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Concept Learning

• Inducing target functions from training examples is a main issue of machine

learning.

• Concept Learning: Acquiring the definition of a general category from given

sample positive and negative training examples of the category.

• Concept Learning can seen as a problem of searching through a predefined space of

potential hypotheses for the hypothesis that best fits training examples.

• The hypothesis space has a general-to-specific ordering of hypotheses, and the

search can be efficiently organized by taking advantage of a naturally occurring

structure over the hypothesis space.
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Concept Learning

• A Formal Definition for Concept Learning:

Inferring a boolean-valued function from training examples of its input and

output.

• An example for concept-learning is the learning of bird-concept from the given

examples of birds (positive examples) and non-birds (negative examples).

• We are trying to learn the definition of a concept from given examples.
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A Concept Learning Task – Enjoy Sport

Training Examples

Example Sky AirTemp Humidity Wind Water Forecast EnjoySport

1 Sunny Warm Normal Strong Warm Same YES

2 Sunny Warm High Strong Warm Same YES

3 Rainy Cold High Strong Warm Change NO

4 Sunny Warm High Strong Cool Change YES

• A set of example days, and each is described by six attributes.

• The task is to learn to predict the value of EnjoySport for arbitrary day,  

based on the values of its attribute values.

ATTRIBUTES CONCEPT
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EnjoySport – Hypothesis Representation

• Each hypothesis consists of a conjunction of constraints on the instance

attributes.

• Each hypothesis will be a vector of six constraints, specifying the values of the six 

attributes 

– (Sky, AirTemp, Humidity, Wind, Water, Forecast). 

• Each attribute will be:

? - indicating any value is acceptable for the attribute (don’t care)

single value - specifying a single required value (ex. Warm) (specific)

0 - indicating no value is acceptable for the attribute (no value)
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Hypothesis Representation

• A hypothesis:

Sky    AirTemp Humidity  Wind   Water  Forecast

< Sunny,   ?     ,       ?    ,       Strong ,  ? ,      Same >

• The most general hypothesis – that every day is a positive example

<?, ?, ?, ?, ?, ?>

• The most specific hypothesis – that no day is a positive example

<0, 0, 0, 0, 0, 0>

• EnjoySport concept learning task requires learning the sets of days for which

describing this set by a conjunction of constraints over the instance attributes.

EnjoySport=yes,
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EnjoySport Concept Learning Task

Given

– Instances X : set of all possible days, each described by the attributes

• Sky – (values: Sunny, Cloudy, Rainy)

• AirTemp – (values: Warm, Cold)

• Humidity – (values: Normal, High)

• Wind – (values: Strong, Weak)

• Water – (values: Warm, Cool)

• Forecast – (values: Same, Change)

– Target Concept (Function) c :   EnjoySport :    X   {0,1}

– Hypotheses H : Each hypothesis is described by a conjunction of constraints on 

the attributes.

– Training Examples D : positive and negative examples of the target function

Determine

– A hypothesis h in H such that h(x) = c(x) for all x in D.
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The Inductive Learning Hypothesis

• Although the learning task is to determine a hypothesis h identical to the target

concept cover the entire set of instances X, the only information available about c is

its value over the training examples.

– Inductive learning algorithms can at best guarantee that the output hypothesis fits the

target concept over the training data.

– Lacking any further information, our assumption is that the best hypothesis regarding

unseen instances is the hypothesis that best fits the observed training data. This is the

fundamental assumption of inductive learning.

• The Inductive Learning Hypothesis - Any hypothesis found to approximate the

target function well over a sufficiently large set of training examples will also

approximate the target function well over other unobserved examples.
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Concept Learning As Search

• Concept learning can be viewed as the task of searching through a large space of 

hypotheses implicitly defined by the hypothesis representation. 

• The goal of this search is to find the hypothesis that best fits the training examples. 

• By selecting a hypothesis representation, the designer of the learning algorithm 

implicitly defines the space of all hypotheses that the program can ever represent and 

therefore can ever learn.
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Enjoy Sport - Hypothesis Space

• Sky has 3 possible values, and other 5 attributes have 2 possible values.

• There are 96 (= 3.2.2.2.2.2) distinct instances in X.

• There are 5120 (=5.4.4.4.4.4) syntactically distinct hypotheses in H.

– Two more values for attributes: ? and 0

• Every hypothesis containing one or more 0 symbols represents the empty set of 

instances; that is, it classifies every instance as negative.

