Statistical Parsing

Statistical Parse Disambiguation

Problem: How do we disambiguate among a set of parses of a given sentence?

- We want to pick the parse tree that corresponds to the correct meaning.

Possible Solutions:

- Pass the problem onto Semantic Processing
- Use a probabilistic model to assign likelihoods to the alternative parse trees and select the best one.
- Associating probabilities with the grammar rules gives us such a model.
- The most commonly used probabilistic grammar formalism is the probabilistic context-free grammar (PCFG), a probabilistic augmentation of context-free grammars in which each rule is associated with a probability.

Probabilistic Context-Free Grammars (PCFGs)

- The simplest augmentation of the context-free grammar is the Probabilistic Context-Free Grammar (PCFG), also known as the Stochastic Context-Free Grammar (SCFG).
- A PCFG differs from a CFG by augmenting each rule with a conditional probability:

$$
A \rightarrow \beta \quad[p]
$$

- Here p expresses the probability that non-terminal A will be expanded to sequence β.
- We can represent this probability as:

$$
\mathrm{P}(\mathrm{~A} \rightarrow \beta \mid \mathrm{A}) \quad \text { or } \mathrm{P}(\mathrm{~A} \rightarrow \beta)
$$

- If we consider all the possible expansions of a non-terminal, the sum of their probabilities must be 1 :

$$
\sum_{\beta} \mathrm{P}(\mathrm{~A} \rightarrow \beta)=1
$$

Probabilistic CFGs

- Associate a probability with each grammar rule.
- The probability reflects relative likelihood of using the rule in generating the LHS constituent.
- Assume for a constituent C we have k grammar rules of form $\mathrm{C} \rightarrow \alpha_{i}$.
- We are interested in calculating $\mathrm{P}\left(\mathrm{C} \rightarrow \alpha_{\mathrm{i}} \mid \mathrm{C}\right)$: the probability of using rule i for deriving C .
- Such probabilities can be estimated from a corpus of parse trees:

$$
P\left(C \rightarrow \alpha_{i} \mid C\right)=\frac{\operatorname{count}\left(C \rightarrow \alpha_{i}\right)}{\sum_{j=1}^{k} \operatorname{count}\left(C \rightarrow \alpha_{j}\right)}=\frac{\operatorname{count}\left(C \rightarrow \alpha_{i}\right)}{\operatorname{count}(C)}
$$

Probabilistic CFGs

- Attach probabilities to grammar rules
- The expansions for a given non-terminal sum to 1

$\mathrm{VP} \rightarrow$ Verb	$[.55]$
$\mathrm{VP} \rightarrow$ Verb NP	$[.40]$
$\mathrm{VP} \rightarrow$ Verb NP NP	$[.05]$

Assigning Probabilities to Parse Trees

- Assume that probability of a constituent is independent of context in which it appears in the parse tree.
- Probability of a constituent C^{\prime} that was constructed from $\mathrm{A}_{1}{ }^{\prime}, \ldots, \mathrm{A}_{\mathrm{n}}{ }^{\prime}$ using the rule $\mathrm{C} \rightarrow \mathrm{A}_{1}, \ldots, \mathrm{~A}_{\mathrm{n}}$ is:

$$
\mathrm{P}\left(\mathrm{C}^{\prime}\right)=\mathrm{P}\left(\mathrm{C} \rightarrow \mathrm{~A}_{1}, \ldots, \mathrm{~A}_{\mathrm{n}} \mid \mathrm{C}\right) \mathrm{P}\left(\mathrm{~A}_{1}{ }^{\prime}\right) \ldots \mathrm{P}\left(\mathrm{~A}_{\mathrm{n}}{ }^{\prime}\right)
$$

- At the leafs of the tree, we use the POS probabilities $\mathrm{P}\left(\mathrm{w}_{\mathrm{i}} \mid \mathrm{C}\right)$.
- A derivation (tree) consists of the set of grammar rules that are in the tree
- The probability of a derivation (tree) is just the product of the probabilities of the rules in the derivation.

