Statistical Parsing

Statistical Parse Disambiguation

Problem: How do we disambiguate among a set of parses of a given sentence?

- We want to pick the parse tree that corresponds to the correct meaning.

Possible Solutions:

- Pass the problem onto Semantic Processing
- Use a probabilistic model to assign likelihoods to the alternative parse trees and select the best one.
 - Associating probabilities with the grammar rules gives us such a model.
 - The most commonly used probabilistic grammar formalism is the **probabilistic context-free grammar (PCFG)**, a probabilistic augmentation of context-free grammars in which each rule is associated with a probability.

Probabilistic Context-Free Grammars (PCFGs)

- The simplest augmentation of the context-free grammar is the Probabilistic Context-Free Grammar (PCFG), also known as the Stochastic Context-Free Grammar (SCFG).
- A PCFG differs from a CFG by augmenting each rule with a conditional probability: $A \rightarrow \beta$ [p]
- Here p expresses the probability that non-terminal A will be expanded to sequence β .
- We can represent this probability as:

 $P(A \rightarrow \beta \mid A) \text{ or } P(A \rightarrow \beta)$

• If we consider all the possible expansions of a non-terminal, the sum of their probabilities must be 1:

$$\sum_{\beta} P(A \rightarrow \beta) = 1$$

Probabilistic CFGs

- Associate a probability with each grammar rule.
- The probability reflects relative likelihood of using the rule in generating the LHS constituent.
- Assume for a constituent C we have k grammar rules of form $C \rightarrow \alpha_i$.
- We are interested in calculating $P(C \rightarrow \alpha_i | C)$: the probability of using rule i for deriving C.
- Such probabilities can be estimated from a corpus of parse trees:

$$P(C \to \alpha_i \mid C) = \frac{count(C \to \alpha_i)}{\sum_{j=1}^k count(C \to \alpha_j)} = \frac{count(C \to \alpha_i)}{count(C)}$$

Probabilistic CFGs

- Attach probabilities to grammar rules
- The expansions for a given non-terminal sum to 1

$VP \rightarrow Verb$	[.55]
$VP \rightarrow Verb NP$	[.40]
$VP \rightarrow Verb NP NP$	[.05]

Assigning Probabilities to Parse Trees

- Assume that probability of a constituent is independent of context in which it appears in the parse tree.
- Probability of a constituent C' that was constructed from A_1 ',..., A_n ' using the rule $C \rightarrow A_1$,..., A_n is:

 $P(C') = P(C \rightarrow A_1, \dots, A_n | C) P(A_1') \dots P(A_n')$

- At the leafs of the tree, we use the POS probabilities $P(w_i|C)$.
- A derivation (tree) consists of the set of grammar rules that are in the tree
- The probability of a derivation (tree) is just the product of the probabilities of the rules in the derivation.

Assigning Probabilities to Parse Trees (Ex. Grammar)

 $S \rightarrow NP VP \qquad [0.6]$

 $S \rightarrow VP \qquad [0.4]$

 $NP \rightarrow Noun$ [1.0]

- $VP \rightarrow Verb \qquad [0.3]$
- $VP \rightarrow Verb NP \quad [0.7]$

Noun \rightarrow book [0.2]

٠

٠

 $Verb \rightarrow book \qquad [0.1]$

Parse Trees for : book book

• [S [NP [Noun book]] [VP [Verb book]]]

```
P([Noun book]) = P(Noun \rightarrow book) = 0.2
```

 $P([Verb book]) = P(Verb \rightarrow book) = 0.1$

 $P([NP [Noun book]]) = P(NP \rightarrow Noun) P([Noun book]) = 1.0*0.2 = 0.2$

 $P([VP [Verb book]]) = P(VP \rightarrow Verb) P([Verb book]) = 0.3*0.1 = 0.03$

P [S [NP [Noun book]] [VP [Verb book]]])

 $= P(S \rightarrow NP VP) * 0.2 * 0.03 = 0.6 * 0.2 * 0.03 = 0.0036$

• [S [VP [Verb book] [NP [Noun book]]]]

 $P([VP [Verb book] [NP [Noun book]]]) = P(VP \rightarrow Verb NP)*0.1*0.2 = 0.7*0.1*0.2 = 0.014$ $P([S [VP [Verb book] [NP [Noun book]]]]) = P(S \rightarrow VP)*0.014 = 0.4*.014 = 0.0056$

