Aux NP VP Noun  book  |  flight  |  meal  |  money 

S  VP Verb  book  |  include  |  prefer

NP  Det NOM Aux  does

NP  ProperNoun Prep  from  |  to  |  on

NOM  Noun ProperNoun Houston  |  TWA

NOM  Noun NOM

NOM  NOM PP

VP  Verb

VP  Verb NP

PP  Prep NOM

A Simple English Grammar

Natural Language Processing 23



• A top-down parser searches a parse tree by trying to build from the root node S (start 

symbol) down to leaves.

• First, we create the root node, then we create its children. We chose one of its children 

and then we create its children.

• We can search the search space of the parse trees:

– breadth first search  -- level by level search

– depth first search -- first we search one of the children

Basic Top-Down Parsing

Natural Language Processing 24



• Input:  Book that flight

A Top-Down Search Space

Natural Language Processing 25



• In bottom-up parsing, the parser starts with the words of input, tries to build parse trees 

from words up.

• The parser is successful if the parser succeeds building a parse tree rooted in the start 

symbol that covers all of the input.

Basic Bottom-Up Parsing

Natural Language Processing 26



• Input:  Book that flight

A Bottom-Up Search Space

Natural Language Processing 27



A Bottom-Up Search Space (cont.)

Natural Language Processing 28



• Each of  top-down and bottom-up parsing techniques has its own advantages and 

disadvantages. 

• The top-down strategy never wastes time exploring trees cannot result in the start 

symbol (starts from there).

• On the other hand, bottom-up strategy may waste time in those kind of trees.

• But the top-down strategy spends with trees which are not consistent with the input.

• On the other hand, bottom-up strategy never suggests trees that are not at least locally 

grounded in the actual input.

• None of these two basic strategies are good enough to be used in the parsing of natural 

languages.

Top-Down or Bottom-Up?

Natural Language Processing 29



• How our search will take place?

• Which node in the tree will be expanded next?

• Which applicable grammar rule will be tried first?

• The answers of these questions determine how to control our search     in the search 

space of trees.

• Are we going to use depth-first or breath-first search?

Search Control Issues

Natural Language Processing 30



• In this top-down search, we will use:

– depth-first strategy     -- we will choose a node and explore its sub-trees

– left-to-right -- we will choose the left-most node to explore

• For the chosen node, we will choose one of applicable rules (the first one) and we will 

apply it into that node.

• If there is more than one applicable rule, we keep a pointer to other applicable rules in 

a stack; so that if our choice fails we can backtrack  to other alternatives.

• Let us look at how this method for our grammar and the following input:

– Does this flight include a meal? 

A Top-Down Depth-First Left-to-Right Search

Natural Language Processing 31



• When we choose applicable rules, we can use bottom-up information.

• For example, in our grammar we have:

– S  NP VP

– S  Aux NP VP

– S  VP

• If we want to parse the input:

– Does this flight serve a meal?

• Although all three of these rules are applicable, the first and the third ones will 

definitely fail because NP and VP cannot derive to strings starting with does (an 

auxiliary verb here).

• Can we make this decision before we choose an applicable rule?

– Yes.  We can use left-corner filtering.

Top-Down Parsing with Bottom-Up Filtering

Natural Language Processing 32



• The parser should not consider any grammar rule if the current input serve as the first 

word along the left edge of some derivation from this rule.

• The first word along the left edge of a derivation is called as the left-corner of the 

tree.

• B is a left-corner of A if the following relation holds:

– A * B

• In other words, B can be the left-corner of A if there is a derivation of  A that begins 

with B.

• We will ask whether a part of speech (of the current input) can be left-corner of the 

current-node (non-terminal).

Filtering with Left Corners

Natural Language Processing 33



• prefer (or Verb) is a left-corner of VP

Left Corner

Natural Language Processing 34



• Do not consider any expansion where the current input can not serve as the left-corner 

of that expansion.

Category Left-Corners

S Det, ProperNoun, Aux, Verb

NP Det, ProperNoun

NOM Noun

VP Verb

PP Prep

Filtering with Left-Corners (cont.)

Natural Language Processing 35



• Even the top-down parser with bottom-up filtering has three problems that make it an 

insufficient solution to general-purpose parsing problem.

– Left-Recursion

– Ambiguity

– Inefficient Reparsing of Subtrees

• First we will talk about these three problems.