• There are 973 (= 1 + 4.3.3.3.3.3) semantically distinct hypotheses in H.

– Only one more value (?) for attributes, and one hypothesis representing empty set of 

instances.

• Although EnjoySport has small, finite hypothesis space, most learning tasks have 

much larger (even infinite) hypothesis spaces.

– We need efficient search algorithms on the hypothesis spaces.
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General-to-Specific Ordering of Hypotheses

• Many algorithms for concept learning organize the search through the hypothesis
space by relying on a general-to-specific ordering of hypotheses. 

• By taking advantage of this naturally occurring structure over the hypothesis space, we 
can design learning algorithms that exhaustively search even infinite hypothesis spaces 
without explicitly enumerating every hypothesis.

• Consider two hypotheses

h1 = (Sunny, ?, ?, Strong, ?, ?)

h2 = (Sunny, ?, ?, ?, ?, ?)

• Now consider the sets of instances that are classified positive by hl and by h2.

– Because h2 imposes fewer constraints on the instance, it classifies more instances positive. 

– In fact, any instance classified positive by hl will also be classified positive by h2. 

– Therefore, we say that h2 is more general than hl.



Machine Learning 12

More-General-Than Relation

• For any instance x in X and hypothesis h in H, we say that x satisfies h if and only if 

h(x) = 1. 

• More-General-Than-Or-Equal Relation:

– Let h1 and h2 be two boolean-valued functions defined over X. 

– Then h1 is more-general-than-or-equal-to h2 (written h1 ≥ h2) if and only if

any instance that satisfies h2 also satisfies h1.

• h1 is more-general-than h2 ( h1 > h2) if and only if h1≥h2 is true and h2≥h1 is false. 

We also say h2 is more-specific-than h1.
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More-General-Relation

• h2 > h1   and h2 > h3

• But there is no more-general relation between h1 and h3
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FIND-S Algorithm

• FIND-S Algorithm starts from the most specific hypothesis and generalize it by 

considering only positive examples.

• FIND-S algorithm ignores negative examples.

– As long as the hypothesis space contains a hypothesis that describes the true target 

concept, and the training data contains no errors, ignoring negative examples does not 

cause to any problem.

• FIND-S algorithm finds the most specific hypothesis within H that is consistent with 

the positive training examples.

– The final hypothesis will also be consistent with negative examples if the correct target 

concept is in H, and the training examples are correct.
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FIND-S Algorithm

1. Initialize h to the most specific hypothesis in H

2. For each positive training instance x

For each attribute constraint a, in h

If the constraint a, is satisfied by x

Then do nothing

Else replace a, in h by the next more general constraint that is  satisfied by x

3. Output hypothesis h
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FIND-S Algorithm - Example
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Unanswered Questions by FIND-S Algorithm

• Has FIND-S converged to the correct target concept? 

– Although FIND-S will find a hypothesis consistent with the training data, it has no way to

determine whether it has found the only hypothesis in H consistent with the data (i.e., the 

correct target concept), or whether there are many other consistent hypotheses as well. 

– We would prefer a learning algorithm that could determine whether it had converged and,

if not, at least characterize its uncertainty regarding the true identity of the target concept.

• Why prefer the most specific hypothesis? 

– In case there are multiple hypotheses consistent with the training examples, FIND-S will 

find the most specific.

– It is unclear whether we should prefer this hypothesis over, say, the most general, or some 

other hypothesis of intermediate generality.
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Unanswered Questions by FIND-S Algorithm

• Are the training examples consistent? 

– In most practical learning problems there is some chance that the training examples will 
contain at least some errors or noise. 

– Such inconsistent sets of training examples can severely mislead FIND-S, given the fact 
that it ignores negative examples. 

– We would prefer an algorithm that could at least detect when the training data is 
inconsistent and, preferably, accommodate such errors.

• What if there are several maximally specific consistent hypotheses? 

– In the hypothesis language H for the EnjoySport task, there is always a unique, most 
specific hypothesis consistent with any set of positive examples. 

– However, for other hypothesis spaces there can be several maximally specific hypotheses 
consistent with the data. 

– In this case, FIND-S must be extended to allow it to backtrack on its choices of how to 
generalize the hypothesis, to accommodate the possibility that the target concept lies along
a different branch of the partial ordering than the branch it has selected.
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Candidate-Elimination Algorithm

• FIND-S outputs a hypothesis from H, that is consistent with the training examples, 

this is just one of many hypotheses from H that might fit the training data equally 

well. 

