
Morphological Processing

Natural Language Processing 1

• Morphology is the study of the way words are built from smaller meaningful units
called morphemes.

• We can divide morphemes into two broad classes.

– Stems – the core meaningful units, the root of the word.

– Affixes – add additional meanings and grammatical functions to words.

• Affixes are further divided into:

– Prefixes – precede the stem: do / undo

– Suffixes – follow the stem: eat / eats

– Infixes – are inserted inside the stem

– Circumfixes – precede and follow the stem

• English doesn’t stack more affixes.

• But Turkish can have words with a lot of suffixes.

• Languages, such as Turkish, tend to string affixes together are called agglutinative
languages.

Morphology

Natural Language Processing 2

• The surface level of a word represents the actual spelling of that word.

– geliyorum eats cats kitabım

• The lexical level of a word represents a simple concatenation of morphemes making

up that word.

– gel +PROG +1SG

– eat +AOR

– cat +PLU

– kitap +P1SG

• Morphological processors try to find correspondences between lexical and surface

forms of words.

– Morphological recognition – surface to lexical

– Morphological generation – lexical to surface

Surface and Lexical Forms

Natural Language Processing 3

• There are two broad classes of morphology:

– Inflectional morphology

– Derivational morphology

• After a combination with an inflectional morpheme, the meaning and class of the

actual stem usually do not change.

– eat / eats pencil / pencils

– gel / geliyorum masa / masam

• After a combination with an derivational morpheme, the meaning and the class of the

actual stem usually change.

– compute / computer do / undo friend / friendly

– Uygar / uygarlaş kapı / kapıcı

• The irregular changes may happen with derivational affixes.

Inflectional and Derivational Morphology

Natural Language Processing 4

• Nouns have simple inflectional morphology.

– plural -- cat / cats

– possessive -- John / John’s

• Verbs have slightly more complex inflectional, but still relatively simple inflectional
morphology.

– past form -- walk / walked

– past participle form -- walk / walked

– gerund -- walk / walking

– singular third person -- walk / walks

• Verbs can be categorized as:

– main verbs

– modal verbs -- can, will, should

– primary verbs -- be, have, do

• Regular and irregular verbs: walk / walked -- go / went

English Inflectional Morphology

Natural Language Processing 5

• Some English derivational affixes

– -ation : transport / transportation

– -er : kill / killer

– -ness : fuzzy / fuzziness

– -al : computation / computational

– -able : break / breakable

– -less : help / helpless

– un : do / undo

– re : try / retry

English Derivational Morphology

Natural Language Processing 6

• Some of inflectional suffixes that Turkish nouns can have:

– singular/plural : masa / masalar

– possessive markers : masam / masan / masası / masamız / masanız / masaları

– case markers :

• ablative : masadan

• accusative : masayı

• dative : masaya

• Some of inflectional suffixes that Turkish verbs can have:

– tense : gel / geldi / geliyor / gelmiş / gelecek

– second tense : geliyordu / gelmişti / gelecekti

– agreement marker : geldim / geldin / geldi / geldik / geldiniz / geldiler

• There are order among inflectional suffixes (morphotactics)

– masalarımdan -- masa +PLU +P1SG +ABL

– geliyordum -- gel +PROG +PAST +1SG

Turkish Inflectional Morphology

Natural Language Processing 7

• Turkish derivational morphology is very rich.

• Some of derivational suffixes in Turkish:

– -cı : kapı / kapıcı

– -laş : uygar / uygarlaş

– -mek : gel / gelmek

– -cik : mini / minicik

– -li : Ankara / Ankaralı

Turkish Derivational Morphology

Natural Language Processing 8

• Morphological parsing is to find the lexical form of a word from its surface form.

– cats -- cat +N +PLU

– cat -- cat +N +SG

– goose -- goose +N +SG or goose +V

– geese -- goose +N +PLU

– gooses -- goose +V +3SG

– catch -- catch +V

– caught -- catch +V +PAST or catch +V +PP

– geliyorum -- gel +V +PROG +1SG

– masalardan -- masa +N +PLU +ABL

• There can be more than one lexical level representation for a given word. (ambiguity)

Morphological Parsing

Natural Language Processing 9

• For a morphological processor, we need at least followings:

• Lexicon : The list of stems and affixes together with basic information about them

such as their main categories (noun, verb, adjective, …) and their sub-categories

(regular noun, irregular noun, …).

• Morphotactics : The model of morpheme ordering that explains which classes of

morphemes can follow other classes of morphemes inside a word.

