Bayesian Learning

Bayesian Learning

Features of Bayesian learning methods:

- Each observed training example can incrementally decrease or increase the estimated probability of the correctness of a hypothesis.
- This provides a more flexible approach to learning than algorithms that completely eliminate a hypothesis if it is found to be inconsistent with any single example.
- Prior knowledge can be combined with observed data to determine the final probability of a hypothesis.
- In Bayesian learning, prior knowledge is provided by asserting
- a prior probability for each candidate hypothesis, and
- a probability distribution over observed data for each possible hypothesis.

Bayesian Learning

Features of Bayesian learning methods:

- Bayesian methods can accommodate hypotheses that make probabilistic predictions.
- New instances can be classified by combining the predictions of multiple hypotheses, weighted by their probabilities.
- Even in cases where Bayesian methods prove computationally intractable, they can provide a standard of optimal decision making against which other practical methods can be measured.

Difficulties with Bayesian Methods

- Require initial knowledge of many probabilities
- When these probabilities are not known in advance they are often estimated based on background knowledge, previously available data, and assumptions about the form of the underlying distributions.
- Significant computational cost is required to determine the Bayes optimal hypothesis in the general case (linear in the number of candidate hypotheses).
- In certain specialized situations, this computational cost can be significantly reduced.

Bayes Theorem

- In machine learning, we try to determine the best hypothesis from some hypothesis space H, given the observed training data D.
- In Bayesian learning, the best hypothesis means the most probable hypothesis, given the data D plus any initial knowledge about the prior probabilities of the various hypotheses in H .
- Bayes theorem provides a way to calculate the probability of a hypothesis based on its prior probability, the probabilities of observing various data given the hypothesis, and the observed data itself.

Bayes Theorem

$\mathbf{P}(\mathrm{h})$ is prior probability of hypothesis h

- $\mathrm{P}(\mathrm{h})$ to denote the initial probability that hypothesis h holds, before observing training data.
- $\mathrm{P}(\mathrm{h})$ may reflect any background knowledge we have about the chance that h is correct.
- If we have no such prior knowledge, then each candidate hypothesis might simply get the same prior probability.
$\mathbf{P}(\mathrm{D})$ is prior probability of training data D
- The probability of D given no knowledge about which hypothesis holds
$\mathbf{P}(\mathbf{h} \mid \mathrm{D})$ is posterior probability of h given D
- $\mathrm{P}(\mathrm{h} \mid \mathrm{D})$ is called the posterior probability of \boldsymbol{h}, because it reflects our confidence that \boldsymbol{h} holds after we have seen the training data \boldsymbol{D}.
- The posterior probability $\mathrm{P}(\mathrm{h} \mid \mathrm{D})$ reflects the influence of the training data \boldsymbol{D}, in contrast to the prior probability $\mathrm{P}(\mathrm{h})$, which is independent of D .
$\mathbf{P}(\mathrm{D} \mid \mathrm{h})$ is posterior probability of D given h
- The probability of observing data \boldsymbol{D} given some world in which hypothesis \boldsymbol{h} holds.
- Generally, we write $\mathbf{P}(\mathbf{x} \mid \mathbf{y})$ to denote the probability of event \mathbf{x} given event \mathbf{y}.

Bayes Theorem

- In ML problems, we are interested in the probability $\mathrm{P}(\mathrm{h} \mid \mathrm{D})$ that h holds given the observed training data D .
- Bayes theorem provides a way to calculate the posterior probability $\mathrm{P}(\mathrm{h} \mid \mathrm{D})$, from the prior probability $\mathrm{P}(\mathrm{h})$, together with $\mathrm{P}(\mathrm{D})$ and $\mathrm{P}(\mathrm{D} \mid \mathrm{h})$.

Bayes Theorem: $\quad P(h \mid D)=\frac{P(D \mid h) P(h)}{P(D)}$

- $\quad \mathrm{P}(\mathrm{h} \mid \mathrm{D})$ increases with $\mathrm{P}(\mathrm{h})$ and $\mathrm{P}(\mathrm{D} \mid \mathrm{h})$ according to Bayes theorem.
- $P(h \mid D)$ decreases as $P(D)$ increases, because the more probable it is that D will be observed independent of h, the less evidence D provides in support of h.