• Then we will present Earley algorithm to avoid these problems.

Problems with Basic Top-Down Parser

Natural Language Processing 36



• When left-recursive grammars are used, top-down depth-first left-to-right parsers can 

dive into an infinite path.

• A grammar is left-recursive if it contains at least one non-terminal A such that:

– A * A

• This kind of structures are common in natural language grammars.

– NP  NP PP

• We can convert a left-recursive grammar into an equivalent grammar which is not left-

recursive.

A  A |  ==> A  A’

A’  A’  |  

• Unfortunately, the resulting grammar may no longer be the most grammatically natural 

way to represent syntactic structures.

Left-Recursion

Natural Language Processing 37



• Top-down parser is not efficient at handling ambiguity.

• Local ambiguity lead to hypotheses that are locally reasonable but eventually lead 

nowhere. They lead to backtracking.

• Global ambiguity potentially leads to multiple parses for the same input (if we force it 

to do).

• The parsers without disambiguation tools must simply return all possible parses. But 

most of disambiguation tools require statistical   and semantic knowledge.

• There will be many unreasonable parses. But most of applications do not want all 

possible parses, they want a single correct parse.

• The reason for many unreasonable parses, exponential number of  parses are possible 

for certain inputs.

Ambiguity

Natural Language Processing 38



• If we add the following rules to our grammar:

– VP  VP PP

– NP  NP PP

• The following input:

– Show me the meal on flight 286 from Ankara to Istanbul.

will have a lot of parses (14 parses?). Some of them are really strange parses.

• If we have 

– PP  Prep NP Number of NP parses    Number of PPs

2 2

5 3

14 4

132 5

469 6

Ambiguity - Example

Natural Language Processing 39



• The parser often builds valid trees for portion of the input, then discards them during 

backtracking, only to find that it has to rebuild them again.

• The parser creates small parse trees that fail because they do not cover all the input.

• The parser backtracks to cover more input, and recreates subtrees again and again. 

• The same thing is repeated more than once unnecessarily.

Repeated Parsing of Subtrees

Natural Language Processing 40



• Consider parsing the following NP with the following rules:

a flight from Ankara to Istanbul on THY

NP  Det  NOM

NP  NP  PP

NP  ProperNoun

• What happens with a top-down parser?

Repeated Parsing of Subtrees (cont.)

Natural Language Processing 41



• a   flight from   Ankara   to   Istanbul   on   THY

• a   flight from   Ankara to   Istanbul   on   THY

• a   flight from   Ankara to   Istanbul on   THY

• a   flight from   Ankara to   Istanbul on   THY

a flight is parsed 4 times,    from Ankara is parsed 3 times, ...

Repeated Parsing of Subtrees (cont.)

Natural Language Processing 42



• We want a parsing algorithm (using dynamic programming technique) that fills a table 

with solutions to sub-problems that:

– Does not do repeated work

– Does top-down search with bottom-up filtering

– Solves the left-recursion problem

– Solves an exponential problem in  O(N3) time.

• The answer is Earley Algorithm.

Dynamic Programming

Natural Language Processing 43



• Earley Algorithm fills a table in a single pass over the input.

• The table will be size N+1 where N is the number of words in the input.

• We may think that each table entry, called state,  represents gaps between words.

• Each possible subtree is represented only once, and it can be shared by all the parses 

that need it.

Earley Algorithm

Natural Language Processing 44



• A state in a table entry contains three kinds of information:

– a subtree corresponding to a single grammar rule

– information about the progress made in completing this subtree

– the position of subtree with respect to the input.

• We use a dot in the state’s grammar rule to indicate the progress made in recognizing 

it.

• We call this resulting structure dotted rule.

• A state’s position are represented by two numbers indicating that where the state starts 

and where its dot lies.

States

Natural Language Processing 45



• Three example states: (Ex:   Book that flight)

– S   VP,  [0,0]

– NP  Det  NOM,  [1,2]

– VP  Verb  NP ,  [0,3]

• The first state represents a top-down prediction for S. 

– The first 0 indicates that the constituent predicted by this state should begin at position 0 

(beginning of the input). 

– The second 0 indicates that the dot  lies at position 0.

• The second state represents an in-progress constituent.                      

– The constituent starts at position 1 and the dot lies at position 2.

• The third state represents a completed constituent. 

