
Feature Structures

Natural Language Processing 1

• We know that CFGs cannot handle certain things which are available in natural

languages.

• In particular, CFGs cannot handle very well:

– agreement

– subcategorization

• We will look at a constraint-based representation schema which will allow us to

represent fine-grained information such as:

– number/person agreement

– subcategorization

– semantic categories like mass/count

Problems with CFGs

Natural Language Processing 2

• What is the problem with the following CFG rules:

S  NP VP

NP  Det NOMINAL

NP  Pronoun

• Answer: Since these rules do not enforce number and person agreement constraints,

they over-generate and allow the following constructs:

* They sleeps

* He sleep

* A dogs

* These dog

Agreement Problem

Natural Language Processing 3

• One way to handle the agreement phenomena in a strictly context-free approach is to

encode the constraints into the non-terminal categories and then into CFG rules.

• For example, our grammar will be:

S  SgS | PlS

SgS  SgNP SgVP

PlS  PlNP PlVP

SgNP  SgDet SgNOMINAL

SgNP  SgPronoun

PlNP  PlDet PlNOMINAL

PlNP  PlPronoun

• This solution will explode the number of non-terminals and rules. The resulting

grammar will not be a clean grammar.

An Awkward Solution to Agreement Problem

Natural Language Processing 4

• What is the problem with the following CFG rules:

VP  Verb

VP  Verb NP

• Answer: Since these rules do not enforce subcategorization constraints, they over-

generate and allow the following constructs:

* They take

* They sleep a glass

Subcategorization Problem

Natural Language Processing 5

• Again, one way to handle the subcategorization phenomena in a strictly context-free

approach is to encode the constraints into the non-terminal categories and then into

CFG rules.

• For example, our grammar will be:

VP  IntransVP | TransVP

IntransVP  IntransVerb

TransVP  TransVerb NP

• This solution will again explode the number of non-terminals and rules.

• Remember that we may almost 100 subcategorizations for English verbs. The resulting

grammar will not be a clean grammar.

An Awkward Solution to Subcategorization Problem

Natural Language Processing 6

• A better solution for agreement and subcategorization problems is to treat terminals

and non-terminals as complex objects with associated properties (called features) that

can be manipulated.

• So, we may code rules as follows: (not CF rules anymore)

S  NP VP Only if the number of the NP is equal to the number of the VP.

• Where number of are features of NP and VP, and they are manipulated (they are

checked to see whether they are equal or not) by the rule above.

A Better Solution

Natural Language Processing 7

• We can encode the properties associated with grammatical constituents (terminals and

non-terminals) by using Feature Structures.

• A feature structure is a set of feature-value pairs.

– A feature is an atomic symbol.

– A value is either an atomic value or another feature structure.

• A feature structure can be illustrated by a matrix-like diagram (called attribute-value

matrix).

Feature Structures

Natural Language Processing 8

























nValuenFeature

ValueFeature

ValueFeature

.

22

11

Example - Feature Structures

Natural Language Processing 9

 SGNUMBER

















3PERSON

SGNUMBER

NPCAT










3PERSON

SGNUMBER
























3PERSON

SGNUMBER
AGREEMENT

NPCAT

• We will allow multiple features in a feature structure to share the same values.

• They share the same structures not just that they have same value.

Reentrant Feature Structures

Natural Language Processing 10

 

   









































1

3
1

AGREEMENTSUBJECT

PERSON

SGNUMBER
AGREEMENT

HEAD

SCAT

• A feature path is a list of features through a feature structure leading to a particular

value.

• For example,

<HEAD AGREEMENT NUMBER> leads to SG

<HEAD SUBJECT AGREEMENT PERSON> leads to 3

• We will use feature paths in the constraints of the rules.

S  NP VP

<NP AGREEMENT> = <VP AGREEMENT>

Feature Path

Natural Language Processing 11

• A feature structure can also be represented by using a DAG (directed acyclic graph).

DAG Representation of Feature Structures

Natural Language Processing 12
























3PERSON

SGNUMBER
AGREEMENT

NPCAT

DAG of A Reentrant Feature Structure

Natural Language Processing 13

 

   









































1

3
1

AGREEMENTSUBJECT

PERSON

SGNUMBER
AGREEMENT

HEAD

SCAT

• By the unification of feature structures, we will:

– Check the compatibility of two feature structures.

– Merge the information in two feature structures.

• The result of a unification operation of two feature structures can be:

– unifiable -- they will merge into a single feature structure

– fails -- if two feature structures are not compatible.