Example: A PCFG

Grammar		Lexicon
$S \rightarrow NP VP$	[.80]	$Det \rightarrow that [.10] \mid a [.30] \mid the [.60]$
$S \rightarrow Aux NP VP$	[.15]	Noun \rightarrow book [.10] flight [.30]
$S \rightarrow VP$	[.05]	meal [.05] money [.05]
$NP \rightarrow Pronoun$	[.35]	flight [.40] dinner [.10]
$NP \rightarrow Proper-Noun$	[.30]	Verb \rightarrow book [.30] include [.30]
$NP \rightarrow Det Nominal$	[.20]	<i>prefer</i> [.40]
$NP \rightarrow Nominal$	[.15]	Pronoun $\rightarrow I[.40]$ she [.05]
Nominal \rightarrow Noun	[.75]	<i>me</i> [.15] <i>you</i> [.40]
$Nominal \rightarrow Nominal Noun$	[.20]	Proper-Noun \rightarrow Houston [.60]
Nominal \rightarrow Nominal PP	[.05]	NWA [.40]
$VP \rightarrow Verb$	[.35]	$Aux \rightarrow does [.60] \mid can [40]$
$VP \rightarrow Verb NP$	[.20]	Preposition \rightarrow from [.30] to [.30]
$VP \rightarrow Verb NP PP$	[.10]	on [.20] near [.15]
$VP \rightarrow Verb PP$	[.15]	through [.05]
$VP \rightarrow Verb NP NP$	[.05]	
$VP \rightarrow VP PP$	[.15]	
$PP \rightarrow Preposition NP$	[1.0]	

Assigning Probabilities to Parse Trees

"Book a flight on behalf of 'the dinner'"

Assigning Probabilities to Parse Trees

		R	ules	Р
VP	S	\rightarrow	VP	.05
\frown	VP	\rightarrow	Verb NP	.20
Verb NP	NP	\rightarrow	Det Nominal	.20
	Nominal	\rightarrow	Nominal Noun	.20
Book Det Nominal	Nominal	\rightarrow	Noun	.75
the Nominal Noun	Verb	\rightarrow	book	.30
	Det	\rightarrow	the	.60
Noun <i>flight</i>	Noun	\rightarrow	dinner	.10
	Noun	\rightarrow	flight	.40
dinner			-	

S		Ru	iles	Р
	S	\rightarrow	VP	.05
VP	VP	\rightarrow	Verb NP NP	.10
Verb NP NP	NP	\rightarrow	Det Nominal	.20
	NP	\rightarrow	Nominal	.15
Book Det Nominal Nominal	Nominal	\rightarrow	Noun	.75
	Nominal	\rightarrow	Noun	.75
the Noun Noun	Verb	\rightarrow	book	.30
	Det	\rightarrow	the	.60
dinner flight	Noun	\rightarrow	dinner	.10
2.0	Noun	\rightarrow	flight	.40

 $P(T_{left}) = .05*.20*.20*.20*.75*.30*.60*.10*.40$ = 2.2x10⁻⁶ $P(T_{right}) = .05*.10*.20*.15*.75*.75*.30*.60*.10*.40$ = 6.1x10⁻⁷

Poor independence assumptions: Main problem with Probabilistic CFG Model is that it does not take contextual effects into account.

- For example, pronouns are much more likely to appear in the subject position of a sentence than an object position.
 - In *Switchboard* corpus:

		Non-Pronoun
Subject	91%	9%
Subject Object	34%	66%

- Unfortunately, there is no way to represent this contextual difference in probabilities in a PCFG because rule $NP \rightarrow Pronoun$ has only one probability in a PCFG.
 - For *Switchboard* corpus:
 - Rule NP→Pronoun should have .91 probability value in subject positions and .34 probability value in object positions.

Lack of Sensitivity to Lexical Dependencies: PCFG rules don't model syntactic facts about specific words, leading to problems with subcategorization ambiguities, preposition attachment, and coordinate structure ambiguities.

- Although words play a role in PCFGs since the parse probability includes the probability of a word given a part-of-speech, words (lexical information) is NOT used to resolve structure ambiguities such as prepositional phrase (PP) attachment ambiguities.
 - Prepositional phrases can attach to NP or VP nodes.

PP attachment ambiguities

- Depending on how these probabilities are set, a PCFG will always prefer NP attachment or VP attachment.
- NP attachment is slightly more common in English, we might always prefer NP attachment, causing us to misparse this sentence.

Coordination ambiguities

Example: dogs in houses and cats

- Because *dogs* is semantically a better conjunct for *cats* than *houses* (and because most *dogs* can't fit inside *cats*), the second parse is intuitively unnatural and should be dis-preferred.
- However these two parses have exactly same PCFG rules, and a PCFG will assign them same probability.