– This state describes that VP is successfully parsed, and that constituent covers the input 

from position 0 to position 3.

States - Dotted Rule

Natural Language Processing 46



• A directed acyclic graph can be in the representation of dotted rules.

Graphical Representations of Dotted Rules

Natural Language Processing 47



• New predicted states are based on existing table entries (predicted or  in-progress) that 

predict a certain constituent at that spot.

• New in-progress states are created by updating older states to reflect   the fact that the 

previously expected completed constituents have been located.

• New complete states are created when the dot in an in-progress state moves to the end.

Parsing with Earley Algorithm

Natural Language Processing 48



1. Predict all the states

2. Read an input. 

– See what predictions you can match.                        

– Extend matched states, add new predictions.                                         

– Go to next state (state 2)

3. At the end, see if state[N+1] contains a complete S

More Specifically

Natural Language Processing 49



S  NP VP Det  that  |  this  |  a  |  the 

S  Aux NP VP Noun  flight  |  meal  |  money 

S  VP Verb  book  |  include  |  prefer

NP  Det NOM Aux  does

NP  ProperNoun

NOM  Noun ProperNoun Houston  |  TWA

NOM  Noun NOM

VP  Verb

VP  Verb NP

A Simple English Grammar (Ex.)

Natural Language Processing 50



   S [0,0] Dummy start state

S   NP VP [0,0] Predictor

NP   Det NOM [0,0] Predictor

NP   ProperNoun [0,0] Predictor

S   Aux NP VP [0,0] Predictor

S   VP [0,0] Predictor

VP   Verb [0,0] Predictor

VP   Verb NP [0,0] Predictor

Example: Chart[0]
book that flight

Natural Language Processing 51

S  NP VP

S Aux NP VP

S  VP

NP  Det NOM

NP  ProperNoun

NOM  Noun

NOM  Noun NOM

VP  Verb

VP  Verb NP



Verb  book  [0,1] Scanner

VP  Verb  [0,1] Completer

S  VP  [0,1] Completer

VP  Verb  NP [0,1] Completer

NP   Det NOM [1,1] Predictor

NP   ProperNoun [1,1] Predictor

Example: Chart[1]
book that flight

Natural Language Processing 52

S  NP VP

S Aux NP VP

S  VP

NP  Det NOM

NP  ProperNoun

NOM  Noun

NOM  Noun NOM

VP  Verb

VP  Verb NP



Det  that  [1,2] Scanner

NP  Det  NOM [1,2] Completer

NOM   Noun [2,2] Predictor

NOM   Noun NOM [2,2] Predictor

Example: Chart[2]
book that flight

Natural Language Processing 53

S  NP VP

S Aux NP VP

S  VP

NP  Det NOM

NP  ProperNoun

NOM  Noun

NOM  Noun NOM

VP  Verb

VP  Verb NP



Noun  flight  [2,3] Scanner

NOM  Noun  [2,3] Completer

NOM  Noun  NOM [2,3] Completer

NP  Det NOM  [1,3] Completer

VP  Verb NP  [0,3] Completer

S  VP  [0,3] Completer

NOM   Noun [3,3] Predictor

NOM   Noun NOM [3,3] Predictor

Example: Chart[3]
book that flight

Natural Language Processing 54

S  NP VP

S Aux NP VP

S  VP

NP  Det NOM

NP  ProperNoun

NOM  Noun

NOM  Noun NOM

VP  Verb

VP  Verb NP



• The Earley algorithm has three main functions that do all the work.

Predictor:  

– Adds predictions into the chart. 

– It is activated when the dot (in a state) is in the front of a non-terminal which is not a part of 

speech.

Completer:  

– Moves the dot to the right when new constituents are found. 

– It is activated when the dot is at the end of a state.

Scanner:  

– Reads the input words and enters states representing  those words into the chart.  

– It is activated when the dot (in a state) is in the front of a non-terminal which is a part of 

speech.

• The Earley algorithm uses theses functions to maintain the chart.