Assigning Probabilities to Parse Trees (Ex. Grammar)

$\mathrm{S} \rightarrow \mathrm{NP}$ VP	$[0.6]$
$\mathrm{S} \rightarrow \mathrm{VP}$	$[0.4]$
$\mathrm{NP} \rightarrow$ Noun	$[1.0]$
$\mathrm{VP} \rightarrow$ Verb	$[0.3]$
$\mathrm{VP} \rightarrow$ Verb NP	$[0.7]$
Noun \rightarrow book	$[0.2]$
\cdot	
\cdot	
Verb \rightarrow book	$[0.1]$

Parse Trees for : book book

- [S [NP [Noun book]] [VP [Verb book]]]
$\mathrm{P}([$ Noun book $])=\mathrm{P}($ Noun \rightarrow book $)=0.1$
$\mathrm{P}([$ Verb book $])=\mathrm{P}($ Verb \rightarrow book $)=0.2$
$\mathrm{P}([\mathrm{NP}[$ Noun book $]])=\mathrm{P}(\mathrm{NP} \rightarrow$ Noun $) \mathrm{P}([$ Noun book $])=1.0 * 0.1=0.1$
$\mathrm{P}([\mathrm{VP}[$ Verb book $]])=\mathrm{P}(\mathrm{VP} \rightarrow$ Verb $) \mathrm{P}([$ Verb book $])=0.3^{*} 0.2=0.06$
P [S [NP [Noun book]] [VP [Verb book]]])
$=P(S \rightarrow N P V P) * 0.1 * 0.06=0.6 * 0.1 * 0.06=0.0036$
- [S [VP [Verb book] [NP [Noun book]]]]
$\mathrm{P}([\mathrm{VP}[$ Verb book] [NP [Noun book]]] $)=\mathrm{P}(\mathrm{VP} \rightarrow$ Verb NP $) * 0.2 * 0.1=0.7 * 0.2 * 0.1=0.014$ $\mathbf{P}([\mathrm{S}[\mathrm{VP}[$ Verb book $][\mathrm{NP}[$ Noun book $]]]])=\mathbf{P}(\mathbf{S} \rightarrow \mathbf{V P}) * \mathbf{0 . 0 1 4}=\mathbf{0 . 4} \mathbf{4}^{*} .014=0.0056$

Example: A PCFG

Grammar		Lexicon	
$S \rightarrow N P V P$	[.80]	Det \rightarrow that [.10] \| a [.30] \| the [.60]	
$S \rightarrow A u x N P V P$	[.15]	Noun \rightarrow book [.10] \| flight [.30]	
$S \rightarrow V P$	[.05]	\mid meal [.05] \| money [.05]	
$N P \rightarrow$ Pronoun	[.35]	\| flight [.40]	dinner [.10]
$N P \rightarrow$ Proper-Noun	[.30]	Verb \rightarrow book [.30] \| include [.30]	
$N P \rightarrow$ Det Nominal	[.20]	\| prefer [.40]	
$N P \rightarrow$ Nominal	[.15]	Pronoun $\rightarrow I[.40] \mid$ she [.05]	
Nominal \rightarrow Noun	[.75]	\| me [.15]	you [.40]
Nominal \rightarrow Nominal Noun	[.20]	Proper-Noun \rightarrow Houston [.60]	
Nominal \rightarrow Nominal PP	[.05]	\| NWA [.40]	
$V P \rightarrow$ Verb	[.35]	Aux \rightarrow does [.60] \| can [40]	
$V P \rightarrow$ Verb $N P$	[.20]	Preposition \rightarrow from [.30]\| to 0.30$]$	
$V P \rightarrow V$ Verb NP PP	[.10]	\| on [.20]	near [.15]
$V P \rightarrow$ Verb $P P$	[.15]	\| through [.05]	
$V P \rightarrow V$ Verb NPNP	[.05]		
$V P \rightarrow V P P P$	[.15]		
$P P \rightarrow$ Preposition $N P$	[1.0]		

Assigning Probabilities to Parse Trees

dinner Two parse trees for an ambiguous sentence. The parse on the left corresponds to the sensible meaning "Book a flight that serves dinner", while the parse on the right corresponds to the nonsensical meaning "Book a flight on behalf of 'the dinner" "

Assigning Probabilities to Parse Trees

$P\left(T_{\text {le ft }}\right)=.05 * .20 * .20 * .20^{*} .75 * .30^{*} .60 * .10 * .40$ $=2.2 \times 10^{-6}$

	Rules	P
S	\rightarrow VP	.05
VP	\rightarrow Verb NP NP	.10
NP	\rightarrow Det Nominal	.20
NP	\rightarrow Nominal	.15
Nominal	\rightarrow Noun	.75
Nominal	\rightarrow Noun	.75
Verb	\rightarrow book	.30
Det	\rightarrow the	.60
Noun	\rightarrow dinner	.10
Noun	\rightarrow flight	.40

$$
\begin{aligned}
\mathbf{P}\left(\mathbf{T}_{\text {right }}\right) & =.05^{*} .10^{*} \cdot 20^{*} .15^{*} \cdot .75^{*} \cdot 75^{*} .30^{*} .60^{*} .10^{*} .40 \\
& =6.1 \times 10^{-7}
\end{aligned}
$$

Problems with PCFGs

Poor independence assumptions: Main problem with Probabilistic CFG Model is that it does not take contextual effects into account.