• We will look at how does this unification process perform the above tasks.

Unification of Feature Structures

Natural Language Processing 14

• We say that two feature structures can be unified if two feature structures that make

them up are compatible.

succeeds

fails

Unification Example

Natural Language Processing 15

     SGNUMBERSGNUMBERSGNUMBER 

   PLNUMBERSGNUMBER 

Unification Operator

• The unification process can bind an undefined value to a value, or can merge the

information in two feature structures.

Unification Example (cont.)

Natural Language Processing 16

     SGNUMBERNUMBERSGNUMBER []

    









3
3

PERSON

SGNUMBER
PERSONSGNUMBER 

Unification Example -- Complex Structures

Natural Language Processing 17

 






































SGNUMBER

PERSON
AGREEMENTSUBJECT

AGREEMENTSUBJECT

AGREEMENT

3

)1(

)1(



































SGNUMBER

PERSON
AGREEMENTSUBJECT

AGREEMENT

3
)1(

)1(

• A more abstract (less specific) feature structure subsumes an equally or more

specific one.

• Subsumption is represented by the operator 

• A feature structure F subsumes a feature structure G (F  G) if and only if :

– For every structure x in F, F(x)  G(x) (where F(x) means the value of the feature

x of the feature structure F).

– For all paths p and q in F such that F(p)=F(q), it is also the case that G(p)=G(q).

Subsumption

Natural Language Processing 18

Consider the following feature structures:

(1)

(2)

(3)

(1)  (3)

(2)  (3)

but there is no subsumption relation between (1) and (2)

Subsumption Example

Natural Language Processing 19

 SGNUMBER

 3PERSON










3PERSON

SGNUMBER

• We will incorporate the feature structures and the unification process as follows:

– All constituents (non-terminals) will be associated with feature structures.

– Sets of unification constraints will be associated with grammar rules, and these

rules must be satisfied for the rule to be satisfied.

• These attachments accomplish the following goals:

– To associate feature structures with both lexical items and instances of

grammatical categories.

– To guide the composition of feature structures for larger grammatical constituents

based on the feature structures of their component parts.

– To enforce compatibility constraints between specified parts of grammatical

constraints

Feature Structures in The Grammar

Natural Language Processing 20

• Each grammar rule will be associated with a set of unification constraints.

0  1 … n {set of unification constraints}

• Each unification constraint will be in one of the following forms.

< i feature path> = Atomic value

< i feature path> = < j feature path>

Unification Constraints

Natural Language Processing 21

• For example, the following rule

S  NP VP

Only if the number of the NP is equal to the number of the VP.

will be represented as follows:

S  NP VP

<NP NUMBER> = <VP NUMBER>

Unification Constraints -- Example

Natural Language Processing 22

S  NP VP

<NP NUMBER> = <VP NUMBER>

S  Aux NP VP

<Aux AGREEMENT> = <NP AGREEMENT>

NP  Det NOMINAL

<Det AGREEMENT> = <NOMINAL AGREEMENT>

<NP AGREEMENT> = <NOMINAL AGREEMENT>

NOMINAL  Noun

<NOMINAL AGREEMENT> = <Noun AGREEMENT>

VP  Verb NP

<VP AGREEMENT> = <Verb AGREEMENT>

Agreement Constraints

Natural Language Processing 23

Aux  does <Aux AGREEMENT NUMBER> = SG

<Aux AGREEMENT PERSON> = 3

Aux  do <Aux AGREEMENT NUMBER> = PL

Det  these <Det AGREEMENT NUMBER> = PL

Det  this <Det AGREEMENT NUMBER> = SG

Verb  serves <Verb AGREEMENT NUMBER> = SG

<Verb AGREEMENT PERSON> = 3

Verb  serve <Verb AGREEMENT NUMBER> = PL

Noun  flights <Noun AGREEMENT NUMBER> = PL

Noun  flight <Noun AGREEMENT NUMBER> = SG

Agreement Constraints -- Lexicon Entries

Natural Language Processing 24

• Certain features are copied from children to parent in feature structures.

• For example, AGREEMENT feature in NOMINAL is copied into NP.

• The features for most grammatical categories are copied from one of the children to

the parent.

• The child that provides the features is called head of the phrase, and the features

copied are referred to as head features.

