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• Morphology is the study of the way words are built from smaller meaningful units 
called morphemes.

• We can divide morphemes into two broad classes.

– Stems – the core meaningful units, the root of the word.

– Affixes – add additional meanings and grammatical functions to words.

• Affixes are further divided into:

– Prefixes – precede the stem:  do / undo

– Suffixes – follow the stem:  eat / eats

– Infixes – are inserted inside the stem

– Circumfixes – precede and follow the stem

• English doesn’t stack more affixes. 

• But Turkish can have words with  a lot of suffixes. 

• Languages, such as Turkish, tend to string affixes together are called agglutinative
languages.

Morphology
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• The surface level of a word represents the actual spelling of that word.

– geliyorum eats  cats kitabım

• The lexical level of a word  represents a simple concatenation of morphemes making 

up that word.

– gel +PROG +1SG

– eat +AOR

– cat +PLU

– kitap +P1SG

• Morphological processors try to find correspondences between lexical and surface 

forms of words.

– Morphological recognition – surface to lexical

– Morphological generation – lexical to surface

Surface and Lexical Forms
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• There are two broad classes of morphology:

– Inflectional morphology

– Derivational morphology

• After a combination with an inflectional morpheme, the meaning and class of the 

actual stem usually do not change.

– eat / eats    pencil / pencils

– gel / geliyorum masa / masam

• After a combination with an derivational morpheme, the meaning and the class of the 

actual stem usually change.

– compute / computer     do / undo   friend / friendly

– Uygar / uygarlaş kapı / kapıcı

• The irregular changes may happen with derivational affixes.

Inflectional and Derivational Morphology
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• Nouns have simple inflectional morphology.

– plural -- cat / cats

– possessive -- John / John’s

• Verbs have slightly more complex inflectional, but still relatively simple inflectional 
morphology.

– past form -- walk / walked

– past participle form -- walk / walked

– gerund -- walk / walking

– singular third person -- walk / walks

• Verbs can be categorized as: 

– main verbs

– modal verbs -- can, will, should

– primary verbs -- be, have, do

• Regular and irregular verbs:  walk / walked  -- go / went

English Inflectional Morphology
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• Some English derivational affixes

– -ation :  transport / transportation

– -er : kill / killer

– -ness :  fuzzy / fuzziness

– -al :  computation / computational

– -able :  break / breakable

– -less :  help / helpless

– un :  do / undo

– re :  try / retry

English Derivational Morphology
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• Some of inflectional suffixes that Turkish nouns can have:

– singular/plural :  masa / masalar

– possessive markers :  masam / masan / masası / masamız / masanız / masaları

– case markers : 

• ablative :  masadan

• accusative : masayı

• dative : masaya

• Some of  inflectional suffixes that Turkish verbs can have:

– tense :   gel / geldi / geliyor / gelmiş / gelecek

– second tense :  geliyordu / gelmişti / gelecekti

– agreement marker : geldim / geldin / geldi / geldik / geldiniz / geldiler

• There are order among inflectional suffixes (morphotactics )

– masalarımdan -- masa +PLU +P1SG +ABL

– geliyordum -- gel +PROG +PAST +1SG

Turkish Inflectional Morphology
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• Turkish derivational morphology is very rich. 

• Some of derivational suffixes in Turkish:

– -cı :  kapı / kapıcı

– -laş :  uygar / uygarlaş

– -mek :  gel / gelmek

– -cik :  mini / minicik

– -li :  Ankara / Ankaralı

Turkish Derivational Morphology
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• Morphological parsing is to find the lexical form of a word from its surface form.

– cats  -- cat +N +PLU

– cat  -- cat +N +SG

– goose  -- goose +N +SG  or  goose +V

– geese  -- goose +N +PLU

– gooses  -- goose +V +3SG

– catch  -- catch +V

– caught  -- catch +V +PAST  or  catch +V +PP

– geliyorum -- gel +V +PROG +1SG

– masalardan -- masa +N +PLU +ABL

• There can be more than one lexical level representation for a given word. (ambiguity)

Morphological Parsing
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• For a morphological processor, we need at least followings:

• Lexicon : The list of stems and affixes together with basic information about them 

such as their main categories (noun, verb, adjective, …)  and their sub-categories 

(regular noun, irregular noun, …).

