
Statistical Parsing

Natural Language Processing 1

Problem: How do we disambiguate among a set of parses of a given sentence?

– We want to pick the parse tree that corresponds to the correct meaning.

Possible Solutions:

– Pass the problem onto Semantic Processing

– Use a probabilistic model to assign likelihoods to the alternative parse trees and

select the best one.

• Associating probabilities with the grammar rules gives us such a model.

• The most commonly used probabilistic grammar formalism is the

probabilistic context-free grammar (PCFG), a probabilistic augmentation

of context-free grammars in which each rule is associated with a

probability.

Statistical Parse Disambiguation

Natural Language Processing 2

• The simplest augmentation of the context-free grammar is the Probabilistic

Context-Free Grammar (PCFG), also known as the Stochastic Context-Free

Grammar (SCFG).

• A PCFG differs from a CFG by augmenting each rule with a conditional probability:

A →  [p]

• Here p expresses the probability that non-terminal A will be expanded to sequence .

• We can represent this probability as:

P(A →  | A) or P(A → )

• If we consider all the possible expansions of a non-terminal, the sum of their

probabilities must be 1:

෍



P(A→ ) = 1

Probabilistic Context-Free Grammars (PCFGs)

Natural Language Processing 3

• Associate a probability with each grammar rule.

• The probability reflects relative likelihood of using the rule in generating the LHS

constituent.

• Assume for a constituent C we have k grammar rules of form C→ i.

• We are interested in calculating P(C→i|C) : the probability of using rule i for

deriving C.

• Such probabilities can be estimated from a corpus of parse trees:

Probabilistic CFGs

Natural Language Processing 4

)(

)(

)(

)(
)|(

1

Ccount

Ccount

Ccount

Ccount
CCP i

k

j

j

i
i








→
=

→

→
=→


=

• Attach probabilities to grammar rules

• The expansions for a given non-terminal sum to 1

VP → Verb [.55]

VP → Verb NP [.40]

VP → Verb NP NP [.05]

Probabilistic CFGs

Natural Language Processing 5

• Assume that probability of a constituent is independent of context in which it appears

in the parse tree.

• Probability of a constituent C’ that was constructed from A1’,…,An’ using the rule

C → A1,…,An is:

P(C’) = P(C→ A1,…,An|C) P(A1’) … P(An’)

• At the leafs of the tree, we use the POS probabilities P(wi|C).

• A derivation (tree) consists of the set of grammar rules that are in the tree

• The probability of a derivation (tree) is just the product of the probabilities of the rules

in the derivation.

Assigning Probabilities to Parse Trees

Natural Language Processing 6

S → NP VP [0.6]

S → VP [0.4]

NP → Noun [1.0]

VP → Verb [0.3]

VP → Verb NP [0.7]

Noun → book [0.2]

.

.

Verb → book [0.1]

Assigning Probabilities to Parse Trees

(Ex. Grammar)

Natural Language Processing 7

• [S [NP [Noun book]] [VP [Verb book]]]

P([Noun book]) = P(Noun→book) = 0.2

P([Verb book]) = P(Verb→book) = 0.1

P([NP [Noun book]]) = P(NP→Noun) P([Noun book]) = 1.0*0.2 = 0.2

P([VP [Verb book]]) = P(VP→Verb) P([Verb book]) = 0.3*0.1 = 0.03

P [S [NP [Noun book]] [VP [Verb book]]])

= P(S→NP VP)*0.2*0.03 = 0.6*0.2*0.03 = 0.0036

• [S [VP [Verb book] [NP [Noun book]]]]

P([VP [Verb book] [NP [Noun book]]]) = P(VP→Verb NP)*0.1*0.2 = 0.7*0.1*0.2 = 0.014