• A verb is a head of a verb phrase, and a nominal is a head of a noun phrase. We may

reflect these constructs in feature structures as follows:

NP  Det NOMINAL

<Det HEAD AGREEMENT> = <NOMINAL HEAD AGREEMENT>

<NP HEAD> = <NOMINAL HEAD>

VP  Verb NP

<VP HEAD> = <Verb HEAD>

Head Features

Natural Language Processing 25

• For verb phrases, we can represent subcategorization constraints using three

techniques:

– Atomic Subcat Symbols

– Encoding Subcat lists as feature structures

– Minimal Rule Approach (using lists directly)

• We may use any of these representations.

SubCategorization Constraints

Natural Language Processing 26

VP  Verb

<VP HEAD> = <Verb HEAD>

<VP HEAD SUBCAT> = INTRANS

VP  Verb NP

<VP HEAD> = <Verb HEAD>

<VP HEAD SUBCAT> = TRANS

VP  Verb NP NP

<VP HEAD> = <Verb HEAD>

<VP HEAD SUBCAT> = DITRANS

Verb  slept <Verb HEAD SUBCAT> = INTRANS

Verb  served <Verb HEAD SUBCAT> = TRANS

Verb  gave <Verb HEAD SUBCAT> = DITRANS

Atomic Subcat Symbols

Natural Language Processing 27

Verb  gave

<Verb HEAD SUBCAT FIRST CAT> = NP

<Verb HEAD SUBCAT SECOND CAT> = NP

<Verb HEAD SUBCAT THIRD> = END

VP  Verb NP NP

<VP HEAD> = <Verb HEAD>

<VP HEAD SUBCAT FIRST CAT> = <NP CAT>

<VP HEAD SUBCAT SECOND CAT> = <NP CAT>

<VP HEAD SUBCAT THIRD> = END

• We are only encoding lists using positional features

Encoding Subcat Lists as Features

Natural Language Processing 28

• In fact, we do not use symbols like SECOND, THIRD. They are just used to encode

lists. We can use lists directly (similar to LISP).

<SUBCAT FIRST CAT> = NP

<SUBCAT REST FIRST CAT> = NP

<SUBCAT REST REST> = END

Minimal Rule Approach

Natural Language Processing 29

• We can use two different notations to represent subcategorization frames for lexical

entries (verbs).

Verb  want

<Verb HEAD SUBCAT FIRST CAT> = NP

Verb  want

<Verb HEAD SUBCAT FIRST CAT> = VP

<Verb HEAD SUBCAT FIRST FORM> = INFINITITIVE

Subcategorization Frames for Lexical Entries

Natural Language Processing 30

 
  







































INFINITIVEVFORMHEAD

VPCAT
NPCATSUBCATHEAD

VERBCAT

WANTORTH

,

• The representation we have used cannot facilitate the destructive merger aspect of

unification algorithm.

• For this reason, we add additional features (additional edges to DAGs) into our feature

structures.

• Each feature structure will consists of two fields:

– Content Field -- This field can be NULL or may contain ordinary feature

structure.

– Pointer Field -- This field can be NULL or may contain a pointer into another

feature structure.

• If the pointer field of a DAG is NULL, the content field of DAG contains the actual

feature structure to be processed.

• If the pointer field of a DAG is not NULL, the destination of that pointer represents

the actual feature structure to be processed.

Implementing Unification

Natural Language Processing 31

Extended Feature Structures

Natural Language Processing 32

Extended DAG

Natural Language Processing 33

Unification of Extended DAGs

Natural Language Processing 34

    









3
3

PERSON

SGNUMBER
PERSONSGNUMBER 

Unification of Extended DAGs (cont.)

Natural Language Processing 35

function UNIFY(f1,f2) returns fstructure or failure

f1real  real contents of f1 /* dereference f1 */

f2real  real contents of f2 /* dereference f2 */

if f1real is Null then { f1.pointer  f2; return f2; }

else if f2real is Null then { f2.pointer  f1; return f1; }

else if f1real and f2real are identical then { f1.pointer  f2; return f2; }

else if f1real and f2real are complex feature structures then

{ f2.pointer  f1;

for each feature in f2real do

{ otherfeature  Find or create a feature corresponding to feature in f1real;

if UNIFY(feature.value,otherfeature.value) returns failure then

return failure; }

return f1; }

else return failure;

Unification Algorithm

Natural Language Processing 36

Example - Unification of Complex Structures

Natural Language Processing 37

 
 

   3

)1(

)1(

PERSONAGREEMENTSUBJECT

AGREEMENTSUBJECT

SGNUMBERAGREEMENT










 

























)1(

3
)1(

AGREEMENTSUBJECT

PERSON

SGNUMBER
AGREEMENT

Example - Unification of Complex Structures (cont.)

