Statistical Parsing

Statistical Parse Disambiguation

Problem: How do we disambiguate among a set of parses of a given sentence?

— We want to pick the parse tree that corresponds to the correct meaning.

Possible Solutions:
— Pass the problem onto Semantic Processing

— Use a probabilistic model to assign likelihoods to the alternative parse trees and
select the best one.

 Associating probabilities with the grammar rules gives us such a model.

« The most commonly used probabilistic grammar formalism is the
probabilistic context-free grammar (PCFG), a probabilistic augmentation

of context-free grammars in which each rule is associated with a
probability.

Natural Language Processing

Probabilistic Context-Free Grammars (PCFGs)

The simplest augmentation of the context-free grammar is the Probabilistic
Context-Free Grammar (PCFG), also known as the Stochastic Context-Free
Grammar (SCFG).

A PCFG differs from a CFG by augmenting each rule with a conditional probability:

A—pB [p]
Here p expresses the probability that non-terminal A will be expanded to sequence 3.

We can represent this probability as:
PA—>B|A) or P(A—p)

If we consider all the possible expansions of a non-terminal, the sum of their
probabilities must be 1:

ZP(A—) B) = 1
B

Natural Language Processing

Probabilistic CFGs

Associate a probability with each grammar rule.

The probability reflects relative likelihood of using the rule in generating the LHS
constituent.

Assume for a constituent C we have k grammar rules of form C— a.

We are interested in calculating P(C— o|C) : the probability of using rule i for
deriving C.

Such probabilities can be estimated from a corpus of parse trees:

count(C - ¢«;) count(C — ¢;)

PC=alC)=5 count(C)

> count(C - «;)

=1

Natural Language Processing

Probabilistic CFGs

 Attach probabilities to grammar rules

« The expansions for a given non-terminal sum to 1

VP = Verb [55
VP — Verb NP A0
VP — Verb NP NP .05

Natural Language Processing

Assigning Probabilities to Parse Trees

Assume that probability of a constituent is independent of context in which it appears
In the parse tree.

Probability of a constituent C’ that was constructed from A,’,...,A,” using the rule
C—oAL..LA, IS

P(C’)=P(C— A,,...,AC) P(A,’) ... P(A,))

At the leafs of the tree, we use the POS probabilities P(w;|C).
A derivation (tree) consists of the set of grammar rules that are in the tree

The probability of a derivation (tree) is just the product of the probabilities of the rules
In the derivation.

Natural Language Processing 6

Assigning Probabilities to Parse Trees
(Ex. Grammar)

S — NP VP [0.6]
S > VP [0.4]

NP — Noun [1.0]

VP — Verb [0.3]
VP —> Verb NP [0.7]

Noun — book [0.2]

Verb — book [0.1]

Natural Language Processing

Parse Trees for : book book

[S [NP [Noun book]] [VP [Verb book]]]
P([Noun book]) = P(Noun—book) = 0.1
P([Verb book]) = P(Verb—book) = 0.2
P([NP [Noun book]]) = P(NP—Noun) P([Noun book]) = 1.0*0.1 = 0.1
P([VP [Verb book]]) = P(VP—Verb) P([Verb book]) = 0.3*0.2 = 0.06
P [S [NP [Noun book]] [VP [Verb book]]])

= P(S—NP VP)*0.1*0.06 = 0.6*0.1*0.06 = 0.0036

[S [VP [Verb book] [NP [Noun book]]]]

P([VP [Verb book] [NP [Noun book]]]) = P(VP—Verb NP)*0.2*0.1 = 0.7*0.2*0.1 = 0.014
P([S [VP [Verb book] [NP [Noun book]]]]) = P(S—VP)*0.014 = 0.4*.014 = 0.0056