• Orthographic Rules (Spelling Rules) : These spelling rules are used to model

changes that occur in a word (normally when two morphemes combine).

Parts of A Morphological Processor

Natural Language Processing 10

• A lexicon is a repository for words (stems).

• They are grouped according to their main categories.

– noun, verb, adjective, adverb, …

• They may be also divided into sub-categories.

– regular-nouns, irregular-singular nouns, irregular-plural nouns, …

• The simplest way to create a morphological parser, put all possible words (together

with its inflections) into a lexicon.

– We do not this because their numbers are huge (theoretically for Turkish,

it is infinite)

Lexicon

Natural Language Processing 11

• Which morphemes can follow which morphemes.

Lexicon:

regular-noun irregular-pl-noun irreg-sg-noun plural

fox geese goose -s

cat sheep sheep

dog mice mouse

• Simple English Nominal Inflection (Morphotactic Rules)

Morphotactics

Natural Language Processing 12

• This only says yes or no. Does not give lexical representation.

• It accepts a wrong word (foxs).

Combine Lexicon and Morphotactics

Natural Language Processing 13

f

o
x

s
c a t

d o g

s

h e e
p

g

o

e e

o s

e

m

o u s

i c

e

• Two-level morphology represents the correspondence between lexical and surface

levels.

• We use a finite-state transducer to find mapping between these two levels.

• A FST is a two-tape automaton:

– Reads from one tape, and writes to other one.

• For morphological processing, one tape holds lexical representation, the second one

holds the surface form of a word.

Two-Level Morphology

Natural Language Processing 14

FST is Q x  x q0 x F x 

• Q : a finite set of N states q0, q1, … qN

•  : a finite input alphabet of complex symbols.

– Each complex symbol is a pair of an input and an output symbol i:o

– where i is a member of I (an input alphabet),

– and o is a member of O (an output alphabet).

– I and O may contain empty string.

– So,  is a subset of IxO.

• q0 : the start state

• F : the set of final states -- F is a subset of Q

• (q,i:o) : transition function

Formal Definition of FST (Mealey Machine)

Natural Language Processing 15

•  may not contain all possible pairs from IxO.

• For example:

– I = {a, b, c} O={a,b,c, є}

–  = {a:a, b:b, c:c, a:є, b: є, c: є}

• feasible pairs – In two-level morphology terminology, the pairs in  are called as

feasible pairs.

• default pair – Instead of a:a we can use a single character for this default pair.

• FSAs are isomorphic to regular languages, and FSTs are isomorphic to regular

relations (pair of strings of regular languages).

FST (cont.)

Natural Language Processing 16

• FSTs are closed under: union, inversion, and composition.

• union : The union of two regular relations is also a regular relation.

• inversion : The inversion of a FST simply switches the input and output labels.

– This means that the same FST can be used for both directions of a morphological

processor.

• composition : If T1 is a FST from I1 to O1 and T2 is a FST from O1 to O2, then

composition of T1 and T2 (T1oT2) maps from I1 to O2.

• We use these properties of FSTs in the creation of the FST for a morphological

processor.

FST Properties

Natural Language Processing 17

A FST for Simple English Nominals

Natural Language Processing 18

• A FST for stems which maps roots to their root-class

reg-noun irreg-pl-noun irreg-sg-noun

fox g o:e o:e se goose

cat sheep sheep

dog m o:i u:є s:c e mouse

• fox stands for f:f o:o x:x

• When these two transducers are composed, we have a FST which maps lexical forms

to intermediate forms of words for simple English noun inflections.

• Next thing that we should handle is to design the FSTs for orthographic rules, and

combine all these transducers.

FST for stems

Natural Language Processing 19

• A frequently use FST idiom, called cascade, is to have the output of one FST read in

as the input to a subsequent machine.

• So, to handle spelling we use three tapes:

– lexical, intermediate and surface

• We need one transducer to work between the lexical and intermediate levels, and a

second (a bunch of FSTs) to work between intermediate and surface levels to patch up

the spelling.

Multi-Level Multi-Tape Machines

Natural Language Processing 20

+PL+Ngod

sgod

s #^god

lexical

intermediate

surface

Lexical to Intermediate FST

Natural Language Processing 21

• We need FSTs to map intermediate level to surface level.

• For each spelling rule we will have a FST, and these FSTs run parallel.