Improving PCFGs by Splitting Non-Terminals

- PCFGs are not able to model structural dependencies such as:
 - NPs in subject position tend to be pronouns, whereas NPs in object position tend to have full lexical form.
- How could we augment a PCFG to correctly model this fact?
 - One idea to **split** NP non-terminal into two versions: one for subjects, one for objects.
 - Having two nodes (e.g., $NP_{subject}$ and NP_{object}) would allow us to correctly model their different distributional properties, since we would have different probabilities for the rule $NP_{subject}$ ->Pronoun and the rule NP_{object} ->Pronoun .
- One way to implement this intuition of splits is to do **parent annotation** in which we annotate each node with its parent in the parse tree.
 - Thus, an NP node that is the subject of the sentence and hence has parent S would be annotated NP^S, while a direct object NP whose parent is VP would be annotated NP^{VP}.

Improving PCFGs by Splitting Non-Terminals

• A standard PCFG parse tree

- A parse tree which has **parent annotation** on the nodes which aren't pre-terminal.
- All the non-terminal nodes (except the preterminal part-of-speech nodes) in parse have been annotated with the identity of their parent.

Improving PCFGs by Splitting Non-Terminals

- We can also improve a PCFG by splitting the pre-terminal part-of-speech nodes.
 - Different kinds of adverbs (RB) tend to occur in different syntactic positions:
 - most common adverbs with ADVP parents are *also* and *now*, most common adverbs with VP parents are *not*, and most common adverbs with NP parents are *only* and *just*.
 - Thus, add tags like RB^{ADVP}, RB^{VP}, and RB^{NP} to improve PCFG modeling.

- Syntactic constituents can be associated with a lexical head.
- We can define a **lexicalized grammar** in which each non-terminal grammar is annotated with its **lexical head.**
- In a lexicalized grammar, the rule $VP \rightarrow VBD NP PP$ would be extended as $VP(dumped) \rightarrow VBD(dumped) NP(sacks) PP(into)$
- In each lexicalized grammar rule, the lexical head of a non-terminal on the left is the lexical head of one of the constituents on the right.

• A lexicalized tree

- We can also associate non-terminals with **head tags** which are POS tags of their head words.
- Each rule is lexicalized by both the headword and the head tag of each constituent: VP(dumped,VBD) → VBD(dumped,VBD) NP(sacks,NNS) PP(into,P)

A lexicalized tree, including head tags

How to find the probabilities?

- In PCFGs, we compute probability of a rule as follows:
 - $VP \rightarrow VBD NP PP$
 - $P(VP \rightarrow VBD NP PP | VP) = count(VP \rightarrow VBD NP PP) / count(VP)$
 - That's the count of this rule divided by the number of VPs in a treebank.
- In a lexicalized PCFG, we have to compute probability of a rule as follows:
 - rule: VP(dumped) \rightarrow VBD(dumped) NP(sacks) PP(into)
 - P(rule | VP(dumped)) = count(rule) / count(VP(dumped))
 - Not likely to have significant counts in any treebank.
- In a lexicalized PCFG with head tags, we have to compute probability as follows:
 - rule: VP(dumped,VBD) \rightarrow VBD(dumped,VBD) NP(sacks,NNS) PP(into,P)
 - P(rule | VP(dumped,VBD)) = count(rule) / count(VP(dumped,VBD))
 - Not likely to have significant counts in any treebank.

How to find the probabilities?

- When we stuck to compute probabilities directly, we exploit independence assumptions and collect the statistics using these independence assumptions.
 - We can use different independence assumptions. We look at a simple one, but there are more complicated ones (Collins Parser in the book).

Independence assumption: Rules only depend on their head non-terminals.

- In a lexicalized PCFG:
 - rule: VP(dumped) \rightarrow VBD(dumped) NP(sacks) PP(into)
 - P(rule | VP(dumped)) = count(rule(dumped)) / count(VP(dumped))
 - i.e. How many times this ruled used with dumped, divided by the number of VPs that dumped appears in total.
- In a lexicalized PCFG with head tags:
 - rule: VP(dumped,VBD) \rightarrow VBD(dumped,VBD) NP(sacks,NNS) PP(into,P)
 - P(rule | VP(dumped,VBD)) = count(rule(dumped,VBD)) / count(VP(dumped,VBD))
 - i.e. How many times this ruled used with dumped, VBD, divided by the number of VPs that dumped, VBD appears in total.

Probabilistic Parsing: Summary

- A **probabilistic context-free grammar (PCFG)** is a context-free grammar in which every rule is annotated with the probability of that rule being chosen.
 - Each PCFG rule is treated as if it were **conditionally independent**; thus, the probability of a sentence is computed by multiplying probabilities of each rule in parse of sentence.
- Raw PCFGs suffer from **poor independence assumptions** among rules and **lack of sensitivity to lexical dependencies**.
 - One way to deal with this problem is to **split** non-terminals.
- **Probabilistic lexicalized CFGs** are another solution to this problem in which the basic PCFG model is augmented with a lexical head for each rule.
 - The probability of a rule can then be conditioned on the lexical head.