Natural Language Processing

Example: A PCFG

Grammar Lexicon
S — NPVP .80] Det — that [.10] | a [.30] | the [.60]
S — Aux NP VP 15] Noun — book [.10] | flight [.30]
S — VP .05] meal [.05] | money [.05]
NP — Pronoun .35] flight [.40] | dinner [.10]
NP — Proper-Noun .30] Verb — book [.30] | include [.30]
NP — Det Nominal 20] prefer [.40]
NP — Nominal 15] Pronoun — 1[.40] | she [.05]
Nominal — Noun 5] me [.15] | you [.40]
Nominal — Nominal Noun [.20 Proper-Noun — Houston [.60]
Nominal — Nominal PP [.05] NWA [.40]
VP — Verb .35] Aux — does [.60] | can [40]
VP — Verb NP 20] Preposition — from [.30] | to [.30]
VP — Verb NP PP 10] | on[.20] | near [.15]
VP — Verb PP 15] | through [.05]
VP — Verb NP NP .05]
VP — VP PP 15]
PP — Preposition NP 1.0

Natural Language Processing

Assigning Probabilities to Parse Trees

S S
VP
/\ T
] ~—
.-i‘"_--- "II 5-5"'--_
Verb Verb NP NP
Book Det Nominal Book Det Nominal Nominal
the Nominal Noun the Noun Noun
Noun flight dinner fight
dinner Two parse trees for an ambiguous sentence. The parse on the left

corresponds to the sensible meaning “Book a flight that serves dinner”,
while the parse on the right corresponds to the nonsensical meaning

“Book a flight on behalf of ‘the dinner’”

Natural Language Processing

Assigning Probabilities to Parse Trees

S
‘ Rules P
VP 5 — VP 05
/\ VP — Verb NP .20
Verb NP NP — Det Nominal .20
/\ Nominal — Nominal Noun .20
Book Det Nominal Nominal — Noun g5
r!‘re N011®un Verb — book 30
| Det s the 60
Noun flight Noun — dinner 10
B Noun — flight 40

o

Verb

S

VP
e
— -

/ e
NP NP

SN

-

Book Det Nominal Nominal

P(T,¢¢) =.05*.20*%.20*.20*.75*.30*.60*.10*.40

=2.2x10%

Natural Language Processing

the Noun Noun

dinner flight

= 6.1x10”7

Rules P
S — VP .05
VP — Verb NP NP .10
NP —+ Det Nominal .20
NP — Nominal 15
Nominal — Noun .75
Nominal — Noun .75
Verb — book .30
Det — the .60
Noun — dinner .10
Noun —+ flight 40

P(Tyignt) = -05*.10*.20*.15*.75*.75*.30*.60*.10*.40

11

Problems with PCFGs

Poor independence assumptions: Main problem with Probabilistic CFG Model is
that it does not take contextual effects into account.

For example, pronouns are much more likely to appear in the subject position of a
sentence than an object position.

— In Switchboard corpus:

|Prn::m::un Non-Pronoun
Subject | 91% 0%
Object | 34% 66%

Unfortunately, there is no way to represent this contextual difference in probabilities in
a PCFG because rule NP—Pronoun has only one probability in a PCFG.

— For Switchboard corpus:

— Rule NP—Pronoun should have .91 probability value in subject positions and .34
probability value in object positions.

Natural Language Processing 12

Problems with PCFGs

Lack of Sensitivity to Lexical Dependencies: PCFG rules don’t model syntactic facts
about specific words, leading to problems with subcategorization ambiguities,
preposition attachment, and coordinate structure ambiguities.

 Although words play a role in PCFGs since the parse probability includes the
probability of a word given a part-of-speech, words (lexical information) is NOT used
to resolve structure ambiguities such as prepositional phrase (PP) attachment
ambiguities.
— Prepositional phrases can attach to NP or VP nodes.

Natural Language Processing 13

Problems with PCFGs

PP attachment ambiguities

Example: Workers dumped sacks into a bin

S S
NP VP Correct Parse NP VP Incorrect Parse
P T
‘ — T ‘ 7 T~
NNS VED NP PP NNS VBD NP
workers dumped NNS | P NP workers dumped NP PP
VP Attachment sacks |into DT N‘N NP Attachment NNS 1‘3’ /NP\
VP — VBD NP PP a bin VP —-> VBD NP sacks |into DT NN
NP — NP PP .
a bin

» Depending on how these probabilities are set, a PCFG will always prefer NP attachment or VP attachment.