• The key idea in the Candidate-Elimination algorithm is to output a description of 

the set of all hypotheses consistent with the training examples. 

– Candidate-Elimination algorithm computes the description of this set without explicitly 

enumerating all of its members. 

– This is accomplished by using the more-general-than partial ordering and maintaining a 

compact representation of the set of consistent hypotheses.
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Consistent Hypothesis

• A hypothesis h is consistent with a set of training examples D of 

target concept c if and only if h(x)=c(x) for each training example 

<x,c(x)> in D.

𝑪𝒐𝒏𝒔𝒊𝒔𝒕𝒆𝒏𝒕 𝒉,𝑫 ≡ ∀ 𝒙, 𝒄 𝒙 ∈ 𝑫 𝒉 𝒙 = 𝒄(𝒙)



Version Spaces

• The Candidate-Elimination algorithm represents the set of all hypotheses consistent 

with the observed training examples. 

• This subset of all hypotheses is called the version space with  respect to the hypothesis 

space H and the training examples D,  because it contains all plausible versions of the 

target concept.

• The version space, VSH,D , with respect to hypotheses space H and training 

examples D is the subset of hypotheses from H consistent with all training 

examples in D.

𝑉𝑆𝐻,𝐷 ≡ ℎ ∈ 𝐻 𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡 ℎ, 𝐷 }
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List-Then-Eliminate Algorithm

• List-Then-Eliminate algorithm initializes the version space to contain all hypotheses in 
H, then eliminates any hypothesis found inconsistent with any training example. 

• The version space of candidate hypotheses thus shrinks as more examples are 
observed, until ideally just one hypothesis remains that is consistent with all the 
observed examples. 

– Presumably, this is the desired target concept. 

– If insufficient data is available to narrow the version space to a single hypothesis, then the 
algorithm can output the entire set of hypotheses consistent with the observed data.

• List-Then-Eliminate algorithm can be applied whenever the hypothesis space H is 
finite. 

– It has many advantages, including the fact that it is guaranteed to output all hypotheses 
consistent with the training data. 

– Unfortunately, it requires exhaustively enumerating all hypotheses in H 

• an unrealistic requirement for all but the most trivial hypothesis spaces.
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List-Then-Eliminate Algorithm
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Compact Representation of Version Spaces

• A version space can be represented with its general and specific boundary sets.

• The Candidate-Elimination algorithm represents the version space by storing only its 

most general members G and its most specific members S.

• Given only these two sets S and G, it is possible to enumerate all members of a version 

space by generating hypotheses that lie between these two sets in general-to-specific 

partial ordering over hypotheses.

• Every member of the version space lies between these boundaries

where x ≥y means x is more general or equal to y.
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Example Version Space

• A version space with its general and specific boundary sets. 

• The version space includes all six hypotheses shown here, 

but can be represented more simply by S and G.
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Candidate-Elimination Algorithm

• The Candidate-Elimination algorithm computes the version space containing all 

hypotheses from H that are consistent with an observed sequence of training examples. 

• It begins by initializing the version space to the set of all hypotheses in H; that is, by 

initializing the G boundary set to contain the most general hypothesis in H

G0  { <?, ?, ?, ?, ?, ?> }

and initializing the S boundary set to contain the most specific hypothesis

S0  { <0, 0, 0, 0, 0, 0> }

• These two boundary sets delimit the entire hypothesis space, because every other 

hypothesis in H is both more general than S0 and more specific than G0. 

• As each training example is considered, the S and G boundary sets are generalized and 

specialized, respectively, to eliminate from the version space any hypotheses found 

inconsistent with the new training example. 

• After all examples have been processed, the computed version space contains all the 

hypotheses consistent with these examples and only these hypotheses.
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Candidate-Elimination Algorithm

• Initialize G to the set of maximally general hypotheses in H

• Initialize S to the set of maximally specific hypotheses in H

• For each training example d, do

– If d is a positive example
• Remove from G any hypothesis inconsistent with d ,

• For each hypothesis s in S that is NOT consistent with d,

– Remove s from S

– Add to S all minimal generalizations h of s such that

» h is consistent with d, and some member of G is more general than h

– Remove from S any hypothesis that is more general than another hypothesis in S

– If d is a negative example
• Remove from S any hypothesis inconsistent with d

• For each hypothesis g in G that is NOT consistent with d

– Remove g from G

– Add to G all minimal specializations h of g such that

» h is consistent with d, and some member of S is more specific than h

– Remove from G any hypothesis that is less general than another hypothesis in G
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Candidate-Elimination Algorithm - Example

• S0 and G0 are the initial 

boundary sets corresponding 

to the most specific and most 

general hypotheses. 