Bayes Theorem

- $\mathrm{P}(\mathrm{A})$ is prior probability (unconditional probability) of event A .
- $\mathrm{P}(\mathrm{A} \mid \mathrm{B})$ is posterior probability (conditional probability) of event A given that event B holds.
- $P(A, B)$ is the joint probability of two events A and B.
- The (unconditional) probability of the events A and B occurring together.
$-\mathrm{P}(\mathrm{A}, \mathrm{B})=\mathrm{P}(\mathrm{B}, \mathrm{A})$

Bayes Theorem

$\begin{array}{ll}\mathrm{P}(\mathrm{A} \mid \mathrm{B})=\mathrm{P}(\mathrm{A}, \mathrm{B}) / \mathrm{P}(\mathrm{B}) & \rightarrow \mathrm{P}(\mathrm{A}, \mathrm{B})=\mathrm{P}(\mathrm{A} \mid \mathrm{B}) * \mathrm{P}(\mathrm{B}) \\ \mathrm{P}(\mathrm{B} \mid \mathrm{A})=\mathrm{P}(\mathrm{B}, \mathrm{A}) / \mathrm{P}(\mathrm{A}) & \rightarrow \mathrm{P}(\mathrm{B}, \mathrm{A})=\mathrm{P}(\mathrm{B} \mid \mathrm{A}) * \mathrm{P}(\mathrm{A})\end{array}$

Since $P(A, B)=P(B, A)$, we have $P(A \mid B) * P(B)=P(B \mid A) * P(A)$

Thus, we have Bayes Theorem

$$
\begin{aligned}
& \mathbf{P}(\mathbf{A} \mid \mathbf{B})=\mathbf{P}(\mathbf{B} \mid \mathbf{A}) * \mathbf{P}(\mathbf{A}) / \mathbf{P}(\mathbf{B}) \\
& \mathbf{P}(\mathbf{B} \mid \mathbf{A})=\mathbf{P}(\mathbf{A} \mid \mathbf{B}) * \mathbf{P}(\mathbf{B}) / \mathbf{P}(\mathbf{A})
\end{aligned}
$$

Bayes Theorem - Example

Bayes Theorem

$$
\begin{aligned}
& \mathbf{P}(\mathbf{A} \mid \mathbf{B})=\mathbf{P}(\mathbf{B} \mid \mathbf{A}) * \mathbf{P}(\mathbf{A}) / \mathbf{P}(\mathbf{B}) \\
& \mathbf{P}(\mathbf{B} \mid \mathbf{A})=\mathbf{P}(\mathbf{A} \mid \mathbf{B}) * \mathbf{P}(\mathbf{B}) / \mathbf{P}(\mathbf{A}
\end{aligned}
$$

Sample Space for events A and B

A holds	T	T	F	F	T	F	T
B holds	T	F	T	F	T	F	F

$\mathrm{P}(\mathrm{A})=4 / 7 \quad \mathrm{P}(\mathrm{B})=3 / 7 \quad \mathrm{P}(\mathrm{A}, \mathrm{B})=\mathrm{P}(\mathrm{B}, \mathrm{A})=2 / 7$
$\mathrm{P}(\mathrm{B} \mid \mathrm{A})=2 / 4 \quad \mathrm{P}(\mathrm{A} \mid \mathrm{B})=2 / 3$

Is Bayes Theorem correct?
$\mathrm{P}(\mathrm{B} \mid \mathrm{A})=\mathrm{P}(\mathrm{A} \mid \mathrm{B}) * \mathrm{P}(\mathrm{B}) / \mathrm{P}(\mathrm{A})=(2 / 3 * 3 / 7) / 4 / 7=2 / 4$
$\mathrm{P}(\mathrm{A} \mid \mathrm{B})=\mathrm{P}(\mathrm{B} \mid \mathrm{A}) * \mathrm{P}(\mathrm{A}) / \mathrm{P}(\mathrm{B})=(2 / 4 * 4 / 7) / 3 / 7=2 / 3$
\rightarrow CORRECT
\rightarrow CORRECT

Bayes Theorem - Example

- Given:
- A doctor knows that meningitis causes stiff neck 50% of the time

$$
\mathrm{P}(\mathrm{~S} \mid \mathrm{M})=0.5
$$

- Prior probability of any patient having meningitis is $1 / 50,000$

$$
\mathrm{P}(\mathrm{M})=1 / 50,000
$$

- Prior probability of any patient having stiff neck is $1 / 20$

$$
P(S)=1 / 20
$$

- If a patient has stiff neck, what's the probability he/she has meningitis? $\mathbf{P}(\mathbf{M} \mid \mathbf{S})$?

$$
P(M \mid S)=\frac{P(S \mid M) P(M)}{P(S)}=\frac{0.5 \times 1 / 50000}{1 / 20}=0.0002
$$

