
Syntactic Parsing

Natural Language Processing 1

• Syntax: CFG

• Parsing

• Earley Parser

Syntax: CFG

Machine Learning 2

• Syntax (of natural languages) describe how words are strung together to form

components of sentences, and how those components are strung together to form

sentences.

• In the core of the description of the syntax of a natural language, we use context-free

grammars (CFGs).

• Groups of words may behave as a single unit or phrases, called as constituent.

– noun phrase,

– verb phrase

• CFGs will allow us to model these constituency facts.

Syntax

Natural Language Processing 3

• How do words group together?

• Some noun phrases (noun groups) in English:

– three parties from Brooklyn they three books

• All noun phrases can appear in similar syntactic environments:

– three parties from Brooklyn arrive they arrive

• Although whole noun phrase can appear before a verb, its parts may not appear before

verb.

– * from arrive

• A noun phrase can be placed in certain places in a sentence.

• A prepositional phrase can be placed in different places in the sentences.

– On September seventh, I’d like to fly from Atlanta to Denver

– I’d like to fly on September seventh from Atlanta to Denver

– I’d like to fly from Atlanta to Denver on September seventh

Constituency

Natural Language Processing 4

• CFGs capture constituency and ordering in natural language sentences.

• But we will need extra information to model:

– grammatical relations such as agreement

– subcategorization of verbs

– dependency relations between words and phrases

• So, a CFG will be in the core of the description of the syntax of a natural language.

• Context-Free Grammars are also called as Phrase-Structure Grammars.

Context Free Grammars

Natural Language Processing 5

• Why do we use CFG to describe the syntax of a natural language.

– Regular Grammars -- too weak

– Context Sensitive Grammars -- too strong.

– Turing Machines -- way too strong.

• Too weak means that they cannot capture/describe the syntactic structures which exist

in natural languages.

• Too strong means that we do not need that much power to capture/describe the

syntactic structures which exist in natural languages.

• For weaker methods, we have much efficient computational processes.

Why not Other Formalisms

Natural Language Processing 6

• A CFG consists of:

– Sets of terminals (either lexical items or parts of speech)

– Sets of non-terminals (the constituents of the language)

– Sets of rules of the form A → α where α is a string of zero or more terminals

and non-terminals.

– One of non-terminals is designated as a start symbol.

Definition of CFG

Natural Language Processing 7

S → NP VP

NP → Pronoun | NOM | Det NOM

NOM → Noun | Noun NOM

VP → Verb NP

-- Lexicon -- (parts of speech)

Prounoun → I | they

Noun → flight | morning | evening

Verb → prefer

Det → a | the | that

An Example of CFG

Natural Language Processing 8

• A derivation is a sequence of rule applications.

• In each rule application, a non-terminal in a string is re-written as α if there is a rule

in the form A → α.

βAγ βαγ

• We say that α1 derives αm (α1
* αm) if:

α1 … αm

• The language generated by a CFG G is:

LG = { w | w is a string of terminals and S derives w }

• A derivation can be represented by a parse tree.

• Mapping from a string of terminals to its parse tree is called as parsing.

Derivation

Natural Language Processing 9

Parse Tree

Natural Language Processing 10

S → NP VP

NP → Pronoun | NOM | Det NOM

NOM → Noun | Noun NOM

VP → Verb NP

-- Lexicon -- (parts of speech)

Prounoun → I | they

Noun → flight | morning | evening

Verb → prefer

Det → a | the | that

• We have to do a lot to develop grammars for natural languages.

– We will look some trivial parts of grammars.

• Here we look at some constituents (syntactic substructures) in natural languages.

• The key constituents are: (We will investigate)

– Sentences

– Noun Phrases

– Verb Phrases

– Prepositional Phrases

Developing Grammars

Natural Language Processing 11

• Declarative Sentences

– S → NP VP He left

• Imperative Sentences

– S → VP Get out!

• Yes-No Questions

– S → Aux NP VP Did you decide?

• WH-Questions

– S → WH-Word Aux NP VP What did you decide?