- For example, pronouns are much more likely to appear in the subject position of a sentence than an object position.
- In Switchboard corpus:

	Pronoun Non-Pronoun	
Subject	91%	9%
Object	34%	66%

- Unfortunately, there is no way to represent this contextual difference in probabilities in a PCFG because rule $\mathbf{N P} \rightarrow$ Pronoun has only one probability in a PCFG.
- For Switchboard corpus:
- Rule NP \rightarrow Pronoun should have .91 probability value in subject positions and .34 probability value in object positions.

Problems with PCFGs

Lack of Sensitivity to Lexical Dependencies: PCFG rules don't model syntactic facts about specific words, leading to problems with subcategorization ambiguities, preposition attachment, and coordinate structure ambiguities.

- Although words play a role in PCFGs since the parse probability includes the probability of a word given a part-of-speech, words (lexical information) is NOT used to resolve structure ambiguities such as prepositional phrase (PP) attachment ambiguities.
- Prepositional phrases can attach to NP or VP nodes.

Problems with PCFGs

PP attachment ambiguities

Example: Workers dumped sacks into a bin

- Depending on how these probabilities are set, a PCFG will always prefer NP attachment or VP attachment.
- NP attachment is slightly more common in English, we might always prefer NP attachment, causing us to misparse this sentence.

Problems with PCFGs

Coordination ambiguities

Example: dogs in houses and cats

- Because dogs is semantically a better conjunct for cats than houses (and because most dogs can't fit inside cats), the second parse is intuitively unnatural and should be dis-preferred.
- However these two parses have exactly same PCFG rules, and a PCFG will assign them same probability.

Improving PCFGs by Splitting Non-Terminals

- PCFGs are not able to model structural dependencies such as:
- NPs in subject position tend to be pronouns, whereas NPs in object position tend to have full lexical form.
- How could we augment a PCFG to correctly model this fact?
- One idea to split NP non-terminal into two versions: one for subjects, one for objects.
- Having two nodes (e.g., $\mathbf{N P}_{\text {subject }}$ and $\mathbf{N P}_{\text {object }}$) would allow us to correctly model their different distributional properties, since we would have different probabilities for the rule $\mathbf{N P}_{\text {subject }} \rightarrow$ Pronoun and the rule $\mathbf{N P}_{\text {object }} \rightarrow$ Pronoun .
- One way to implement this intuition of splits is to do parent annotation in which we annotate each node with its parent in the parse tree.
- Thus, an NP node that is the subject of the sentence and hence has parent S would be annotated NP ${ }^{\wedge} \mathbf{S}$, while a direct object NP whose parent is VP would be annotated NP ${ }^{\wedge} \mathbf{V P}$.

Improving PCFGs by Splitting Non-Terminals

- A standard PCFG parse tree

- A parse tree which has parent annotation on the nodes which aren't pre-terminal.
- All the non-terminal nodes (except the preterminal part-of-speech nodes) in parse have been annotated with the identity of their parent.

Improving PCFGs by Splitting Non-Terminals

- We can also improve a PCFG by splitting the pre-terminal part-of-speech nodes.
- Different kinds of adverbs (RB) tend to occur in different syntactic positions:
- most common adverbs with ADVP parents are also and now, most common adverbs with VP parents are not, and most common adverbs with NP parents are only and just.
- Thus, add tags like RB^ADVP, RB^VP, and RB^NP to improve PCFG modeling.

Probabilistic Lexicalized CFGs

- Syntactic constituents can be associated with a lexical head.
- We can define a lexicalized grammar in which each non-terminal grammar is annotated with its lexical head.
- In a lexicalized grammar, the rule VP \rightarrow VBD NP PP would be extended as

$$
\mathrm{VP}(\text { dumped }) \rightarrow \mathrm{VBD}(\text { dumped }) \mathrm{NP}(\text { sacks }) \mathrm{PP} \text { (into) }
$$

- In each lexicalized grammar rule, the lexical head of a non-terminal on the left is the lexical head of one of the constituents on the right.

