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• We know that CFGs cannot handle certain things which are available      in natural 

languages.

• In particular, CFGs cannot handle very well:

– agreement

– subcategorization

• We will look at a constraint-based representation schema which will allow us to 

represent fine-grained information such as:

– number/person agreement

– subcategorization

– semantic categories like mass/count

Problems with CFGs
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• What is the problem with the following CFG rules:

S  NP VP

NP  Det NOMINAL

NP  Pronoun

• Answer: Since these rules do not enforce number and person agreement constraints, 

they over-generate and allow the following constructs:

* They sleeps

* He sleep

* A dogs

* These dog

Agreement Problem
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• One way to handle the agreement phenomena in a strictly context-free approach is to 

encode the constraints into the non-terminal categories and then into CFG rules.

• For example, our grammar will be:

S  SgS |  PlS

SgS  SgNP SgVP

PlS  PlNP PlVP

SgNP  SgDet SgNOMINAL

SgNP  SgPronoun

PlNP  PlDet PlNOMINAL

PlNP  PlPronoun

• This solution will explode the number of non-terminals and rules. The resulting 

grammar will not be a clean grammar.

An Awkward Solution to Agreement Problem
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• What is the problem with the following CFG rules:

VP  Verb

VP  Verb NP

• Answer: Since these rules do not enforce subcategorization constraints, they over-

generate and allow the following constructs:

* They take

* They sleep a glass

Subcategorization Problem
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• Again, one way to handle the subcategorization phenomena in a strictly context-free 

approach is to encode the constraints into the non-terminal categories and then into 

CFG rules.

• For example, our grammar will be:

VP  IntransVP |  TransVP

IntransVP  IntransVerb

TransVP  TransVerb NP

• This solution will again explode the number of non-terminals and rules.       

• Remember that we may almost 100 subcategorizations for English verbs. The resulting 

grammar will not be a clean grammar.

An Awkward Solution to Subcategorization Problem
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• A better solution for agreement and subcategorization problems is to treat terminals 

and non-terminals as complex objects with associated properties (called features) that 

can be manipulated.

• So, we may code rules as follows: (not CF rules anymore)

S  NP  VP Only if the number of the NP is equal to the number of the VP.

• Where number of are features of NP and VP, and they are  manipulated (they are 

checked to see whether they are equal or not)    by the rule above.

A Better Solution
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• We can encode the properties associated with grammatical constituents (terminals and 

non-terminals) by using Feature Structures.

• A feature structure is a set of  feature-value pairs.

– A feature is an atomic symbol.

– A value is either an atomic value or another feature structure.

• A feature structure can be illustrated by a matrix-like diagram (called attribute-value 

matrix).

Feature Structures
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Example - Feature Structures
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• We will allow multiple features in a feature structure to share the same values.

• They share the same structures  not just that they have same value.

Reentrant Feature Structures
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• A feature path is a list of features through a feature structure leading to a particular 

value.

• For example,

<HEAD AGREEMENT NUMBER> leads to SG

<HEAD SUBJECT AGREEMENT PERSON> leads to 3

• We will use feature paths in the constraints of the rules.

S  NP VP

<NP AGREEMENT> = <VP AGREEMENT>

Feature Path
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• A feature structure can also be represented by using a DAG (directed acyclic graph).

DAG Representation of Feature Structures
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DAG of A Reentrant Feature Structure
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• By the unification of feature structures, we will:

– Check the compatibility of two feature structures.

– Merge the information in two feature structures.

• The result of a unification operation of two feature structures can be:

– unifiable -- they will merge into a single feature structure

– fails  -- if two feature structures are not compatible.

• We will look at how does this unification process perform the above tasks.

Unification of Feature Structures
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• We say that two feature structures can be unified if two feature structures that make 

them up are compatible.

succeeds

fails

Unification Example
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• The unification process can bind an undefined value to a value,  or can merge the 

information in two feature structures.

Unification Example (cont.)
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Unification Example -- Complex Structures
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• A more abstract (less specific) feature structure subsumes an equally    or more 

specific one.

• Subsumption is represented by the operator  

• A feature structure F subsumes a feature structure G ( F  G) if and only if :

– For every structure x in F, F(x)  G(x)  (where F(x) means the value of the feature 

x of the feature structure F).

– For all paths p and q in F such that F(p)=F(q), it is also the case that G(p)=G(q).

Subsumption
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Consider the following feature structures:

(1)

(2)

(3)

(1)  (3)

(2)  (3)

but there is no subsumption relation between (1) and (2)

Subsumption Example
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• We will incorporate the feature structures and the unification process   as follows:

– All constituents (non-terminals) will be associated with feature structures.

– Sets of unification constraints will be associated with grammar  rules, and these 

rules must be satisfied for the rule to be satisfied.

• These attachments accomplish the following goals:

– To associate feature structures with both lexical items and instances of 

grammatical categories.