• Some of English Spelling Rules:

– consonant doubling -- 1-letter consonant doubled before ing/ed -- beg/begging

– E deletion -- Silent e dropped before ing and ed -- make/making

– E insertion -- e added after s, z, x, ch, sh before s -- watch/watches

– Y replacement -- y changes to ie before s, and to i before ed -- try/tries

– K insertion -- verbs ending with vowel+c we add k -- panic/panicked

• We represent these rules using two-level morphology rules:

– a => b / c __ d rewrite a as b when it occurs between c and d.

Orthographic Rules

Natural Language Processing 22

E-insertion rule: є => e / {x,s,z}^ __ s#

• ^ (morpheme boundary) means ^: є

FST for E-Insertion Rule

Natural Language Processing 23

E-insertion rule: є => e / {x,s,z}^ __ s#

FST for E-Insertion Rule

Natural Language Processing 24

Generating or Parsing with FST Lexicon and Rules

Natural Language Processing 25

Accepting foxes

Natural Language Processing 26

• We can intersect all rule FSTs to create a single FST.

• Intersection algorithm just takes the Cartesian product of states.

– For each state qi of the first machine and qj of the second machine, we create a

new state qij

– For input symbol a, if the first machine would transition to state qn and the second

machine would transition to qm the new machine would transition to qnm.

Intersection

Natural Language Processing 27

• Cascade can turn out to be somewhat pain.

– it is hard to manage all tapes

– it fails to take advantage of restricting power of the machines

• So, it is better to compile the cascade into a single large machine.

• Create a new state (x,y) for every pair of states x є Q1 and y є Q2.

• The transition function of composition will be defined as follows:

δ((x,y),i:o) = (v,z) if

there exists c such that δ1(x,i:c) = v and δ2(y,c:o) = z

Composition

Natural Language Processing 28

Intersect Rule FSTs

Natural Language Processing 29

LEXICON NOUNS

aba POST-NOUN;

aday POST-NOUN;

benzin POST-NOUN;

…

LEXICON POST-NOUN

+Noun:0 POST-NOUNR;

Simplified Turkish Noun Morphotactics
in Foma Environment

Natural Language Processing 30

LEXICON POSSESSIVE

+Acc:+yH End;

+Dat:+yA End;

+Loc:+DA End;

+Abl:+DAn End;

+Gen:+nHn End;

+Ins:+ylA End;

+Nom:0 End;

LEXICON POST-NOUNR

+A3pl:+lAr PLURAL;

+A3sg:0 PLURAL;

LEXICON PLURAL

+P1sg:+Hm POSSESSIVE;

+P2sg:+Hn POSSESSIVE;

+P1pl:+HmHz POSSESSIVE;

+P2pl:+HnHz POSSESSIVE;

+Pnon:0 POSSESSIVE;

+P3sg:+sH POSSESSIVE;

Turkish Foma 2016

define ALPHABET [a | e | ı | i | o | ö | u | ü | A | H | … | b | c | ç | d

| f | g|ğ|h|j| k | l | m | n | p | r | s | ş | t | v | y | z | D | …];

define CONS [b | c | ç | d | f | g | ğ | h | j | k | l | m | n | p | r | s

| ş | t | v | y | z | D | Z | Y | K | J | B];

define VOWEL [a | e | ı | i | o | ö | u | ü | A | H | …];

define SVOWEL [a | e | ı | i | o | ö | u | ü];

define BACKV [a | ı | u | o]; #kalın ünlüler

define FRONTV [e | i | ö | ü]; #ince ünlüler

define HIGHV [ı | i | u | ü]; #dar ünlüler

define FRUNRV [i | e]; #düz ince

define FRROV [ö | ü]; #yuvarlak ince

define BKROV [u | o]; #yuvarlak kalın

define BKUNRV [a | ı]; #düz kalın

define Xsyn [s | y | n];

define NDCONS [c | Z | l | d | D];

Simplified Turkish Orthographic Rules
in Foma Environment

Natural Language Processing 31

#---------------ALTERNATION RULE SECTION----------------------

define AReplacement

A -> a || [BACKV | …] [CONS | … | "+"]* _ ;

A -> e || [FRONTV | …] [CONS | … | "+"]* _ ;

define HReplacement

H -> u || [BKROV | …] [CONS | "+" | …]* _ ,,

H -> ü || [FRROV | …] [CONS | "+" | …]* _ ,,

H -> ı || [BKUNRV | …] [CONS | "+" | …]* _ ,,

H -> i || [FRUNRV | …] [CONS | "+" | …]* _ ,,

H -> 0 || VOWEL "+" _ ;

Simplified Turkish Orthographic Rules
in Foma Environment

Natural Language Processing 32

Morphological Processing in Foma Environment

Natural Language Processing 33