Sentence Types

Natural Language Processing 12

• Each noun phrase has a head noun. -- a book

• A noun phrase the head noun may be preceded by pre-nominal modifiers and

followed by post-nominal modifiers.

• Pre-Nominal Modifiers:

– Determiner -- a, the, that, this, any, some -- a book

• mass-nouns do not require determiners

– Pre-Determiners -- all -- all the flights, all flights

– Cardinal Numbers -- one, two -- two friends, one man

– Ordinal Numbers -- first,second,next,last,other -- the last flight

– Quantifiers -- many,several,few -- many fares

– Adjective Phrases -- the least expensive fare

• Adjectives can be grouped into a phrase called an adjective phrase.

• A simplified rule:

– NP → (PreDet) (Det) (Card) (Ord) (Quan) (AP) NOM

Noun Phrases

Natural Language Processing 13

• Three common post-modifiers:

– prepositional phrases -- all flights from Ankara

– non-finite clauses -- any flight arriving after 5 p.m.

• three common non-finite post-modifiers: gerundive, -ed, and infinitive forms.

– relative clauses -- a flight that serves dinner

NOM → NOM PP (PP) (PP)

NOM → NOM GerundVP

NOM → NOM RelClause

GerundVP → GerundV | GerundV NP | GerundV PP | GerundV NP PP

GerundV → arriving | preferring | …

RelClause → who VP | that VP

Noun Phrases -- Post-Modifiers

Natural Language Processing 14

• Noun phrases and other phrases can be conjoined with conjunctions such as and, or,

but, …

– table and chair ...

– the flights that leaving Ankara and arriving in Istanbul

– he came from Ankara and he went to Istanbul.

NP → NP and NP

VP → VP and VP

S → S and S

Conjunctions

Natural Language Processing 15

• Recursive rules may appear in our grammars.

– NP → NP PP the flight from Ankara

– VP → VP PP departed Ankara at 5 p.m.

– PP → Prep NP

• These rules allow us the following:

– Flights to Ankara

– Flights to Ankara from Istanbul

– Flights to Ankara from Istanbul in March

– Flights to Ankara from Istanbul in March on Friday

– Flights to Ankara from Istanbul in March on Friday under $100

– Flights to Ankara from Istanbul in March on Friday under $100 with lunch

Recursive Structures

Natural Language Processing 16

• When we use CFGs to describe the syntax of a natural language, we may encounter

certain difficulties in the expression of some structures in natural languages.

• Some of these difficulties are:

– Agreement

• he flies … * he fly

• I fly .. * I flies

• this book * this books

• those books * those book

– Subcategorization

• * I disappeared the cat. (disappear cannot be followed by a noun phrase)

Some Difficulties in Grammar Development

Natural Language Processing 17

• How can we modify our grammar to handle these agreement phenomena?

• We may expand our with multiple set of rules

– 3SgNP → …

– Non3SgNP → …

• But this will double the size of the grammar.

• A better way to deal with agreement problems without exploding the size of the

grammar by parameterizing each non-terminal with feature structures.

Agreement

Natural Language Processing 18

• A verb phrase may consists of a verb and a number of constituents.

– VP → Verb -- disappear

– VP → Verb NP -- prefer a morning flight

– VP → Verb NP PP -- leave Ankara in the morning

– VP → Verb PP -- leaving on Monday

– VP → Verb S -- You said there is only one flight

• Although a verb phrase can have many possible of constituents, not every verb is

compatible with every verb phrase.

• Verbs have preferences for the kinds of constituents they co-occur with.

– Transitive verbs

– Intransitive verbs

– Modern grammars distinguish too many subcategories (100 subcategories)

SubCategorization

Natural Language Processing 19

Frame Verb Example

 eat, sleep I want to eat

NP prefer I prefer a morning flight

NP NP show Show me all flights from Ankara

PPfrom PPto fly I would like to fly from Ankara to Istanbul

NP PPwith help Can you help me with a flight

VPto prefer I would prefer to go by THY

S mean This means THY has a hub in Istanbul

Some SubCategorization Frames

Natural Language Processing 20

Parsing

Machine Learning 21

• Parsing with a CFG is the task of assigning a correct parse tree (or derivation) to

a string given some grammar.