• Training examples 1 and 2 

force the S boundary to 

become more general. 

• They have no effect on the G 

boundary
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Candidate-Elimination Algorithm - Example

Minimal specializations of G2

<Sunny,?,?,?,?,?>

<Cloudy,?,?,?,?,?>

<Rainy,?,?,?,?,?>

<?,Warm,?,?,?,?>

<?,Cold,?,?,?,?>

<?,?,Normal,?,?,?>

<?,?,High,?,?,?>

<?,?,?,Strong,?,?>

<?,?,?,Weak,?,?>

<?,?,?,?,Warm,?>

<?,?,?,?,Cool,?>

<?,?,?,?,?,Same>

<?,?,?,?,?,Change>

PURPLE ones are NOT minimal specializations of G2

RED ones are NOT general than specific ones
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Candidate-Elimination Algorithm - Example

• Given that there are six attributes that could be specified to specialize G2, why are 
there only three new hypotheses in G3?

• For example, the hypothesis h = <?, ?, Normal, ?, ?, ?> is a minimal specialization of 
G2 that correctly labels the new example as a negative example, but it is not included 
in G3. 

– The reason this hypothesis is excluded is that it is inconsistent with S2. 

– The algorithm determines this simply by noting that h is not more general than the current 
specific boundary, S2. 

• In fact, the S boundary of the version space forms a summary of the previously 
encountered positive examples that can be used to determine whether any given 
hypothesis is consistent with these examples.

• The G boundary summarizes the information from previously encountered negative 
examples. Any hypothesis more specific than G is assured to be consistent with past 
negative examples
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Candidate-Elimination Algorithm - Example
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Candidate-Elimination Algorithm - Example

• The fourth training example further generalizes the S boundary of the version space. 

• It also results in removing one member of the G boundary, because this member fails 

to cover the new positive example. 

– To understand the rationale for this step, it is useful to consider why the offending 

hypothesis must be removed from G. 

– Notice it cannot be specialized, because specializing it would not make it cover the new

example. 

– It also cannot be generalized, because by the definition of G, any more general hypothesis 

will cover at least one negative training example. 

– Therefore, the hypothesis must be dropped from the G boundary, thereby removing an 

entire branch of the partial ordering from the version space of hypotheses remaining under 

consideration
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Candidate-Elimination Algorithm – Example

Final Version Space
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Candidate-Elimination Algorithm – Example

Final Version Space

• After processing these four examples, the boundary sets S4 and G4 delimit the version 

space of all hypotheses consistent with the set of incrementally observed training 

examples.

• This learned version space is independent of the sequence in which the training 

examples are presented (because in the end it contains all hypotheses consistent with 

the set of examples).

• As further training data is encountered, the S and G boundaries will move 

monotonically closer to each other, delimiting a smaller and smaller version space of

candidate hypotheses.
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Will Candidate-Elimination Algorithm 

Converge to Correct Hypothesis?

• The version space learned by the Candidate-Elimination Algorithm will converge 
toward the hypothesis that correctly describes the target concept, provided

– There are no errors in the training examples, and 

– there is some hypothesis in H that correctly describes the target concept.

• What will happen if the training data contains errors?

– The algorithm removes the correct target concept from the version space.

– S and G boundary sets eventually converge to an empty version space if sufficient 
additional training data is available.

– Such an empty version space indicates that there is no hypothesis in H consistent with 
all observed training examples.

• A similar symptom will appear when the training examples are correct, but the 
target concept cannot be described in the hypothesis representation.

– e.g., if the target concept is a disjunction of feature attributes and the hypothesis space 
supports only conjunctive descriptions
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What Training Example Should the Learner Request Next?

• We have assumed that training examples are provided to the learner by some 

external teacher. 

• Suppose instead that the learner is allowed to conduct experiments in which it 

chooses the next instance, then obtains the correct classification for this instance 

from an external oracle (e.g., nature or a teacher).

– This scenario covers situations in which the learner may conduct experiments in nature 

or in which a teacher is available to provide the correct classification.

– We use the term query to refer to such instances constructed by the learner, which are 

then classified by an external oracle.

• Considering the version space learned from the four training examples of the 

EnjoySport concept. 

– What would be a good query for the learner to pose at this point? 

– What is a good query strategy in general?
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What Training Example Should the Learner Request Next?