P([S [VP [Verb book] [NP [Noun book]]]]) = P(S→VP)*0.014 = 0.4*.014 = 0.0056

Parse Trees for : book book

Natural Language Processing 8

Example: A PCFG

Natural Language Processing 9

Assigning Probabilities to Parse Trees

Natural Language Processing 10

Two parse trees for an ambiguous sentence. The parse on the left

corresponds to the sensible meaning “Book a flight that serves dinner”,

while the parse on the right corresponds to the nonsensical meaning

“Book a flight on behalf of ‘the dinner’ ”

Assigning Probabilities to Parse Trees

Natural Language Processing 11

P(Tle f t) = .05*.20*.20*.20*.75*.30*.60*.10*.40

= 2.2x10-6

P(Tright) = .05*.10*.20*.15*.75*.75*.30*.60*.10*.40

= 6.1x10-7

Poor independence assumptions: Main problem with Probabilistic CFG Model is

that it does not take contextual effects into account.

• For example, pronouns are much more likely to appear in the subject position of a

sentence than an object position.

– In Switchboard corpus:

• Unfortunately, there is no way to represent this contextual difference in probabilities in

a PCFG because rule NP→Pronoun has only one probability in a PCFG.

– For Switchboard corpus:

– Rule NP→Pronoun should have .91 probability value in subject positions and .34

probability value in object positions.

Problems with PCFGs

Natural Language Processing 12

Lack of Sensitivity to Lexical Dependencies: PCFG rules don’t model syntactic facts

about specific words, leading to problems with subcategorization ambiguities,

preposition attachment, and coordinate structure ambiguities.

• Although words play a role in PCFGs since the parse probability includes the

probability of a word given a part-of-speech, words (lexical information) is NOT used

to resolve structure ambiguities such as prepositional phrase (PP) attachment

ambiguities.

– Prepositional phrases can attach to NP or VP nodes.

Problems with PCFGs

Natural Language Processing 13

Example: Workers dumped sacks into a bin

Problems with PCFGs
PP attachment ambiguities

Natural Language Processing 14

VP Attachment

VP → VBD NP PP

NP Attachment

VP → VBD NP

NP → NP PP

• Depending on how these probabilities are set, a PCFG will always prefer NP attachment or VP attachment.

• NP attachment is slightly more common in English, we might always prefer NP attachment, causing us to

misparse this sentence.

Correct Parse Incorrect Parse

Example: dogs in houses and cats

Problems with PCFGs
Coordination ambiguities

Natural Language Processing 15

Correct Parse Incorrect Parse

• Because dogs is semantically a better conjunct for cats than houses (and because most dogs can’t fit

inside cats), the second parse is intuitively unnatural and should be dis-preferred.

• However these two parses have exactly same PCFG rules, and a PCFG will assign them same probability.

• PCFGs are not able to model structural dependencies such as:

– NPs in subject position tend to be pronouns, whereas NPs in object position tend to have

full lexical form.

• How could we augment a PCFG to correctly model this fact?

– One idea to split NP non-terminal into two versions: one for subjects, one for objects.

– Having two nodes (e.g., NPsubject and NPobject) would allow us to correctly model their

different distributional properties, since we would have different probabilities for the rule

NPsubject→Pronoun and the rule NPobject→Pronoun .

• One way to implement this intuition of splits is to do parent annotation in which we

annotate each node with its parent in the parse tree.

– Thus, an NP node that is the subject of the sentence and hence has parent S would be

annotated NPˆS, while a direct object NP whose parent is VP would be annotated NPˆVP.

Improving PCFGs by Splitting Non-Terminals

Natural Language Processing 16

Improving PCFGs by Splitting Non-Terminals

Natural Language Processing 17

• A standard PCFG parse tree • A parse tree which has parent annotation on

the nodes which aren’t pre-terminal.

• All the non-terminal nodes (except the pre-

terminal part-of-speech nodes) in parse have

been annotated with the identity of their parent.

• We can also improve a PCFG by splitting the pre-terminal part-of-speech nodes.

– Different kinds of adverbs (RB) tend to occur in different syntactic positions:

• most common adverbs with ADVP parents are also and now, most common adverbs with VP

parents are not, and most common adverbs with NP parents are only and just.