• The correct means that it is consistent with the input and grammar.

– It doesn’t mean that it’s the “right” tree in global sense of correctness.

• The leaves of the parse tree cover all and only the input, and that parse tree

corresponds to a valid derivation according to the grammar.

• The parsing can be viewed as a search.

– The search space corresponds to the space of parse trees generated by the grammar.

– The search is guided by the structure of space and by the input.

• First, we will look at basic (bad) methods of the parsing.

– After seeing what’s wrong with them, we will look at better methods.

Parsing

Natural Language Processing 22

S → NP VP Det → that | this | a | the

S → Aux NP VP Noun → book | flight | meal | money

S → VP Verb → book | include | prefer

NP → Det NOM Aux → does

NP → ProperNoun Prep → from | to | on

NOM → Noun ProperNoun → Houston | TWA

NOM → Noun NOM

NOM → NOM PP

VP → Verb

VP → Verb NP

PP → Prep NOM

A Simple English Grammar

Natural Language Processing 23

• A top-down parser searches a parse tree by trying to build from the root node S (start

symbol) down to leaves.

• First, we create the root node, then we create its children. We chose one of its children

and then we create its children.

• We can search the search space of the parse trees:

– breadth first search -- level by level search

– depth first search -- first we search one of the children

Basic Top-Down Parsing

Natural Language Processing 24

• Input: Book that flight

A Top-Down Search Space

Natural Language Processing 25

• In bottom-up parsing, the parser starts with the words of input, tries to build parse trees

from words up.

• The parser is successful if the parser succeeds building a parse tree rooted in the start

symbol that covers all of the input.

Basic Bottom-Up Parsing

Natural Language Processing 26

• Input: Book that flight

A Bottom-Up Search Space

Natural Language Processing 27

A Bottom-Up Search Space (cont.)

Natural Language Processing 28

• Each of top-down and bottom-up parsing techniques has its own advantages and

disadvantages.

• The top-down strategy never wastes time exploring trees cannot result in the start

symbol (starts from there).

• On the other hand, bottom-up strategy may waste time in those kind of trees.

• But the top-down strategy spends with trees which are not consistent with the input.

• On the other hand, bottom-up strategy never suggests trees that are not at least locally

grounded in the actual input.

• None of these two basic strategies are good enough to be used in the parsing of natural

languages.

Top-Down or Bottom-Up?

Natural Language Processing 29

• The top-down parser has three problems that make it an insufficient solution to

general-purpose parsing problem.

– Left-Recursion

– Ambiguity

– Inefficient Reparsing of Subtrees

• First we will talk about these three problems.

• Then we will present Earley algorithm to avoid these problems.

Problems with Basic Top-Down Parser

Natural Language Processing 30

• When left-recursive grammars are used, top-down depth-first left-to-right parsers can

dive into an infinite path.

• A grammar is left-recursive if it contains at least one non-terminal A such that:

– A * A

• This kind of structures are common in natural language grammars.

– NP → NP PP

• We can convert a left-recursive grammar into an equivalent grammar which is not left-

recursive.

A → A | ==> A → A’

A’ → A’ |

• Unfortunately, the resulting grammar may no longer be the most grammatically natural

way to represent syntactic structures.

Left-Recursion

Natural Language Processing 31

• Top-down parser is not efficient at handling ambiguity.

• Local ambiguity lead to hypotheses that are locally reasonable but eventually lead

nowhere. They lead to backtracking.

• Global ambiguity potentially leads to multiple parses for the same input (if we force it

to do).

• The parsers without disambiguation tools must simply return all possible parses. But

most of disambiguation tools require statistical and semantic knowledge.

• There will be many unreasonable parses. But most of applications do not want all

possible parses, they want a single correct parse.

• The reason for many unreasonable parses, exponential number of parses are possible

for certain inputs.

Ambiguity

Natural Language Processing 32

• If we add the following rules to our grammar:

– VP → VP PP

– NP → NP PP

• The following input:

– Show me the meal on flight 286 from Ankara to Istanbul.

will have a lot of parses (14 parses?). Some of them are really strange parses.