• The learner should attempt to discriminate among the alternative competing 

hypotheses in its current version space. 

– Therefore, it should choose an instance that would be classified positive by some of these 

hypotheses, but negative by others. 

– One such instance is <Sunny, Warm, Normal, Light, Warm, Same>

– This instance satisfies three of the six hypotheses in the current version space.

– If the trainer classifies this instance as a positive example, the S boundary of the version 

space can then be generalized. 

– Alternatively, if the trainer indicates that this is a negative example, the G boundary can 

then be specialized.

• In general, the optimal query strategy for a concept learner is to generate instances that 

satisfy exactly half the hypotheses in the current version space.

• When this is possible, the size of the version space is reduced by half with each new 

example, and the correct target concept can therefore be found with only log2 |VS| 

experiments.
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How Can Partially Learned Concepts Be Used?

• Even though the learned version space still contains multiple hypotheses, indicating 

that the target concept has not yet been fully learned, it is possible to classify certain 

examples with the same degree of confidence as if the target concept had been 

uniquely identified.

• Let us assume that the followings are new instances to be classified:
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How Can Partially Learned Concepts Be Used?

• Instance A was is classified as a positive instance by every hypothesis in the current 

version space.

• Because the hypotheses in the version space unanimously agree that this is a positive 

instance, the learner can classify instance A as positive with the same confidence it 

would have if it had already converged to the single, correct target concept. 

• Regardless of which hypothesis in the version space is eventually found to be the 

correct target concept, it is already clear that it will classify instance A as a positive 

example. 

• Notice furthermore that we need not enumerate every hypothesis in the version space 

in order to test whether each classifies the instance as positive. 

– This condition will be met if and only if the instance satisfies every member of S. 

– The reason is that every other hypothesis in the version space is at least as general as some 

member of S.

– By our definition of more-general-than, if the new instance satisfies all members of S it

must also satisfy each of these more general hypotheses.
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How Can Partially Learned Concepts Be Used?

• Instance B is classified as a negative instance by every hypothesis in the version 
space. 

– This instance can therefore be safely classified as negative, given the partially learned 
concept. 

– An efficient test for this condition is that the instance satisfies none of the members of G.

• Half of the version space hypotheses classify instance C as positive and half classify it 
as negative. 

– Thus, the learner cannot classify this example with confidence until further training 
examples are available.

• Instance D is classified as positive by two of the version space hypotheses and 
negative by the other four hypotheses. 

– In this case we have less confidence in the classification than in the unambiguous cases of 
instances A and B. 

– Still, the vote is in favor of a negative classification, and one approach we could take would 
be to output the majority vote, perhaps with a confidence rating indicating how close the 
vote was.



Inductive Bias - Fundamental Questions

for Inductive Inference

• The Candidate-Elimination Algorithm will converge toward the true target concept 

provided it is given accurate training examples and provided its initial hypothesis 

space contains the target concept. 

• What if the target concept is not contained in the hypothesis space?

• Can we avoid this difficulty by using a hypothesis space that includes every possible 

hypothesis? 

• How does the size of this hypothesis space influence the ability of the algorithm to 

generalize to unobserved instances? 

• How does the size of the hypothesis space influence the number of training examples 

that must be observed?
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Inductive Bias - A Biased Hypothesis Space
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• In EnjoySport example, we restricted the hypothesis space to include only 

conjunctions of attribute values. 

– Because of this restriction, the hypothesis space is unable to represent even simple 

disjunctive target concepts such as "Sky = Sunny or Sky = Cloudy."

• From first two examples  S2 : <?, Warm, Normal, Strong, Cool, Change>

• This is inconsistent with third examples, and there are no hypotheses consistent 

with these three examples

PROBLEM: We have biased the learner to consider only conjunctive hypotheses.

We require a more expressive hypothesis space.



Inductive Bias - An Unbiased Learner

• The obvious solution to the problem of assuring that the target concept is in the 

hypothesis space H is to provide a hypothesis space capable of representing every 

teachable concept.

– Every possible subset of the instances X  the power set of X.

• What is the size of the hypothesis space H (the power set of X) ?

– In EnjoySport, the size of the instance space X is 96.

– The size of the power set of X is 2|X| 
 The size of H is 296

– Our conjunctive hypothesis space is able to represent only 973 of these 

hypotheses.

 a very biased hypothesis space 
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Inductive Bias - An Unbiased Learner : Problem

• Let the hypothesis space H  to be the power set of X.

