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Problem: How do we disambiguate among a set of parses of a given sentence?

– We want to pick the parse tree that corresponds to the correct meaning.

Possible Solutions:

– Pass the problem onto Semantic Processing

– Use a probabilistic model to assign likelihoods to the alternative parse trees and 

select the best one.

• Associating probabilities with the grammar rules gives us such a model.

• The most commonly used probabilistic grammar formalism is the 

probabilistic context-free grammar (PCFG), a probabilistic augmentation 

of context-free grammars in which each rule is associated with a 

probability.

Statistical Parse Disambiguation
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• The simplest augmentation of the context-free grammar is the Probabilistic 

Context-Free Grammar (PCFG), also known as the Stochastic Context-Free 

Grammar (SCFG).

• A PCFG differs from a CFG by augmenting each rule with a conditional probability:

A →  [p]

• Here p expresses the probability that non-terminal A will be expanded to sequence . 

• We can represent this probability as:

P(A →  | A)    or   P(A → ) 

• If we consider all the possible expansions of a non-terminal, the sum of their 

probabilities must be 1:

෍



P(A→ ) = 1

Probabilistic Context-Free Grammars (PCFGs)
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• Associate a probability with each grammar rule.

• The probability reflects relative likelihood of using the rule in generating the LHS 

constituent.

• Assume for a constituent C we have k grammar rules of form C→ i.

• We are interested in calculating  P(C→i|C)  : the probability of using rule i for 

deriving C.

• Such probabilities can be estimated from a corpus of parse trees:

Probabilistic CFGs
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• Attach probabilities to grammar rules

• The expansions for a given non-terminal sum to 1

VP → Verb [.55]

VP → Verb NP [.40]

VP → Verb NP NP [.05]

Probabilistic CFGs
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• Assume that probability of a constituent is independent of context in which it appears 

in the parse tree.

• Probability of a constituent C’ that was constructed from A1’,…,An’  using the rule     

C → A1,…,An is:

P(C’) = P(C→ A1,…,An|C) P(A1’) … P(An’)

• At the leafs of the tree, we use the POS probabilities P(wi|C).

• A derivation (tree) consists of the set of grammar rules that are in the tree

• The probability of a derivation (tree) is just the product of the probabilities of the rules 

in the derivation.

Assigning Probabilities to Parse Trees
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S → NP VP   [ 0.6 ]

S → VP   [ 0.4 ]

NP → Noun [ 1.0 ]

VP → Verb [ 0.3 ]

VP → Verb NP [ 0.7 ]

Noun → book [ 0.2 ]

.

.

Verb → book [ 0.1 ]

Assigning Probabilities to Parse Trees 

(Ex. Grammar)
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• [S [NP [Noun book]] [VP [Verb book]]]

P([Noun book]) = P(Noun→book) = 0.2

P([Verb book]) = P(Verb→book) = 0.1

P([NP [Noun book]]) = P(NP→Noun) P([Noun book]) = 1.0*0.2 = 0.2

P([VP [Verb book]]) = P(VP→Verb) P([Verb book]) = 0.3*0.1 = 0.03

P [S [NP [Noun book]] [VP [Verb book]]])

= P(S→NP VP)*0.2*0.03 = 0.6*0.2*0.03 = 0.0036

• [S [VP [Verb book] [NP [Noun book]]]]

P([VP [Verb book] [NP [Noun book]]]) = P(VP→Verb NP)*0.1*0.2 = 0.7*0.1*0.2 = 0.014

P([S [VP [Verb book] [NP [Noun book]]]]) = P(S→VP)*0.014 = 0.4*.014 = 0.0056

Parse Trees for :  book book
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Example: A PCFG
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Assigning Probabilities to Parse Trees 
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Two parse trees for an ambiguous sentence. The parse on the left 

corresponds to the sensible meaning “Book a flight that serves dinner”, 

while the parse on the right corresponds to the nonsensical meaning 

“Book a flight on behalf of ‘the dinner’ ”



Assigning Probabilities to Parse Trees 
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P(Tle f t ) = .05*.20*.20*.20*.75*.30*.60*.10*.40 

= 2.2x10-6

P(Tright) = .05*.10*.20*.15*.75*.75*.30*.60*.10*.40 

= 6.1x10-7



Poor independence assumptions: Main problem with Probabilistic CFG Model is 

that it does not take contextual effects into account.

• For example, pronouns are much more likely to appear in the subject position of a 

sentence than an object position.

– In Switchboard corpus:

• Unfortunately, there is no way to represent this contextual difference in probabilities in 

a PCFG because rule  NP→Pronoun has only one probability in a PCFG.

– For Switchboard corpus:

– Rule NP→Pronoun should have .91 probability value in subject positions and .34 

probability value in object positions.

Problems with PCFGs
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Lack of Sensitivity to Lexical Dependencies: PCFG rules don’t model syntactic facts 

about specific words, leading to problems with subcategorization ambiguities, 

preposition attachment, and coordinate structure ambiguities.

• Although words play a role in PCFGs since the parse probability includes the 

probability of a word given a part-of-speech, words (lexical information) is NOT used 

to resolve structure ambiguities such as prepositional phrase (PP) attachment 

ambiguities.

– Prepositional phrases can attach to NP or VP nodes.

Problems with PCFGs
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Example: Workers dumped sacks into a bin

Problems with PCFGs
PP attachment ambiguities
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VP Attachment

VP → VBD NP PP

NP Attachment

VP → VBD NP 

NP → NP PP

• Depending on how these probabilities are set, a PCFG will always prefer NP attachment or VP attachment. 

• NP attachment is slightly more common in English, we might always prefer NP attachment, causing us to 

misparse this sentence.