» NP attachment is slightly more common in English, we might always prefer NP attachment, causing us to
misparse this sentence.

Natural Language Processing

Problems with PCFGs

Coordination ambiguities

Example: dogs in houses and cats

NP
N Correct Parse /NP\ Incorrect Parse
NP Conj NP NP Bp
NP PP and Noun Noun Prep NP
Noun Prep NP cats dogs in NP Conj NP
dogs in Noun Noun and Noun

houses houses Cats

» Because dogs is semantically a better conjunct for cats than houses (and because most dogs can’t fit
inside cats), the second parse is intuitively unnatural and should be dis-preferred.
« However these two parses have exactly same PCFG rules, and a PCFG will assign them same probability.

Natural Language Processing 15

Improving PCFGs by Splitting Non-Terminals

PCFGs are not able to model structural dependencies such as:

— NPs in subject position tend to be pronouns, whereas NPs in object position tend to have
full lexical form.

How could we augment a PCFG to correctly model this fact?
— One idea to split NP non-terminal into two versions: one for subjects, one for objects.

— Having two nodes (e.9., NP et and NP:...) would allow us to correctly model their
different distributional properties, since we would have different probabilities for the rule
NPgypjec—>Pronoun and the rule NP,;..—>Pronoun .

One way to implement this intuition of splits is to do parent annotation in which we
annotate each node with its parent in the parse tree.

— Thus, an NP node that is the subject of the sentence and hence has parent S would be
annotated NP”S, while a direct object NP whose parent is VP would be annotated NP*VP.

Natural Language Processing 16

Improving PCFGs by Splitting Non-Terminals

S S
I\'A"P NP’AP‘S
PRP VE{\I\'P PRP VBD/}“VP
I HE’L{'f [}T/\NN I HEL{'f [}T/\NN
\ \
a ﬁ:'l*hr a ﬁ:'g‘;m
A standard PCFG parse tree » A parse tree which has parent annotation on

the nodes which aren’t pre-terminal.

 All the non-terminal nodes (except the pre-
terminal part-of-speech nodes) in parse have
been annotated with the identity of their parent.

Natural Language Processing

17

Improving PCFGs by Splitting Non-Terminals

« We can also improve a PCFG by splitting the pre-terminal part-of-speech nodes.

— Different kinds of adverbs (RB) tend to occur in different syntactic positions:

« most common adverbs with ADVP parents are also and now, most common adverbs with VP
parents are not, and most common adverbs with NP parents are only and just.

* Thus, add tags like RB"ADVP, RB"VP, and RB"NP to improve PCFG modeling.

) VP'S
VIS Incorrect Parse even with P
/\ a parent-annotated parse TOVP VPUP
TO VP'VP o~
N o VB'VP SBAR"VP
0 VB PP VP
‘ F_f/hh“‘mh__ ‘ ___,-f""'-- .h"“'--u.,___
];” ;B“PP see IN"SBAR S"SBAR
AN
| N if NP'S VP'S

if NN NNS
‘ | Correct Parse produced by a ‘
grammar in which POS nodes NN'NP VBZ'VP

have been split ‘

advertising ~ works

advertising works

Natural Language Processing 18

Probabilistic Lexicalized CFGs

Syntactic constituents can be associated with a lexical head.

We can define a lexicalized grammar in which each non-terminal grammar is
annotated with its lexical head.

In a lexicalized grammar, the rule VP — VBD NP PP would be extended as

VP (dumped) - VBD(dumped) NP(sacks) PP(into)

In each lexicalized grammar rule, the lexical head of a non-terminal on the left is the
lexical head of one of the constituents on the right.

Natural Language Processing 19

Probabilistic Lexicalized CFGs

A lexicalized tree

S(dumped)
NP(“fﬁ:-J:kera} VP(dIﬁnped)
NNS(workers) VBD(dumped) NP(sacks) PP(into)
| PN
workers dumped NNS(sacks) P NP(bin)

N

sacks into DT(a) NN(bin)

a bin

Natural Language Processing

Probabilistic Lexicalized CFGs

We can also associate non-terminals with head tags which are POS tags of their head
words.