Maximum A Posteriori (MAP) Hypothesis, $\mathbf{h}_{\text {MAP }}$

- The learner considers some set of candidate hypotheses H and it is interested in finding the most probable hypothesis $\mathrm{h} \in \mathrm{H}$ given the observed data D
- Any such maximally probable hypothesis is called a maximum a posteriori (MAP) hypothesis $\boldsymbol{h}_{\text {MaP }}$.
- We can determine the MAP hypotheses by using Bayes theorem to calculate the posterior probability of each candidate hypothesis.

$$
\begin{aligned}
& \mathbf{h}_{\mathbf{M A P}}=\underset{\mathbf{h} \in \mathbf{H}}{\operatorname{argmax}} \mathbf{P}(\mathbf{h} \mid \mathbf{D}) \\
& \mathbf{h}_{\mathrm{MAP}}=\underset{\mathbf{h} \in \mathrm{H}}{\operatorname{argmax}} \frac{\mathrm{p}(\mathrm{D} \mid \mathrm{h}) \mathrm{P}(\mathrm{~h})}{P(\mathrm{D})} \\
& \mathbf{h}_{\mathbf{M A P}}=\underset{\mathbf{h} \in \mathbf{H}}{\operatorname{argmax}} \mathbf{P}(\mathbf{D} \mid \mathbf{h}) \mathbf{P}(\mathbf{h})
\end{aligned}
$$

Maximum Likelihood (ML) Hypothesis, $\mathbf{h}_{\text {ML }}$

- If we assume that every hypothesis in H is equally probable
i.e. $P\left(h_{i}\right)=P\left(h_{j}\right)$ for all h_{i} and h_{j} in H

We can only consider $\mathrm{P}(\mathrm{D} \mid \mathrm{h})$ to find the most probable hypothesis.

- $\mathrm{P}(\mathrm{D} \mid \mathrm{h})$ is often called the likelihood of the data \boldsymbol{D} given \boldsymbol{h}
- Any hypothesis that maximizes $\mathrm{P}(\mathrm{D} \mid \mathrm{h})$ is called a maximum likelihood (ML) hypothesis, $\boldsymbol{h}_{M L}$.

$$
\mathbf{h}_{\mathrm{ML}}=\underset{\mathbf{h} \in \mathrm{H}}{\operatorname{argmax}} \mathbf{P}(\mathbf{D} \mid \mathbf{h})
$$

Example - Does patient have cancer or not?

- The test returns
- a correct positive result in only 98% of the cases in which the disease is actually present,
- a correct negative result in only 97% of the cases in which the disease is not present.
- Furthermore, .008 of the entire population have cancer.
$\mathrm{P}($ cancer $)=.008 \quad \mathrm{P}($ notcancer $)=.992$
$\mathrm{P}(+$ cancer $)=.98 \quad \mathrm{P}(-$ |cancer $)=.02$
$\mathrm{P}(+$ notcancer $)=.03 \quad \mathrm{P}(-\mid$ notcancer $)=.97$
- A patient takes a lab test and the result comes back positive.
$\mathrm{P}(+\mid$ cancer $) \mathrm{P}($ cancer $)=.98 * .008=.0078$
$\mathrm{P}(+\mid$ notcancer $) \mathrm{P}($ notcancer $)=.03 * .992=.0298$
$\rightarrow h_{M A P}$ is notcancer
- \quad Since $\mathrm{P}($ cancer + + $)+\mathrm{P}($ notcancer +) must be 1
$\mathrm{P}($ cancer $\mid+)=.0078 /(.0078+.0298)=.21$
$\mathrm{P}($ notcancer $\mid+)=.0298 /(.0078+.0298)=.79$

Basic Formulas for Probabilities

Product Rule: Probability $\mathrm{P}(\mathrm{A} \wedge \mathrm{B})$ of a conjunction of two events A and B

$$
\mathrm{P}(\mathrm{~A} \wedge \mathrm{~B})=\mathrm{P}(\mathrm{~A} \mid \mathrm{B}) \mathrm{P}(\mathrm{~B})=\mathrm{P}(\mathrm{~B} \mid \mathrm{A}) \mathrm{P}(\mathrm{~A})
$$

Sum Rule: Probability $\mathrm{P}(\mathrm{A} \vee \mathrm{B})$ of a disjunction of two events A and B

$$
\mathrm{P}(\mathrm{~A} \vee \mathrm{~B})=\mathrm{P}(\mathrm{~A})+\mathrm{P}(\mathrm{~B})-\mathrm{P}(\mathrm{~A} \wedge \mathrm{~B})
$$