Correct Parse Incorrect Parse



Example: dogs in houses and cats

Problems with PCFGs
Coordination ambiguities
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Correct Parse Incorrect Parse

• Because dogs is semantically a better conjunct for cats than houses (and because most dogs can’t fit

inside cats), the second parse is intuitively unnatural and should be dis-preferred. 

• However these two parses have exactly same PCFG rules, and a PCFG will assign them same probability.



• PCFGs are not able to model structural dependencies such as:

– NPs in subject position tend to be pronouns, whereas NPs in object position tend to have 

full lexical form. 

• How could we augment a PCFG to correctly model this fact?

– One idea to split NP non-terminal into two versions: one for subjects, one for objects.

– Having two nodes (e.g., NPsubject and NPobject) would allow us to correctly model their 

different distributional properties, since we would have different probabilities for the rule 

NPsubject→Pronoun and the rule NPobject→Pronoun .

• One way to implement this intuition of splits is to do parent annotation in which we 

annotate each node with its parent in the parse tree. 

– Thus, an NP node that is the subject of the sentence and hence has parent S would be 

annotated NPˆS, while a direct object NP whose parent is VP would be annotated NPˆVP.

Improving PCFGs by Splitting Non-Terminals
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Improving PCFGs by Splitting Non-Terminals

Natural Language Processing 17

• A standard PCFG parse tree • A parse tree which has parent annotation on 

the nodes which aren’t pre-terminal. 

• All the non-terminal nodes (except the pre-

terminal part-of-speech nodes) in parse have 

been annotated with the identity of their parent.



• We can also improve a PCFG by splitting the pre-terminal part-of-speech nodes. 

– Different kinds of adverbs (RB) tend to occur in different syntactic positions: 

• most common adverbs with ADVP parents are also and now, most common adverbs with VP 

parents are  not, and most common adverbs with NP parents are only and just. 

• Thus, add tags like RBˆADVP, RBˆVP, and RBˆNP to improve PCFG modeling.

Improving PCFGs by Splitting Non-Terminals
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Incorrect Parse even with 

a parent-annotated parse

Correct Parse produced by a 

grammar in which POS nodes 

have been split



• Syntactic constituents can be associated with a lexical head.

• We can define a lexicalized grammar in which each non-terminal grammar is 

annotated with its lexical head.

• In a lexicalized grammar, the rule  VP → VBD NP PP  would be extended as

VP(dumped) → VBD(dumped) NP(sacks) PP(into) 

• In each lexicalized grammar rule, the lexical head of a non-terminal on the left is the 

lexical head of one of the constituents on the right.

Probabilistic Lexicalized CFGs
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• A lexicalized tree

Probabilistic Lexicalized CFGs
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• We can also associate non-terminals with head tags which are POS tags of their head 

words.

• Each rule is lexicalized by both the headword and the head tag of each constituent:

VP(dumped,VBD) → VBD(dumped,VBD) NP(sacks,NNS) PP(into,P)

Probabilistic Lexicalized CFGs
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Probabilistic Lexicalized CFGs
A lexicalized tree, including head tags
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• In PCFGs, we compute probability of a rule  as follows:

– VP → VBD NP PP

– P(VP → VBD NP PP | VP) = count(VP → VBD NP PP)  / count(VP) 

– That’s the count of this rule divided by the number of VPs in a treebank.

• In a lexicalized PCFG, we have to compute probability of a rule  as follows:

– rule: VP(dumped) → VBD(dumped) NP(sacks) PP(into)

– P(rule | VP(dumped)) = count(rule) / count(VP(dumped))

– Not likely to have significant counts in any treebank.

• In a lexicalized PCFG with head tags, we have to compute probability as follows:

– rule: VP(dumped,VBD) → VBD(dumped,VBD) NP(sacks,NNS) PP(into,P)

– P(rule | VP(dumped,VBD)) = count(rule) / count(VP(dumped,VBD))

– Not likely to have significant counts in any treebank.

How to find the probabilities?
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• When we stuck to compute probabilities directly, we exploit independence 

assumptions and collect the statistics using these independence assumptions.

– We can use different independence assumptions. We look at a simple one, but there are 

more complicated ones (Collins Parser in the book).

Independence assumption: Rules only depend on their head non-terminals.

• In a lexicalized PCFG:

– rule: VP(dumped) → VBD(dumped) NP(sacks) PP(into)

– P(rule | VP(dumped)) = count(rule(dumped)) / count(VP(dumped))

– i.e. How many times this ruled used with dumped, divided by the number of VPs that 

dumped appears in total.

• In a lexicalized PCFG with head tags:

– rule: VP(dumped,VBD) → VBD(dumped,VBD) NP(sacks,NNS) PP(into,P)

– P(rule | VP(dumped,VBD)) = count(rule(dumped,VBD)) / count(VP(dumped,VBD))

– i.e. How many times this ruled used with dumped,VBD, divided by the number of VPs that 

dumped,VBD appears in total.

How to find the probabilities?
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• A probabilistic context-free grammar (PCFG) is a context-free grammar in which 

every rule is annotated with the probability of that rule being chosen. 

– Each PCFG rule is treated as if it were conditionally independent; thus, the probability of 

a sentence is computed by multiplying probabilities of each rule in parse of sentence.

• Raw PCFGs suffer from poor independence assumptions among rules and lack of 

sensitivity to lexical dependencies.

– One way to deal with this problem is to split non-terminals.

• Probabilistic lexicalized CFGs are another solution to this problem in which the basic 

PCFG model is augmented with a lexical head for each rule. 

– The probability of a rule can then be conditioned on the lexical head.

Probabilistic Parsing: Summary
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