Each rule is lexicalized by both the headword and the head tag of each constituent:

VP (dumped,VBD) —» VBD(dumped,VBD) NP(sacks,NNS) PP(into,P)

Natural Language Processing 21

Probabilistic Lexicalized CFGs

NP(workers.NNS)

NNS(workers,NNS) VBD(dum}:}ed,‘v’BD} NP(sacks,NNS)

workers

Internal Rules
TOP

S(dumped VED)
NP(workers NNS)
VP(dumped,VED)
PP(into,P)
NP(bin,NN)

A lexicalized tree, including head tags

b4l

TOP

S(dumped.VBD)

VP(dumped,VBD)

PP(into.P)

/\

dumped NNS(sacks.NNS) P(into.P)

sacks

S(dumped, VBD)

NP{workers. NNS) VP dumped VED)
NNS(workers, NNS)

VBD(dumped, VBD) NPisacks NNS) PP(into.P)
Piinto.P) NP bin,NN)

DT(a,DT) NN(bin.NN)

Natural Language Processing

Lexical Rules
NNS{workers, NNS)
VBD(dumped.VBD)
NNSi(sacks NNS)
P(into,P)

DT(a.DT)
NN(bin.NN)

NP(bin,NN)

N

into DT(a,DT) NN(bin,NN)

a

Ll Ll

hin

workers
dumped
sacks
into

a

bin

22

How to find the probabilities?

In PCFGs, we compute probability of a rule as follows:

— VP —>VBD NP PP

— P(VP — VBD NP PP | VP) = count(VP — VBD NP PP) / count(\/P)

— That’s the count of this rule divided by the number of VPs in a treebank.

In a lexicalized PCFG, we have to compute probability of a rule as follows:
— rule: VP(dumped) - VBD(dumped) NP(sacks) PP(into)

— P(rule | VP(dumped)) = count(rule) / count(\VVP(dumped))

— Not likely to have significant counts in any treebank.

In a lexicalized PCFG with head tags, we have to compute probability as follows:
— rule: VP(dumped,VBD) —» VBD(dumped,VBD) NP(sacks,NNS) PP(into,P)

— P(rule | VP(dumped,VBD)) = count(rule) / count(VVP(dumped,VBD))

— Not likely to have significant counts in any treebank.

Natural Language Processing 23

How to find the probabilities?

« When we stuck to compute probabilities directly, we exploit independence
assumptions and collect the statistics using these independence assumptions.

— We can use different independence assumptions. We look at a simple one, but there are
more complicated ones (Collins Parser in the book).

Independence assumption: Rules only depend on their head non-terminals.

* Inalexicalized PCFG:
— rule: VP(dumped) - VBD(dumped) NP(sacks) PP(into)
— P(rule | VP(dumped)) = count(rule(dumped)) / count(VP(dumped))

— 1.e. How many times this ruled used with dumped, divided by the number of VVPs that
dumped appears in total.

« Ina lexicalized PCFG with head tags:
— rule: VP(dumped,VBD) —» VBD(dumped,VBD) NP(sacks,NNS) PP(into,P)
— P(rule | VP(dumped,VBD)) = count(rule(dumped,VBD)) / count(VP(dumped,VBD))

— 1.e. How many times this ruled used with dumped,VVBD, divided by the number of VVPs that
dumped,VBD appears in total.

Natural Language Processing 24

Probabilistic Parsing: Summary

A probabilistic context-free grammar (PCFG) is a context-free grammar in which
every rule is annotated with the probability of that rule being chosen.

— Each PCFG rule is treated as if it were conditionally independent; thus, the probability of
a sentence is computed by multiplying probabilities of each rule in parse of sentence.

Raw PCFGs suffer from poor independence assumptions among rules and lack of
sensitivity to lexical dependencies.

— One way to deal with this problem is to split non-terminals.

Probabilistic lexicalized CFGs are another solution to this problem in which the basic
PCFG model is augmented with a lexical head for each rule.

— The probability of a rule can then be conditioned on the lexical head.

Natural Language Processing 25