Natural Language Processing 38

• Let us assume that we have augmented our grammar with sets of unification

constraints.

• What changes do we need to make a parser to make use of them?

– Building feature structures and associate them with sub-trees.

– Unifying feature structures when sub-trees are created.

– Blocking ill-formed constituents

Parsing with Unification Constraints

Natural Language Processing 39

• What do we have to do to integrate unification constraints with Earley Parser?

– Building feature structures (represented as DAGs) and associate them with states

in the chart.

– Unifying feature structures as states are advanced in the chart.

– Blocking ill-formed states from entering the chart.

• The main change will be in COMPLETER function of Earley Parser. This routine

will invoke the unifier to unify two feature structures.

Earley Parsing with Unification Con

Natural Language Processing 40

NP  Det NOMINAL

<Det HEAD AGREEMENT> = <NOMINAL HEAD AGREEMENT>

<NP HEAD> = <NOMINAL HEAD>

corresponds to

Building Feature Structures

Natural Language Processing 41

 
  
  
















)2()1(

)2(

)1(

AGREEMENTHEADNOMINAL

AGREEMENTHEADDet

HEADNP

• Each state will have an additional field to contain the DAG representing the feature

structure corresponding to the state.

• When a rule is first used by PREDICTOR to create a state, the DAG associated with

the state will simply consist of the DAG retrieved from the rule.

• For example,

S   NP VP, [0,0],[],Dag1

where Dag1 is the feature structure corresponding to S  NP VP.

NP   Det NOMINAL, [0,0],[],Dag2

where Dag2 is the feature structure corresponding to S  Det NOMINAL.

Augmenting States with DAGs

Natural Language Processing 42

• When COMPLETER advances the dot in a state, it should unify the feature structure

of the newly completed state with the appropriate part of the feature structure being

advanced.

• If this unification process is succesful, the new state gets the result of the unification as

its DAG, and this new state is entered into the chart.

– If it fails, nothing is entered into the chart.

What does COMPLETER do?

Natural Language Processing 43

A Completion Example

Natural Language Processing 44

 
   

   















)2()1(

)2(

)1(

AGREEMENTHEADNOMINAL

SGNUMBERAGREEMENTHEADDet

HEADNP

NP  Det  NOMINAL, [0,1],[SDet],Dag1

Dag1

Parsing the phrase that flight after that is processed.

A newly completed state

NOMINAL  Noun , [1,2],[SNoun],Dag2

 
   







SGNUMBERAGREEMENTHEADNoun

HEADNOMINAL

)1(

)1(
Dag2

To advance in NP, the parser unifies the feature structure found under

the NOMINAL feature of Dag2, with the feature structure found under

the NOMINAL feature of Dag1.

function EARLEY-PARSE(words,grammar) returns chart

ENQUEUE((   S, [0,0], chart[0],dag)

for i from 0 to LENGTH(words) do

for each state in chart[i] do

if INCOMPLETE?(state) and NEXT-CAT(state) is not a PS then

PREDICTOR(state)

elseif INCOMPLETE?(state) and NEXT-CAT(state) is a PS then

SCANNER(state)

else

COMPLETER(state)

end

end

return(chart)

Earley Parse

Natural Language Processing 45

procedure PREDICTOR((A    B , [i,j],dagA))

for each (B  ) in GRAMMAR-RULES-FOR(B,grammar) do

ENQUEUE((B   , [i,j],dagB), chart[j])

end

procedure SCANNER((A    B , [i,j],dagA))

if (B  PARTS-OF-SPEECH(word[j]) then

ENQUEUE((B  word[j]  , [j,j+1],dagB), chart[j+1])

end

Predictor and Scanner

Natural Language Processing 46

procedure COMPLETER((B    , [j,k],dagB))

for each (A    B , [i,j],dagA) in chart[j] do

if newdag  UNIFY-STATES(dagB,dagA,B)  fails then

ENQUEUE((A   B  , [i,k],newdag), chart[k])

end

procedure UNIFY-STATES(dag1,dag2,cat)

dag1cp  CopyDag(dag1);

dag2cp  CopyDag(dag2);

UNIFY(FollowPath(cat,dag1cp),FollowPath(cat,dag2cp));

end

Completer and UnifyStates

Natural Language Processing 47

procedure ENQUEUE(state,chart-entry)

if state is not subsumed by a state in chart-entry then

Add state at the end of chart-entry

end

Enqueue

Natural Language Processing 48