– To guide the composition of feature structures for larger grammatical constituents 

based on the feature structures of their component parts.

– To enforce compatibility constraints between specified parts of grammatical 

constraints

Feature Structures in The Grammar
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• Each grammar rule will be associated with a set of unification constraints.

0  1 … n {set of unification constraints}

• Each unification constraint will be in one of the following forms.

< i feature path>   = Atomic value

< i feature path>  = < j feature path> 

Unification Constraints
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• For example, the following rule 

S  NP  VP

Only if the number of the NP is equal to the number of the VP.

will be represented as follows:

S  NP  VP

<NP NUMBER> = <VP NUMBER>

Unification Constraints -- Example
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S  NP  VP

<NP NUMBER> = <VP NUMBER>

S  Aux NP  VP

<Aux AGREEMENT> = <NP AGREEMENT>

NP  Det NOMINAL

<Det AGREEMENT> = <NOMINAL  AGREEMENT>

<NP AGREEMENT> = <NOMINAL  AGREEMENT>

NOMINAL  Noun

<NOMINAL AGREEMENT> = <Noun  AGREEMENT>

VP  Verb NP

<VP AGREEMENT> = <Verb  AGREEMENT>

Agreement Constraints
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Aux  does <Aux AGREEMENT NUMBER> = SG

<Aux AGREEMENT PERSON> = 3

Aux  do <Aux AGREEMENT NUMBER> = PL

Det  these <Det AGREEMENT NUMBER> = PL

Det  this <Det AGREEMENT NUMBER> = SG

Verb  serves <Verb AGREEMENT NUMBER> = SG

<Verb AGREEMENT PERSON> = 3

Verb  serve <Verb AGREEMENT NUMBER> = PL

Noun  flights <Noun AGREEMENT NUMBER> = PL

Noun  flight <Noun AGREEMENT NUMBER> = SG

Agreement Constraints -- Lexicon Entries
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• Certain features are copied from children to parent in feature structures.

• For example, AGREEMENT feature in NOMINAL is copied into NP.

• The features for most grammatical categories are copied from one of the children to 

the parent.

• The child that provides the features is called head of the phrase, and the features 

copied are referred to as head features.

• A verb is a head of a verb phrase, and a nominal is a head of a noun phrase. We may 

reflect these constructs in feature structures as follows:

NP  Det NOMINAL

<Det HEAD AGREEMENT> = <NOMINAL HEAD AGREEMENT>

<NP HEAD> = <NOMINAL  HEAD>

VP  Verb NP

<VP HEAD> = <Verb  HEAD>

Head Features
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• For verb phrases, we can represent subcategorization constraints using three 

techniques:

– Atomic Subcat Symbols

– Encoding Subcat lists as feature structures

– Minimal Rule Approach (using lists directly)

• We may use any of these representations.

SubCategorization Constraints
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VP  Verb 

<VP HEAD> = <Verb  HEAD>

<VP HEAD SUBCAT> = INTRANS

VP  Verb NP

<VP HEAD> = <Verb  HEAD>

<VP HEAD SUBCAT> = TRANS

VP  Verb NP NP

<VP HEAD> = <Verb  HEAD>

<VP HEAD SUBCAT> = DITRANS

Verb  slept <Verb HEAD SUBCAT> =  INTRANS

Verb  served <Verb HEAD SUBCAT> =  TRANS

Verb  gave <Verb HEAD SUBCAT> =  DITRANS

Atomic Subcat Symbols
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Verb  gave

<Verb HEAD SUBCAT FIRST CAT> =  NP

<Verb HEAD SUBCAT SECOND CAT> =  NP

<Verb HEAD SUBCAT THIRD> =  END

VP  Verb NP NP

<VP HEAD> = <Verb  HEAD>

<VP HEAD SUBCAT FIRST CAT> = <NP CAT>

<VP HEAD SUBCAT SECOND CAT> = <NP CAT>

<VP HEAD SUBCAT THIRD> = END

• We are only encoding lists using positional features

Encoding Subcat Lists as Features 
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• In fact, we do not use symbols like SECOND, THIRD. They are just used  to encode 

lists. We can use lists directly (similar to LISP).

<SUBCAT FIRST CAT> = NP

<SUBCAT REST FIRST CAT> = NP

<SUBCAT REST REST> = END

Minimal Rule Approach
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• We can use two different notations to represent subcategorization frames for lexical 

entries (verbs).

Verb  want

<Verb HEAD SUBCAT FIRST CAT> =  NP

Verb  want

<Verb HEAD SUBCAT FIRST CAT> =  VP

<Verb HEAD SUBCAT FIRST FORM> =  INFINITITIVE

Subcategorization Frames for Lexical Entries
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• The representation we have used cannot facilitate the destructive merger aspect of 

unification algorithm.

• For this reason, we add additional features (additional edges to DAGs) into our feature 

structures.