Theorem of Total Probability:
If events $\mathrm{A}_{1}, \ldots, \mathrm{~A}_{\mathrm{n}}$ are mutually exclusive with $\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{P}\left(\mathrm{A}_{\mathrm{i}}\right)=1$

$$
\mathrm{P}(\mathrm{~B})=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{P}\left(\mathrm{~B} \mid \mathrm{A}_{\mathrm{i}}\right) \mathrm{P}\left(\mathrm{~A}_{\mathrm{i}}\right)
$$

Brute-Force Bayes Concept Learning

- A Concept-Learning algorithm considers a finite hypothesis space \mathbf{H} defined over an instance space \mathbf{X}
- The task is to learn the target concept (a function) $\mathbf{c}: \mathbf{X} \boldsymbol{\rightarrow 0 , 1 \}}$.
- The learner gets a set of training examples ($\left\langle\mathbf{x}_{\mathbf{1}}, \mathbf{d}_{\mathbf{l}}\right\rangle \ldots\left\langle\mathbf{x}_{\mathbf{m}}, \mathbf{d}_{\mathbf{m}}\right\rangle$) where $\mathbf{x}_{\mathbf{i}}$ is an instance from \mathbf{X} and $\mathbf{d}_{\mathbf{i}}$ is its target value (i.e. $\left.c\left(\boldsymbol{x}_{\boldsymbol{i}}\right)=\boldsymbol{d}_{\boldsymbol{i}}\right)$.
- Brute-Force Bayes Concept Learning Algorithm finds the maximum a posteriori hypothesis ($\mathrm{h}_{\mathrm{MAP}}$), based on Bayes theorem.

Brute-Force MAP Learning Algorithm

1. For each hypothesis h in H , calculate the posterior probability

$$
\mathrm{P}(\mathrm{~h} \mid \mathrm{D})=\frac{\mathrm{P}(\mathrm{D} \mid \mathrm{h}) \mathrm{P}(\mathrm{~h})}{\mathrm{P}(\mathrm{D})}
$$

2. Output the hypothesis $\mathrm{h}_{\mathrm{MAP}}$ with the highest posterior probability

$$
\mathrm{h}_{\mathrm{MAP}}=\underset{\mathrm{h} \in \mathrm{H}}{\operatorname{argmax}} \mathrm{P}(\mathrm{~h} \mid \mathrm{D})
$$

- This algorithm may require significant computation, because it applies Bayes theorem to each hypothesis in H to calculate $\mathrm{P}(\mathrm{h} \mid \mathrm{D})$.
- While this is impractical for large hypothesis spaces,
- The algorithm is still of interest because it provides a standard against which we may judge the performance of other concept learning algorithms.

Brute-Force MAP Learning Algorithm

- Brute-Force MAP learning algorithm must specify values for $\mathrm{P}(\mathrm{h})$ and $\mathrm{P}(\mathrm{D} \mid \mathrm{h})$.
- $\mathrm{P}(\mathrm{h})$ and $\mathrm{P}(\mathrm{D} \mid \mathrm{h})$ must be chosen to be consistent with the assumptions:

1. The training data D is noise free (i.e., $d_{i}=c\left(x_{i}\right)$).
2. The target concept c is contained in the hypothesis space H
3. We have no a priori reason to believe that any hypothesis is more probable than any other.

- With these assumptions:

$$
\begin{aligned}
& \mathrm{P}(\mathrm{~h})=\frac{1}{|H|} \text { for all } \mathrm{h} \text { in } \mathrm{H} \\
& \mathrm{P}(\mathrm{D} \mid \mathrm{h})= \begin{cases}1 & \text { if } d_{i}=h\left(x_{i}\right) \text { for all } d_{i} \text { in } D \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Brute-Force MAP Learning Algorithm

- So, the values of $\mathrm{P}(\mathrm{h} \mid \mathrm{D})$ will be:

$$
\begin{array}{ll}
\mathrm{P}(\mathrm{~h} \mid \mathrm{D})=\frac{0 \cdot \mathrm{P}(\mathrm{~h})}{\mathrm{P}(\mathrm{D})}=0 & \text { if } \mathrm{h} \text { is inconsistent with } \mathrm{D} \\
P(h \mid D)=\frac{1 \cdot \frac{1}{|H|}}{P(D)}=\frac{1 \cdot \frac{1}{|H|}}{\frac{\left|V S_{H, D}\right|}{|H|}}=\frac{1}{\left|V S_{H, D}\right|} & \text { if } \mathrm{h} \text { is consistent with } \mathrm{D}
\end{array}
$$

where $\mathrm{VS}_{\mathrm{H}, \mathrm{D}}$ is the version space of H with respect to D .