Probabilistic Lexicalized CFGs

- A lexicalized tree

Probabilistic Lexicalized CFGs

- We can also associate non-terminals with head tags which are POS tags of their head words.
- Each rule is lexicalized by both the headword and the head tag of each constituent:

$$
\mathrm{VP}(\text { dumped, VBD }) \rightarrow \mathrm{VBD}(\text { dumped,VBD }) \mathrm{NP}(\text { sacks,NNS }) \mathrm{PP}(\text { into, } \mathrm{P})
$$

Probabilistic Lexicalized CFGs
 A lexicalized tree, including head tags

Internal Rules			Lexical Rules		
TOP	\rightarrow	S(dumped,VBD)		NNS(workers,NNS)	\rightarrow workers
S(dumped,VBD)	\rightarrow	NP(workers,NNS)	VP(dumped,VBD)	VBD(dumped,VBD)	\rightarrow dumped
NP(workers,NNS)	\rightarrow	NNS(workers,NNS)		NNS(sacks,NNS)	\rightarrow sacks
VP(dumped,VBD)	\rightarrow	VBD(dumped, VBD)	NP(sacks,NNS)	PP(into,P)	P(into,P)
PP(into,P)	\rightarrow	P(into,P)	NP(bin,NN)	into	
NP(bin,NN)	\rightarrow	DT(a,DT)	NN(bin,NN)	NN(bin,NN)	\rightarrow a

How to find the probabilities?

- In PCFGs, we compute probability of a rule as follows:
- VP \rightarrow VBD NP PP
$-\mathrm{P}(\mathrm{VP} \rightarrow \mathrm{VBD}$ NP PP $\mid \mathrm{VP})=\operatorname{count}(\mathrm{VP} \rightarrow \mathrm{VBD} N P \mathrm{PP}) / \operatorname{count}(\mathrm{VP})$
- That's the count of this rule divided by the number of VPs in a treebank.
- In a lexicalized PCFG, we have to compute probability of a rule as follows:
- rule: VP (dumped) $\rightarrow \mathrm{VBD}$ (dumped) NP (sacks) PP (into)
- $\mathrm{P}($ rule $\mid \mathrm{VP}($ dumped $))=$ count(rule) $/ \operatorname{count}(\mathrm{VP}($ dumped $))$
- Not likely to have significant counts in any treebank.
- In a lexicalized PCFG with head tags, we have to compute probability as follows:
- rule: VP(dumped,VBD) \rightarrow VBD(dumped,VBD) NP(sacks,NNS) PP(into,P)
- $\mathrm{P}($ rule $\mid \mathrm{VP}($ dumped, VBD$))=\operatorname{count(rule)} / \operatorname{count}(\mathrm{VP}($ dumped, VBD $))$
- Not likely to have significant counts in any treebank.

How to find the probabilities?

- When we stuck to compute probabilities directly, we exploit independence assumptions and collect the statistics using these independence assumptions.
- We can use different independence assumptions. We look at a simple one, but there are more complicated ones (Collins Parser in the book).

Independence assumption: Rules only depend on their head non-terminals.

- In a lexicalized PCFG:
- rule: VP (dumped) $\rightarrow \mathrm{VBD}$ (dumped) NP (sacks) PP (into)
- $\mathrm{P}($ rule $\mid \mathrm{VP}($ dumped $))=\operatorname{count}($ rule(dumped) $) / \operatorname{count}(\mathrm{VP}($ dumped $))$
- i.e. How many times this ruled used with dumped, divided by the number of VPs that dumped appears in total.
- In a lexicalized PCFG with head tags:
- rule: $\mathrm{VP}($ dumped, VBD$) \rightarrow \mathrm{VBD}($ dumped, VBD) $\mathrm{NP}($ sacks,NNS) PP (into, P)
$-\mathrm{P}($ rule $\mid \mathrm{VP}($ dumped, VBD $))=$ count(rule(dumped,VBD)) $/ \operatorname{count(VP(dumped,VBD))~}$
- i.e. How many times this ruled used with dumped,VBD, divided by the number of VPs that dumped, VBD appears in total.

Probabilistic Parsing: Summary

- A probabilistic context-free grammar (PCFG) is a context-free grammar in which every rule is annotated with the probability of that rule being chosen.
- Each PCFG rule is treated as if it were conditionally independent; thus, the probability of a sentence is computed by multiplying probabilities of each rule in parse of sentence.
- Raw PCFGs suffer from poor independence assumptions among rules and lack of sensitivity to lexical dependencies.
- One way to deal with this problem is to split non-terminals.
- Probabilistic lexicalized CFGs are another solution to this problem in which the basic PCFG model is augmented with a lexical head for each rule.
- The probability of a rule can then be conditioned on the lexical head.

