
Statistical Parsing

Natural Language Processing 1

Problem: How do we disambiguate among a set of parses of a given sentence?

– We want to pick the parse tree that corresponds to the correct meaning.

Possible Solutions:

– Pass the problem onto Semantic Processing

– Use a probabilistic model to assign likelihoods to the alternative parse trees and

select the best one.

• Associating probabilities with the grammar rules gives us such a model.

• The most commonly used probabilistic grammar formalism is the

probabilistic context-free grammar (PCFG), a probabilistic augmentation

of context-free grammars in which each rule is associated with a

probability.

Statistical Parse Disambiguation

Natural Language Processing 2

• The simplest augmentation of the context-free grammar is the Probabilistic

Context-Free Grammar (PCFG), also known as the Stochastic Context-Free

Grammar (SCFG).

• A PCFG differs from a CFG by augmenting each rule with a conditional probability:

A [p]

• Here p expresses the probability that non-terminal A will be expanded to sequence .

• We can represent this probability as:

P(A | A) or P(A)

• If we consider all the possible expansions of a non-terminal, the sum of their

probabilities must be 1:

P(A) = 1

Probabilistic Context-Free Grammars (PCFGs)

Natural Language Processing 3

• Associate a probability with each grammar rule.

• The probability reflects relative likelihood of using the rule in generating the LHS

constituent.

• Assume for a constituent C we have k grammar rules of form C i.

• We are interested in calculating P(C i|C) : the probability of using rule i for

deriving C.

• Such probabilities can be estimated from a corpus of parse trees:

Probabilistic CFGs

Natural Language Processing 4

)(

)(

)(

)(
)|(

1

Ccount

Ccount

Ccount

Ccount
CCP i

k

j

j

i
i

• Attach probabilities to grammar rules

• The expansions for a given non-terminal sum to 1

VP Verb [.55]

VP Verb NP [.40]

VP Verb NP NP [.05]

Probabilistic CFGs

Natural Language Processing 5

• Assume that probability of a constituent is independent of context in which it appears

in the parse tree.

• Probability of a constituent C’ that was constructed from A1’,…,An’ using the rule

C A1,…,An is:

P(C’) = P(C A1,…,An|C) P(A1’) … P(An’)

• At the leafs of the tree, we use the POS probabilities P(wi|C).

• A derivation (tree) consists of the set of grammar rules that are in the tree

• The probability of a derivation (tree) is just the product of the probabilities of the rules

in the derivation.

Assigning Probabilities to Parse Trees

Natural Language Processing 6

S NP VP [0.6]

S VP [0.4]

NP Noun [1.0]

VP Verb [0.3]

VP Verb NP [0.7]

Noun book [0.2]

.

.

Verb book [0.1]

Assigning Probabilities to Parse Trees

(Ex. Grammar)

Natural Language Processing 7

• [S [NP [Noun book]] [VP [Verb book]]]

P([Noun book]) = P(Nounbook) = 0.1

P([Verb book]) = P(Verbbook) = 0.2

P([NP [Noun book]]) = P(NPNoun) P([Noun book]) = 1.0*0.1 = 0.1

P([VP [Verb book]]) = P(VPVerb) P([Verb book]) = 0.3*0.2 = 0.06

P [S [NP [Noun book]] [VP [Verb book]]])

= P(SNP VP)*0.1*0.06 = 0.6*0.1*0.06 = 0.0036

• [S [VP [Verb book] [NP [Noun book]]]]

P([VP [Verb book] [NP [Noun book]]]) = P(VPVerb NP)*0.2*0.1 = 0.7*0.2*0.1 = 0.014

P([S [VP [Verb book] [NP [Noun book]]]]) = P(SVP)*0.014 = 0.4*.014 = 0.0056

Parse Trees for : book book

Natural Language Processing 8

Example: A PCFG

Natural Language Processing 9

Assigning Probabilities to Parse Trees

Natural Language Processing 10

Two parse trees for an ambiguous sentence. The parse on the left

corresponds to the sensible meaning “Book a flight that serves dinner”,

while the parse on the right corresponds to the nonsensical meaning

“Book a flight on behalf of ‘the dinner’ ”