• If we have

– PP → Prep NP Number of NP parses Number of PPs

2 2

5 3

14 4

132 5

469 6

Ambiguity - Example

Natural Language Processing 33

• The parser often builds valid trees for portion of the input, then discards them during

backtracking, only to find that it has to rebuild them again.

• The parser creates small parse trees that fail because they do not cover all the input.

• The parser backtracks to cover more input, and recreates subtrees again and again.

• The same thing is repeated more than once unnecessarily.

Repeated Parsing of Subtrees

Natural Language Processing 34

• Consider parsing the following NP with the following rules:

a flight from Ankara to Istanbul on THY

NP → Det NOM

NP → NP PP

NP → ProperNoun

• What happens with a top-down parser?

Repeated Parsing of Subtrees (cont.)

Natural Language Processing 35

• a flight from Ankara to Istanbul on THY

• a flight from Ankara to Istanbul on THY

• a flight from Ankara to Istanbul on THY

• a flight from Ankara to Istanbul on THY

a flight is parsed 4 times, from Ankara is parsed 3 times, ...

Repeated Parsing of Subtrees (cont.)

Natural Language Processing 36

• We want a parsing algorithm (using dynamic programming technique) that fills a table

with solutions to sub-problems that:

– Does not do repeated work

– Does top-down search with bottom-up filtering

– Solves the left-recursion problem

– Solves an exponential problem in O(N3) time.

• The answer is Earley Algorithm.

Dynamic Programming

Natural Language Processing 37

Earley Algorithm

Machine Learning 38

• Earley Algorithm fills a table in a single pass over the input.

• The table will be size N+1 where N is the number of words in the input.

• We may think that each table entry, called state, represents gaps between words.

• Each possible subtree is represented only once, and it can be shared by all the parses

that need it.

Earley Algorithm

Natural Language Processing 39

• A state in a table entry contains three kinds of information:

– a subtree corresponding to a single grammar rule

– information about the progress made in completing this subtree

– the position of subtree with respect to the input.

• We use a dot in the state’s grammar rule to indicate the progress made in recognizing

it.

• We call this resulting structure dotted rule.

• A state’s position are represented by two numbers indicating that where the state starts

and where its dot lies.

States

Natural Language Processing 40

• Three example states: (Ex: Book that flight)

– S → • VP, [0,0]

– NP → Det • NOM, [1,2]

– VP → Verb NP •, [0,3]

• The first state represents a top-down prediction for S.

– The first 0 indicates that the constituent predicted by this state should begin at position 0

(beginning of the input).

– The second 0 indicates that the dot lies at position 0.

• The second state represents an in-progress constituent.

– The constituent starts at position 1 and the dot lies at position 2.

• The third state represents a completed constituent.

– This state describes that VP is successfully parsed, and that constituent covers the input

from position 0 to position 3.

States - Dotted Rule

Natural Language Processing 41

• A directed acyclic graph can be in the representation of dotted rules.

Graphical Representations of Dotted Rules

Natural Language Processing 42

• New predicted states are based on existing table entries (predicted or in-progress) that

predict a certain constituent at that spot.

• New in-progress states are created by updating older states to reflect the fact that the

previously expected completed constituents have been located.

• New complete states are created when the dot in an in-progress state moves to the end.

Parsing with Earley Algorithm

Natural Language Processing 43

1. Predict all the states

2. Read an input.

– See what predictions you can match.

– Extend matched states, add new predictions.

– Go to next state (state 2)

3. At the end, see if state[N+1] contains a complete S

More Specifically

Natural Language Processing 44

S → NP VP Det → that | this | a | the

S → Aux NP VP Noun → flight | meal | money

S → VP Verb → book | include | prefer

NP → Det NOM Aux → does

NP → ProperNoun

NOM → Noun ProperNoun → Houston | TWA

NOM → Noun NOM

VP → Verb

VP → Verb NP

A Simple English Grammar (Ex.)