Earley Algorithm

Natural Language Processing 55



procedure PREDICTOR((A    B , [i,j]))

for each (B  )  in GRAMMAR-RULES-FOR(B,grammar)  do

ENQUEUE((B   , [j,j]), chart[j])

end

Predictor

Natural Language Processing 56



procedure COMPLETER((B    , [j,k]))

for each (A    B , [i,j])  in chart[j]  do

ENQUEUE((A   B  , [i,k]), chart[k])

end

Completer

Natural Language Processing 57



procedure SCANNER((A    B , [i,j]))

if (B  PARTS-OF-SPEECH(word[j])  then

ENQUEUE((B  word[j]  , [j,j+1]), chart[j+1])

end

Scanner

Natural Language Processing 58



procedure ENQUEUE(state,chart-entry) 

if state is not already in chart-entry then

Add state at the end of chart-entry)

end

Enqueue

Natural Language Processing 59



function EARLEY-PARSE(words,grammar)  returns chart

ENQUEUE((   S, [0,0], chart[0])

for i from 0  to LENGTH(words)  do

for each state  in chart[i]  do

if INCOMPLETE?(state) and NEXT-CAT(state) is not a PS  then

PREDICTOR(state)

elseif INCOMPLETE?(state) and NEXT-CAT(state) is a PS  then

SCANNER(state)

else

COMPLETER(state)

end

end

return(chart)

Earley Code

Natural Language Processing 60



• To retrieve parse trees from a chart, the representation of each state must be 

augmented with an additional field to store information about the completed states that 

generated its constituents.

• To collect parse trees, we have to update COMPLETER such that it should add a 

pointer to the older state onto the list of previous-states    of the new state.

• Then, the parse tree can be created by retrieving these list of  previous-states (starting 

from the completed state of S).

Retrieving Parse Trees from A Chart

Natural Language Processing 61



S0    S [0,0] [] Dummy start state

S1 S   NP VP [0,0] [] Predictor

S2 NP   Det NOM [0,0] [] Predictor

S3 NP   ProperNoun [0,0] [] Predictor

S4 S   Aux NP VP [0,0] [] Predictor

S5 S   VP [0,0] [] Predictor

S6 VP   Verb [0,0] [] Predictor

S7 VP   Verb NP [0,0] [] Predictor

Chart[0] - with Parse Tree Info

Natural Language Processing 62

S  NP VP

S Aux NP VP

S  VP

NP  Det NOM

NP  ProperNoun

NOM  Noun

NOM  Noun NOM

VP  Verb

VP  Verb NP



S8 Verb  book  [0,1] [] Scanner

S9 VP  Verb  [0,1] [S8] Completer

S10 S  VP  [0,1] [S9] Completer

S11 VP  Verb  NP [0,1] [S8] Completer

S12 NP   Det NOM [1,1] [] Predictor

S13 NP   ProperNoun [1,1] [] Predictor

Chart[1] - with Parse Tree Info

Natural Language Processing 63

S  NP VP

S Aux NP VP

S  VP

NP  Det NOM

NP  ProperNoun

NOM  Noun

NOM  Noun NOM

VP  Verb

VP  Verb NP



S14 Det  that  [1,2] [] Scanner

S15 NP  Det  NOM [1,2] [S14] Completer

S16 NOM   Noun [2,2] [] Predictor

S17 NOM   Noun NOM [2,2] [] Predictor

Chart[2] - with Parse Tree Info

Natural Language Processing 64

S  NP VP

S Aux NP VP

S  VP

NP  Det NOM

NP  ProperNoun

NOM  Noun

NOM  Noun NOM

VP  Verb

VP  Verb NP



S18 Noun  flight  [2,3] [] Scanner

S19 NOM  Noun  [2,3] [S18] Completer

S20 NOM  Noun  NOM [2,3] [S18] Completer

S21 NP  Det NOM  [1,3] [S14,S19] Completer

S22 VP  Verb NP  [0,3] [S8,S21] Completer

S23 S  VP  [0,3] [S22] Completer

S24 NOM   Noun [3,3] [] Predictor

S25 NOM   Noun NOM [3,3] [] Predictor

Chart[3] - with Parse Tree Info

Natural Language Processing 65



S  Verb S  Noun

Chart[0]

S0    S [0,0] [] Dummy start state

S1 S   Verb [0,0] [] Predictor

S2 S   Noun [0,0] [] Predictor

Chart[1]

S3 Verb  book  [0,1] [] Scanner

S4 Noun  book  [0,1] [] Scanner

S5 S  Verb  [0,1] [S3] Predictor

S6 S  Noun  [0,1] [S4] Predictor

Global Ambiguity

Natural Language Processing 66