Assigning Probabilities to Parse Trees

Natural Language Processing 11

P(Tle f t) = .05*.20*.20*.20*.75*.30*.60*.10*.40

= 2.2x10-6

P(Tright) = .05*.10*.20*.15*.75*.75*.30*.60*.10*.40

= 6.1x10-7

Poor independence assumptions: Main problem with Probabilistic CFG Model is

that it does not take contextual effects into account.

• For example, pronouns are much more likely to appear in the subject position of a

sentence than an object position.

– In Switchboard corpus:

• Unfortunately, there is no way to represent this contextual difference in probabilities in

a PCFG because rule NPPronoun has only one probability in a PCFG.

– For Switchboard corpus:

– Rule NPPronoun should have .91 probability value in subject positions and .34

probability value in object positions.

Problems with PCFGs

Natural Language Processing 12

Lack of Sensitivity to Lexical Dependencies: PCFG rules don’t model syntactic facts

about specific words, leading to problems with subcategorization ambiguities,

preposition attachment, and coordinate structure ambiguities.

• Although words play a role in PCFGs since the parse probability includes the

probability of a word given a part-of-speech, words (lexical information) is NOT used

to resolve structure ambiguities such as prepositional phrase (PP) attachment

ambiguities.

– Prepositional phrases can attach to NP or VP nodes.

Problems with PCFGs

Natural Language Processing 13

Example: Workers dumped sacks into a bin

Problems with PCFGs
PP attachment ambiguities

Natural Language Processing 14

VP Attachment

VP VBD NP PP

NP Attachment

VP VBD NP

NP NP PP

• Depending on how these probabilities are set, a PCFG will always prefer NP attachment or VP attachment.

• NP attachment is slightly more common in English, we might always prefer NP attachment, causing us to

misparse this sentence.

Correct Parse Incorrect Parse

Example: dogs in houses and cats

Problems with PCFGs
Coordination ambiguities

Natural Language Processing 15

Correct Parse Incorrect Parse

• Because dogs is semantically a better conjunct for cats than houses (and because most dogs can’t fit

inside cats), the second parse is intuitively unnatural and should be dis-preferred.

• However these two parses have exactly same PCFG rules, and a PCFG will assign them same probability.

• PCFGs are not able to model structural dependencies such as:

– NPs in subject position tend to be pronouns, whereas NPs in object position tend to have

full lexical form.

• How could we augment a PCFG to correctly model this fact?

– One idea to split NP non-terminal into two versions: one for subjects, one for objects.

– Having two nodes (e.g., NPsubject and NPobject) would allow us to correctly model their

different distributional properties, since we would have different probabilities for the rule

NPsubjectPronoun and the rule NPobjectPronoun .

• One way to implement this intuition of splits is to do parent annotation in which we

annotate each node with its parent in the parse tree.

– Thus, an NP node that is the subject of the sentence and hence has parent S would be

annotated NPˆS, while a direct object NP whose parent is VP would be annotated NPˆVP.

Improving PCFGs by Splitting Non-Terminals

Natural Language Processing 16

Improving PCFGs by Splitting Non-Terminals

Natural Language Processing 17

• A standard PCFG parse tree • A parse tree which has parent annotation on

the nodes which aren’t pre-terminal.

• All the non-terminal nodes (except the pre-

terminal part-of-speech nodes) in parse have

been annotated with the identity of their parent.

• We can also improve a PCFG by splitting the pre-terminal part-of-speech nodes.

– Different kinds of adverbs (RB) tend to occur in different syntactic positions:

• most common adverbs with ADVP parents are also and now, most common adverbs with VP

parents are not, and most common adverbs with NP parents are only and just.