Natural Language Processing 45

 → • S [0,0] Dummy start state

S → • NP VP [0,0] Predictor

NP → • Det NOM [0,0] Predictor

NP → • ProperNoun [0,0] Predictor

S → • Aux NP VP [0,0] Predictor

S → • VP [0,0] Predictor

VP → • Verb [0,0] Predictor

VP → • Verb NP [0,0] Predictor

Example: Chart[0]
book that flight

Natural Language Processing 46

S → NP VP

S →Aux NP VP

S → VP

NP → Det NOM

NP → ProperNoun

NOM → Noun

NOM → Noun NOM

VP → Verb

VP → Verb NP

Verb → book • [0,1] Scanner

VP → Verb • [0,1] Completer

S → VP • [0,1] Completer

VP → Verb • NP [0,1] Completer

NP → • Det NOM [1,1] Predictor

NP → • ProperNoun [1,1] Predictor

Example: Chart[1]
book that flight

Natural Language Processing 47

S → NP VP

S →Aux NP VP

S → VP

NP → Det NOM

NP → ProperNoun

NOM → Noun

NOM → Noun NOM

VP → Verb

VP → Verb NP

Det → that • [1,2] Scanner

NP → Det • NOM [1,2] Completer

NOM → • Noun [2,2] Predictor

NOM → • Noun NOM [2,2] Predictor

Example: Chart[2]
book that flight

Natural Language Processing 48

S → NP VP

S →Aux NP VP

S → VP

NP → Det NOM

NP → ProperNoun

NOM → Noun

NOM → Noun NOM

VP → Verb

VP → Verb NP

Noun → flight • [2,3] Scanner

NOM → Noun • [2,3] Completer

NOM → Noun • NOM [2,3] Completer

NP → Det NOM • [1,3] Completer

VP → Verb NP • [0,3] Completer

S → VP • [0,3] Completer

NOM → • Noun [3,3] Predictor

NOM → • Noun NOM [3,3] Predictor

Example: Chart[3]
book that flight

Natural Language Processing 49

S → NP VP

S →Aux NP VP

S → VP

NP → Det NOM

NP → ProperNoun

NOM → Noun

NOM → Noun NOM

VP → Verb

VP → Verb NP

• The Earley algorithm has three main functions that do all the work.

Predictor:

– Adds predictions into the chart.

– It is activated when the dot (in a state) is in the front of a non-terminal which is not a part of

speech.

Completer:

– Moves the dot to the right when new constituents are found.

– It is activated when the dot is at the end of a state.

Scanner:

– Reads the input words and enters states representing those words into the chart.

– It is activated when the dot (in a state) is in the front of a non-terminal which is a part of

speech.

• The Earley algorithm uses theses functions to maintain the chart.

Earley Algorithm

Natural Language Processing 50

procedure PREDICTOR((A → • B , [i,j]))

for each (B →) in GRAMMAR-RULES-FOR(B,grammar) do

ENQUEUE((B → • , [j,j]), chart[j])

end

Predictor

Natural Language Processing 51

procedure COMPLETER((B → • , [j,k]))

for each (A → • B , [i,j]) in chart[j] do

ENQUEUE((A → B • , [i,k]), chart[k])

end

Completer

Natural Language Processing 52

procedure SCANNER((A → • B , [i,j]))

if (B PARTS-OF-SPEECH(word[j]) then

ENQUEUE((B → word[j] • , [j,j+1]), chart[j+1])

end

Scanner

Natural Language Processing 53

procedure ENQUEUE(state,chart-entry)

if state is not already in chart-entry then

Add state at the end of chart-entry)

end

Enqueue

Natural Language Processing 54

function EARLEY-PARSE(words,grammar) returns chart

ENQUEUE((→ • S, [0,0], chart[0])

for i from 0 to LENGTH(words) do

for each state in chart[i] do

if INCOMPLETE?(state) and NEXT-CAT(state) is not a PS then

PREDICTOR(state)

elseif INCOMPLETE?(state) and NEXT-CAT(state) is a PS then

SCANNER(state)

else

COMPLETER(state)

end

end

return(chart)

Earley Code

Natural Language Processing 55

• To retrieve parse trees from a chart, the representation of each state must be

augmented with an additional field to store information about the completed states that

generated its constituents.