• Morphotactics : The model of morpheme ordering that explains which  classes of 

morphemes can follow other classes of morphemes inside  a word. 

• Orthographic Rules (Spelling Rules) : These spelling rules are used  to model 

changes that occur in a word (normally when two morphemes combine).

Parts of A Morphological Processor
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• A lexicon is a repository for words (stems).

• They are grouped according to their main categories.

– noun, verb, adjective, adverb, …

• They may be also divided into sub-categories.

– regular-nouns, irregular-singular nouns, irregular-plural nouns, …

• The simplest way to create a morphological parser, put all possible words (together 

with its inflections) into a lexicon. 

– We do not this  because their numbers are huge (theoretically for Turkish, 

it is infinite)

Lexicon
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• Which morphemes can follow which morphemes.

Lexicon:

regular-noun irregular-pl-noun irreg-sg-noun plural

fox geese goose -s

cat sheep sheep

dog mice mouse

• Simple English Nominal Inflection (Morphotactic Rules)

Morphotactics

Natural Language Processing 12



• This only says yes or no. Does not give lexical representation.

• It accepts a wrong word (foxs).

Combine Lexicon and Morphotactics
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• Two-level morphology represents the correspondence between lexical and surface 

levels.

• We use a finite-state transducer to find mapping between these two levels.

• A FST is a two-tape automaton: 

– Reads from one tape, and writes to other one.

• For morphological processing, one tape holds lexical representation,  the second one 

holds the surface form of a word. 

Two-Level Morphology
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FST is   Q x  x q0 x F x 

• Q :  a finite set of N states q0, q1, … qN

•  :   a finite input alphabet of complex symbols. 

– Each complex symbol is a pair of an input and an output symbol i:o

– where i is a member of I (an input alphabet),

– and o is a member of O (an output alphabet). 

– I and O may contain empty string. 

– So,  is a subset of IxO.

• q0 :  the start state

• F :  the set of final states   -- F is a subset of Q

• (q,i:o) : transition function

Formal Definition of FST (Mealey Machine)
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•  may not contain all possible pairs from IxO.

• For example:

– I = {a, b, c} O={a,b,c, є}

–  = {a:a, b:b, c:c, a:є, b: є, c: є}

• feasible pairs – In two-level morphology terminology, the pairs in  are called as 

feasible pairs.

• default pair – Instead of a:a we can use a single character for this default pair.

• FSAs are isomorphic to regular languages, and FSTs are isomorphic to regular 

relations (pair of strings of regular languages).

FST (cont.)
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• FSTs are closed under:  union, inversion, and composition.

• union :  The union of two regular relations is also a regular relation.

• inversion :  The  inversion of a FST simply switches the input and output labels. 

– This means that the same FST can be used for both directions of a morphological 

processor.

• composition :  If T1 is a FST from I1 to O1 and T2 is a FST from O1 to O2,  then 

composition of T1 and T2 (T1oT2) maps from I1 to O2.

• We use these properties of FSTs in the creation of the FST for a morphological 

processor.

FST Properties
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A FST for Simple English Nominals

Natural Language Processing 18



• A FST for stems which maps roots to their root-class

reg-noun irreg-pl-noun irreg-sg-noun

fox g o:e o:e se goose

cat sheep sheep

dog m o:i u:є s:c e mouse

• fox  stands for    f:f o:o x:x

• When these two transducers are composed, we have a FST which maps lexical forms 

to intermediate forms of words for simple English noun inflections.

• Next thing that we should handle is to design the FSTs for orthographic rules, and 

combine all these transducers.

FST for stems
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• A frequently use FST idiom, called cascade, is to have the output of one FST read in 

as the input to a subsequent machine.

• So, to handle spelling we use three tapes: 

– lexical, intermediate and surface

• We need one transducer to work between the lexical and intermediate levels, and a 

second (a bunch of FSTs) to work between intermediate and surface levels to patch up 

the spelling.

Multi-Level Multi-Tape Machines
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Lexical to Intermediate FST
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• We need FSTs to map intermediate level to surface level.

• For each spelling rule we will have a FST, and these FSTs run parallel.

• Some of English Spelling Rules:

– consonant doubling -- 1-letter consonant doubled before ing/ed -- beg/begging

– E deletion -- Silent e dropped before ing and ed -- make/making

– E insertion -- e added after s, z, x, ch, sh before s  -- watch/watches

– Y replacement -- y changes to ie before s, and to i before ed -- try/tries

– K insertion -- verbs ending with vowel+c we add k  -- panic/panicked

• We represent these rules using two-level morphology rules:

– a => b / c __ d rewrite a as b when it occurs between c and d.