• Each feature structure will consists of two fields:

– Content Field -- This field can be NULL or may contain ordinary feature 

structure.

– Pointer Field -- This field can be NULL or may contain a pointer into another 

feature structure.

• If the pointer field of a DAG is NULL, the content field of DAG contains the actual 

feature structure to be processed.

• If the pointer field of a DAG is not NULL,  the destination of that pointer represents 

the actual feature structure to be processed.

Implementing Unification
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Extended Feature Structures
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Extended DAG
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Unification of Extended DAGs

Natural Language Processing 34

    









3
3

PERSON

SGNUMBER
PERSONSGNUMBER 



Unification of Extended DAGs (cont.)
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function UNIFY(f1,f2)  returns fstructure or failure

f1real  real contents of f1 /* dereference f1 */

f2real  real contents of f2 /* dereference f2 */

if f1real is Null then { f1.pointer  f2;  return f2; }

else if f2real is Null  then { f2.pointer  f1;  return f1; }

else if f1real and f2real are identical  then { f1.pointer  f2;  return f2; }

else if f1real and f2real are complex feature structures  then

{ f2.pointer  f1;  

for each feature in f2real do

{  otherfeature  Find or create a feature corresponding to feature in f1real;

if UNIFY(feature.value,otherfeature.value)  returns failure then

return failure;  }

return f1;  }

else return failure;

Unification Algorithm
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Example - Unification of Complex Structures
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Example - Unification of Complex Structures (cont.)
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• Let us assume that we have augmented our grammar with sets of unification 

constraints.

• What changes do we need to make a parser to make use of them?

– Building feature structures and associate them with sub-trees.

– Unifying feature structures when sub-trees are created.

– Blocking ill-formed constituents

Parsing with Unification Constraints
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• What do we have to do to integrate unification constraints with       Earley Parser?

– Building feature structures (represented as DAGs) and associate them with states 

in the chart.

– Unifying feature structures as states are advanced in the chart.

– Blocking ill-formed states from entering the chart.

• The main change will be in COMPLETER function of Earley Parser.    This routine 

will invoke the unifier to unify two feature structures.

Earley Parsing with Unification Con
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NP  Det NOMINAL

<Det HEAD AGREEMENT> = <NOMINAL  HEAD AGREEMENT>

<NP HEAD> = <NOMINAL  HEAD>

corresponds to

Building Feature Structures
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• Each state will have an additional field  to contain the DAG representing the feature 

structure corresponding to the state.

• When a  rule is first used by PREDICTOR to create a state, the DAG associated with 

the state will simply consist of the DAG retrieved from the rule. 

• For example,

S   NP VP, [0,0],[],Dag1

where Dag1 is the feature structure corresponding to S  NP VP.

NP   Det NOMINAL, [0,0],[],Dag2

where Dag2 is the feature structure corresponding to S  Det NOMINAL.

Augmenting States with DAGs
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• When COMPLETER advances the dot in a state, it should unify the feature structure 

of the newly completed state with the appropriate part of the feature structure being 

advanced.

• If this unification process is succesful, the new state gets the result of the unification as 

its DAG, and this new state is entered into the chart.    

– If it fails, nothing is entered into the chart.

What does COMPLETER do?
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A Completion Example
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function EARLEY-PARSE(words,grammar)  returns chart

ENQUEUE((   S, [0,0], chart[0],dag)

for i from 0  to LENGTH(words)  do

for each state  in chart[i]  do

if INCOMPLETE?(state) and NEXT-CAT(state) is not a PS  then

PREDICTOR(state)

elseif INCOMPLETE?(state) and NEXT-CAT(state) is a PS  then

SCANNER(state)

else

COMPLETER(state)

end

end

return(chart)

Earley Parse
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procedure PREDICTOR((A    B , [i,j],dagA))

for each (B  )  in GRAMMAR-RULES-FOR(B,grammar)  do

ENQUEUE((B   , [i,j],dagB), chart[j])

end

procedure SCANNER((A    B , [i,j],dagA))

if (B  PARTS-OF-SPEECH(word[j])  then

ENQUEUE((B  word[j]  , [j,j+1],dagB), chart[j+1])

end

Predictor and Scanner
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procedure COMPLETER((B    , [j,k],dagB))

for each (A    B , [i,j],dagA)  in chart[j]  do

if newdag  UNIFY-STATES(dagB,dagA,B)  fails then

ENQUEUE((A   B  , [i,k],newdag), chart[k])

end

procedure UNIFY-STATES(dag1,dag2,cat)

dag1cp  CopyDag(dag1);

dag2cp  CopyDag(dag2);

UNIFY(FollowPath(cat,dag1cp),FollowPath(cat,dag2cp));

end

Completer and UnifyStates
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procedure ENQUEUE(state,chart-entry) 

if state is not subsumed by a state in chart-entry then

Add state at the end of chart-entry

end

Enqueue
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