• Thus, add tags like RBˆADVP, RBˆVP, and RBˆNP to improve PCFG modeling.

Improving PCFGs by Splitting Non-Terminals

Natural Language Processing 18

Incorrect Parse even with

a parent-annotated parse

Correct Parse produced by a

grammar in which POS nodes

have been split

• Syntactic constituents can be associated with a lexical head.

• We can define a lexicalized grammar in which each non-terminal grammar is

annotated with its lexical head.

• In a lexicalized grammar, the rule VP VBD NP PP would be extended as

VP(dumped) VBD(dumped) NP(sacks) PP(into)

• In each lexicalized grammar rule, the lexical head of a non-terminal on the left is the

lexical head of one of the constituents on the right.

Probabilistic Lexicalized CFGs

Natural Language Processing 19

• A lexicalized tree

Probabilistic Lexicalized CFGs

Natural Language Processing 20

• We can also associate non-terminals with head tags which are POS tags of their head

words.

• Each rule is lexicalized by both the headword and the head tag of each constituent:

VP(dumped,VBD) VBD(dumped,VBD) NP(sacks,NNS) PP(into,P)

Probabilistic Lexicalized CFGs

Natural Language Processing 21

Probabilistic Lexicalized CFGs
A lexicalized tree, including head tags

Natural Language Processing 22

• In PCFGs, we compute probability of a rule as follows:

– VP VBD NP PP

– P(VP VBD NP PP | VP) = count(VP VBD NP PP) / count(VP)

– That’s the count of this rule divided by the number of VPs in a treebank.

• In a lexicalized PCFG, we have to compute probability of a rule as follows:

– rule: VP(dumped) VBD(dumped) NP(sacks) PP(into)

– P(rule | VP(dumped)) = count(rule) / count(VP(dumped))

– Not likely to have significant counts in any treebank.

• In a lexicalized PCFG with head tags, we have to compute probability as follows:

– rule: VP(dumped,VBD) VBD(dumped,VBD) NP(sacks,NNS) PP(into,P)

– P(rule | VP(dumped,VBD)) = count(rule) / count(VP(dumped,VBD))

– Not likely to have significant counts in any treebank.

How to find the probabilities?

Natural Language Processing 23

• When we stuck to compute probabilities directly, we exploit independence

assumptions and collect the statistics using these independence assumptions.

– We can use different independence assumptions. We look at a simple one, but there are

more complicated ones (Collins Parser in the book).

Independence assumption: Rules only depend on their head non-terminals.

• In a lexicalized PCFG:

– rule: VP(dumped) VBD(dumped) NP(sacks) PP(into)

– P(rule | VP(dumped)) = count(rule(dumped)) / count(VP(dumped))

– i.e. How many times this ruled used with dumped, divided by the number of VPs that

dumped appears in total.

• In a lexicalized PCFG with head tags:

– rule: VP(dumped,VBD) VBD(dumped,VBD) NP(sacks,NNS) PP(into,P)

– P(rule | VP(dumped,VBD)) = count(rule(dumped,VBD)) / count(VP(dumped,VBD))

– i.e. How many times this ruled used with dumped,VBD, divided by the number of VPs that

dumped,VBD appears in total.

How to find the probabilities?

Natural Language Processing 24

• A probabilistic context-free grammar (PCFG) is a context-free grammar in which

every rule is annotated with the probability of that rule being chosen.

– Each PCFG rule is treated as if it were conditionally independent; thus, the probability of

a sentence is computed by multiplying probabilities of each rule in parse of sentence.

• Raw PCFGs suffer from poor independence assumptions among rules and lack of

sensitivity to lexical dependencies.

– One way to deal with this problem is to split non-terminals.

• Probabilistic lexicalized CFGs are another solution to this problem in which the basic

PCFG model is augmented with a lexical head for each rule.

– The probability of a rule can then be conditioned on the lexical head.

Probabilistic Parsing: Summary

Natural Language Processing 25