– A hypothesis can be represented with disjunctions, conjunctions, and negations of our 

earlier hypotheses.

– The target concept "Sky = Sunny or Sky = Cloudy" could then be described as 

<Sunny, ?, ?, ?, ?, ?>   <Cloudy, ?, ?, ?, ?, ?>

NEW PROBLEM: our concept learning algorithm is now completely unable to 

generalize beyond the observed examples.

– three positive examples (xl,x2,x3) and two negative examples (x4,x5) to the learner.

– S :  { x1  x2  x3 }   and    G :  {  (x4  x5) }   NO GENERALIZATION

– Therefore, the only examples that will be unambiguously classified by S and G are the 

observed training examples themselves.
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Inductive Bias –

Fundamental Property of Inductive Inference

• A learner that makes no a priori assumptions regarding the identity of the target 
concept has no rational basis for classifying any unseen instances.

• Inductive Leap: A learner should be able to generalize training data using prior 
assumptions in order to classify unseen instances. 

• The generalization is known as inductive leap and our prior assumptions are the 
inductive bias of the learner.

• Inductive Bias (prior assumptions) of Candidate-Elimination Algorithm is that the 
target concept can be represented by a conjunction of attribute values, the target 
concept is contained in the hypothesis space and training examples are correct.
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Inductive Bias – Formal Definition

Inductive Bias: 

Consider a concept learning algorithm L for the set of instances X. 

Let c be an arbitrary concept defined over X, and 

Let Dc = {<x , c(x)>} be an arbitrary set of training examples of c. 

Let L(xi, Dc) denote the classification assigned to the instance xi by L after training on 

the data Dc. 

The inductive bias of L is any minimal set of assertions B such that for any target 

concept c and corresponding training examples Dc the following formula holds.
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Inductive Bias – Three Learning Algorithms

ROTE-LEARNER: Learning corresponds simply to storing each observed training 
example in memory. Subsequent instances are classified by looking them up in 
memory. If the instance is found in memory, the stored classification is returned. 
Otherwise, the system refuses to classify the new instance.

Inductive Bias: No inductive bias

CANDIDATE-ELIMINATION: New instances are classified only in the case where all 
members of the current version space agree on the classification. Otherwise, the 
system refuses to classify the new instance.

Inductive Bias: the target concept can be represented in its hypothesis space.

FIND-S: This algorithm, described earlier, finds the most specific hypothesis consistent 
with the training examples. It then uses this hypothesis to classify all subsequent 
instances.

Inductive Bias: the target concept can be represented in its hypothesis space, and all 
instances are negative instances unless the opposite is entailed by its other know1edge.
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Concept Learning - Summary

• Concept learning can be seen as a problem of searching through a large predefined 

space of potential hypotheses.

• The general-to-specific partial ordering of hypotheses provides a useful structure for 

organizing the search through the hypothesis space.

• The FIND-S algorithm utilizes this general-to-specific ordering, performing a specific-

to-general search through the hypothesis space along one branch of the partial 

ordering, to find the most specific hypothesis consistent with the training examples.

• The CANDIDATE-ELIMINATION algorithm utilizes this general-to-specific 

ordering to compute the version space (the set of all hypotheses consistent with the 

training data) by incrementally computing the sets of maximally specific (S) and 

maximally general (G) hypotheses.
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Concept Learning - Summary

• Because the S and G sets delimit the entire set of hypotheses consistent with the data, 

they provide the learner with a description of its uncertainty regarding the exact 

identity of the target concept. This version space of alternative hypotheses can be 

examined 

– to determine whether the learner has converged to the target concept, 

– to determine when the training data are inconsistent,

– to generate informative queries to further refine the version space, and 

– to determine which unseen instances can be unambiguously classified based on the partially 

learned concept.

• The CANDIDATE-ELIMINATION algorithm is not robust to noisy data or to 

situations in which the unknown target concept is not expressible in the provided 

hypothesis space.
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Concept Learning - Summary

• Inductive learning algorithms are able to classify unseen examples only because of 

their implicit inductive bias for selecting one consistent hypothesis over another.

• If the hypothesis space is enriched to the point where there is a hypothesis

corresponding to every possible subset of instances (the power set of the instances), 

this will remove any inductive bias from the CANDIDATE-ELIMINATION 

algorithm . 

– Unfortunately, this also removes the ability to classify any instance beyond the observed 

training examples. 

– An unbiased learner cannot make inductive leaps to classify unseen examples.
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