Orthographic Rules

Natural Language Processing 22



E-insertion rule:    є => e  /  {x,s,z}^ __ s#  

• ^ (morpheme boundary) means ^: є

FST for E-Insertion Rule
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E-insertion rule:    є => e  /  {x,s,z}^ __ s#  

FST for E-Insertion Rule
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Generating or Parsing with FST Lexicon and Rules
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Accepting foxes
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• We can intersect all rule FSTs to create a single FST.

• Intersection algorithm just takes the Cartesian product of states.

– For each state qi of the first machine and qj of the second machine, we create a 

new state qij

– For input symbol a, if the first machine would transition to state qn and the second 

machine would transition to qm the new machine would transition to qnm.

Intersection
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• Cascade can turn out to be somewhat pain.

– it is hard to manage all tapes

– it fails to take advantage of restricting power of the machines 

• So, it is better to compile the cascade into a single large machine.

• Create a new state (x,y) for every pair of states x є Q1 and y є Q2.          

• The transition function of composition will be defined as follows:

δ((x,y),i:o) =  (v,z) if

there exists c such that δ1(x,i:c) =  v  and  δ2(y,c:o) =  z

Composition
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Intersect Rule FSTs
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LEXICON NOUNS

aba POST-NOUN;

aday POST-NOUN;

benzin POST-NOUN;

…

LEXICON POST-NOUN

+Noun:0 POST-NOUNR;

Simplified Turkish Noun Morphotactics
in Foma Environment
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LEXICON POSSESSIVE

+Acc:+yH End;

+Dat:+yA End;

+Loc:+DA End;

+Abl:+DAn End;

+Gen:+nHn End;

+Ins:+ylA End;

+Nom:0 End;

LEXICON POST-NOUNR

+A3pl:+lAr PLURAL;

+A3sg:0 PLURAL;

LEXICON PLURAL

+P1sg:+Hm   POSSESSIVE;

+P2sg:+Hn POSSESSIVE;

+P1pl:+HmHz POSSESSIVE;

+P2pl:+HnHz POSSESSIVE;

+Pnon:0     POSSESSIVE;

+P3sg:+sH POSSESSIVE;



##### Turkish Foma 2016  ####

define ALPHABET [a | e | ı | i | o | ö | u | ü | A | H | … | b | c | ç | d 

| f | g|ğ|h|j| k | l | m | n | p | r | s | ş | t | v | y | z | D | … ];

define CONS [b | c | ç | d | f | g | ğ | h | j | k | l | m | n | p | r | s 

| ş | t | v | y | z | D | Z | Y | K | J | B];

define VOWEL    [a | e | ı | i | o | ö | u | ü | A | H | … ];

define SVOWEL   [a | e | ı | i | o | ö | u | ü];

define BACKV    [a | ı | u | o];    #kalın ünlüler

define FRONTV   [e | i | ö | ü];    #ince ünlüler

define HIGHV    [ı | i | u | ü];    #dar ünlüler

define FRUNRV   [i | e];            #düz ince

define FRROV    [ö | ü];            #yuvarlak ince

define BKROV    [u | o];            #yuvarlak kalın

define BKUNRV   [a | ı];            #düz kalın

define Xsyn [s | y | n];

define NDCONS   [c | Z | l | d | D];

Simplified Turkish Orthographic Rules
in Foma Environment
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#---------------ALTERNATION RULE SECTION----------------------

define AReplacement

A -> a || [BACKV | … ] [CONS | … | "+"]* _ ;

A -> e || [FRONTV | …] [CONS | … | "+"]* _ ;  

define HReplacement

H -> u || [BKROV | … ] [CONS | "+" | … ]* _ ,,

H -> ü || [FRROV | … ] [CONS | "+" | … ]* _ ,,

H -> ı || [BKUNRV | … ] [CONS | "+" | … ]* _ ,,

H -> i || [FRUNRV | … ] [CONS | "+" | … ]* _ ,,

H -> 0 || VOWEL "+" _ ; 

Simplified Turkish Orthographic Rules
in Foma Environment
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Morphological Processing in Foma Environment
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