• Thus, add tags like RBˆADVP, RBˆVP, and RBˆNP to improve PCFG modeling.

Improving PCFGs by Splitting Non-Terminals

Natural Language Processing 18

Incorrect Parse even with

a parent-annotated parse

Correct Parse produced by a

grammar in which POS nodes

have been split

• Syntactic constituents can be associated with a lexical head.

• We can define a lexicalized grammar in which each non-terminal grammar is

annotated with its lexical head.

• In a lexicalized grammar, the rule VP → VBD NP PP would be extended as

VP(dumped) → VBD(dumped) NP(sacks) PP(into)

• In each lexicalized grammar rule, the lexical head of a non-terminal on the left is the

lexical head of one of the constituents on the right.

Probabilistic Lexicalized CFGs

Natural Language Processing 19

• A lexicalized tree

Probabilistic Lexicalized CFGs

Natural Language Processing 20

• We can also associate non-terminals with head tags which are POS tags of their head

words.

• Each rule is lexicalized by both the headword and the head tag of each constituent:

VP(dumped,VBD) → VBD(dumped,VBD) NP(sacks,NNS) PP(into,P)

Probabilistic Lexicalized CFGs

Natural Language Processing 21

Probabilistic Lexicalized CFGs
A lexicalized tree, including head tags

Natural Language Processing 22

• In PCFGs, we compute probability of a rule as follows:

– VP → VBD NP PP

– P(VP → VBD NP PP | VP) = count(VP → VBD NP PP) / count(VP)

– That’s the count of this rule divided by the number of VPs in a treebank.

• In a lexicalized PCFG, we have to compute probability of a rule as follows:

– rule: VP(dumped) → VBD(dumped) NP(sacks) PP(into)

– P(rule | VP(dumped)) = count(rule) / count(VP(dumped))

– Not likely to have significant counts in any treebank.

• In a lexicalized PCFG with head tags, we have to compute probability as follows:

– rule: VP(dumped,VBD) → VBD(dumped,VBD) NP(sacks,NNS) PP(into,P)

– P(rule | VP(dumped,VBD)) = count(rule) / count(VP(dumped,VBD))

– Not likely to have significant counts in any treebank.

How to find the probabilities?

Natural Language Processing 23

• When we stuck to compute probabilities directly, we exploit independence

assumptions and collect the statistics using these independence assumptions.

– We can use different independence assumptions. We look at a simple one, but there are

more complicated ones (Collins Parser in the book).

Independence assumption: Rules only depend on their head non-terminals.

• In a lexicalized PCFG:

– rule: VP(dumped) → VBD(dumped) NP(sacks) PP(into)

– P(rule | VP(dumped)) = count(rule(dumped)) / count(VP(dumped))

– i.e. How many times this ruled used with dumped, divided by the number of VPs that

dumped appears in total.

• In a lexicalized PCFG with head tags:

– rule: VP(dumped,VBD) → VBD(dumped,VBD) NP(sacks,NNS) PP(into,P)

– P(rule | VP(dumped,VBD)) = count(rule(dumped,VBD)) / count(VP(dumped,VBD))

– i.e. How many times this ruled used with dumped,VBD, divided by the number of VPs that

dumped,VBD appears in total.

How to find the probabilities?

Natural Language Processing 24

• A probabilistic context-free grammar (PCFG) is a context-free grammar in which

every rule is annotated with the probability of that rule being chosen.

– Each PCFG rule is treated as if it were conditionally independent; thus, the probability of

a sentence is computed by multiplying probabilities of each rule in parse of sentence.

• Raw PCFGs suffer from poor independence assumptions among rules and lack of

sensitivity to lexical dependencies.

– One way to deal with this problem is to split non-terminals.

• Probabilistic lexicalized CFGs are another solution to this problem in which the basic

PCFG model is augmented with a lexical head for each rule.

– The probability of a rule can then be conditioned on the lexical head.

Probabilistic Parsing: Summary

Natural Language Processing 25