• To collect parse trees, we have to update COMPLETER such that it should add a

pointer to the older state onto the list of previous-states of the new state.

• Then, the parse tree can be created by retrieving these list of previous-states (starting

from the completed state of S).

Retrieving Parse Trees from A Chart

Natural Language Processing 56

S0 → • S [0,0] [] Dummy start state

S1 S → • NP VP [0,0] [] Predictor

S2 NP → • Det NOM [0,0] [] Predictor

S3 NP → • ProperNoun [0,0] [] Predictor

S4 S → • Aux NP VP [0,0] [] Predictor

S5 S → • VP [0,0] [] Predictor

S6 VP → • Verb [0,0] [] Predictor

S7 VP → • Verb NP [0,0] [] Predictor

Chart[0] - with Parse Tree Info

Natural Language Processing 57

S → NP VP

S →Aux NP VP

S → VP

NP → Det NOM

NP → ProperNoun

NOM → Noun

NOM → Noun NOM

VP → Verb

VP → Verb NP

S8 Verb → book • [0,1] [] Scanner

S9 VP → Verb • [0,1] [S8] Completer

S10 S → VP • [0,1] [S9] Completer

S11 VP → Verb • NP [0,1] [S8] Completer

S12 NP → • Det NOM [1,1] [] Predictor

S13 NP → • ProperNoun [1,1] [] Predictor

Chart[1] - with Parse Tree Info

Natural Language Processing 58

S → NP VP

S →Aux NP VP

S → VP

NP → Det NOM

NP → ProperNoun

NOM → Noun

NOM → Noun NOM

VP → Verb

VP → Verb NP

S14 Det → that • [1,2] [] Scanner

S15 NP → Det • NOM [1,2] [S14] Completer

S16 NOM → • Noun [2,2] [] Predictor

S17 NOM → • Noun NOM [2,2] [] Predictor

Chart[2] - with Parse Tree Info

Natural Language Processing 59

S → NP VP

S →Aux NP VP

S → VP

NP → Det NOM

NP → ProperNoun

NOM → Noun

NOM → Noun NOM

VP → Verb

VP → Verb NP

S18 Noun → flight • [2,3] [] Scanner

S19 NOM → Noun • [2,3] [S18] Completer

S20 NOM → Noun • NOM [2,3] [S18] Completer

S21 NP → Det NOM • [1,3] [S14,S19] Completer

S22 VP → Verb NP • [0,3] [S8,S21] Completer

S23 S → VP • [0,3] [S22] Completer

S24 NOM → • Noun [3,3] [] Predictor

S25 NOM → • Noun NOM [3,3] [] Predictor

Chart[3] - with Parse Tree Info

Natural Language Processing 60

S → Verb S → Noun

Chart[0]

S0 → • S [0,0] [] Dummy start state

S1 S → • Verb [0,0] [] Predictor

S2 S → • Noun [0,0] [] Predictor

Chart[1]

S3 Verb → book • [0,1] [] Scanner

S4 Noun → book • [0,1] [] Scanner

S5 S → Verb • [0,1] [S3] Completer

S6 S → Noun • [0,1] [S4] Completer

Global Ambiguity

Natural Language Processing 61

• In many languages, groups of consecutive words act as a group (constituent) can be

modeled by context-free grammars (also known as phrase-structure grammars).

• A context-free grammar consists of a set of rules or productions, expressed over a set

of non-terminal symbols and a set of terminal symbols. Formally, a particular

context-free language is the set of strings that can be derived from a particular.

• Structural ambiguity is a significant problem for parsers. Common sources of

structural ambiguity include PP-attachment.

• Dynamic programming parsing algorithms, such as Earley Parser, use a table of

partial parses to efficiently parse ambiguous sentences.

• Earley Parser algorithm compactly represents all possible parses of the sentence but

doesn’t choose a single best parse.

Summary
CFG and Parsing

Natural Language Processing 62