- $\mathrm{P}(\mathrm{D})=\left|\mathrm{VS}_{\mathrm{H}, \mathrm{D}}\right| /|\mathrm{H}|$ because
- the sum over all hypotheses of $\mathrm{P}(\mathrm{h} \mid \mathrm{D})$ must be one and the number of hypotheses from H consistent with D is $\left|\mathrm{VS}_{\mathrm{H}, \mathrm{D}}\right|$, or
- we can derive $\mathrm{P}(\mathrm{D})$ from the theorem of total probability and the fact that the hypotheses are mutually exclusive (i.e., $(\forall \mathrm{i} \neq \mathrm{j})\left(\mathrm{P}\left(\mathrm{h}_{\mathrm{i}} \wedge \mathrm{h}_{\mathrm{j}}\right)=0\right)$

$$
P(D)=\sum_{h_{i}} P\left(D \mid h_{i}\right) P\left(h_{i}\right)=\sum_{h_{i} \in V S_{H, D}} 1 \cdot \frac{1}{|H|}+\sum_{h_{i} \notin V S_{H, D}} 0 \cdot \frac{0}{|H|}=\sum_{h_{i} \in V S_{H, D}} 1 \cdot \frac{1}{|H|}=\frac{\left|V S_{H, D}\right|}{|H|}
$$

Evolution of posterior probabilities $\mathbf{P}(\mathbf{h} \mid \mathbf{D})$ with increasing training data.

- Uniform prior probabilities assign equal probability to each hypothesis without considering any example in the data set.
- As training data increases to D 1 , then to $\mathrm{D} 1 \wedge \mathrm{D} 2$,
- the posterior probability of inconsistent hypotheses becomes zero,
- while posterior probabilities increase for hypotheses remaining in the version space.

MAP Hypotheses and Consistent Learners

- A learning algorithm is a consistent learner if it outputs a hypothesis that commits zero errors over the training examples.
- Every consistent learner outputs a MAP hypothesis, if we assume
- a uniform prior probability distribution over H (i.e., $\mathrm{P}\left(\mathrm{h}_{\mathrm{i}}\right)=\mathrm{P}\left(\mathrm{h}_{\mathrm{j}}\right)$ for all $\left.\mathrm{i}, \mathrm{j}\right)$, and
- deterministic, noise free training data (i.e., $\mathrm{P}(\mathrm{D} \mid \mathrm{h})=1$ if D and h are consistent, and 0 otherwise).
- Because FIND-S outputs a consistent hypothesis, it will output a MAP hypothesis under the probability distributions $\mathrm{P}(\mathrm{h})$ and $\mathrm{P}(\mathrm{D} \mid \mathrm{h})$ defined above.
- Are there other probability distributions for $\mathrm{P}(\mathrm{h})$ and $\mathrm{P}(\mathrm{D} \mid \mathrm{h})$ under which FIND-S outputs MAP hypotheses? Yes.
- Because FIND-S outputs a maximally specific hypothesis from the version space, its output hypothesis will be a MAP hypothesis relative to any prior probability distribution that favors more specific hypotheses.
- More precisely, suppose we have a probability distribution $\mathrm{P}(\mathrm{h})$ over H that assigns $P\left(h_{1}\right) \geq P\left(h_{2}\right)$ if h_{1} is more specific than h_{2}.

Maximum Likelihood and Least-Squared Error Hypotheses

- Many learning approaches such as neural network learning, linear regression, and polynomial curve fitting try to learn a continuous-valued target function.
- Under certain assumptions any learning algorithm that minimizes the squared error between the output hypothesis predictions and the training data will output a Maximum Likelihood Hypothesis.
- Any hypothesis that maximizes $\mathbf{P}(\mathrm{D} \mid \mathrm{h})$ is called a maximum likelihood (ML) hypothesis, \mathbf{h}_{ML}.
$-\mathbf{h}_{\mathrm{ML}}=\underset{\mathbf{h} \in \mathrm{H}}{\operatorname{argmax}} \mathbf{P}(\mathbf{D} \mid \mathbf{h})$
- The significance of this result is that it provides a Bayesian justification (under certain assumptions) for many neural network and other curve fitting methods that attempt to minimize the sum of squared errors over the training data.

Learning A Continuous-Valued Target Function

- Learner L considers an instance space X and a hypothesis space H consisting of some class of real-valued functions defined over X.
- The problem faced by L is to learn an unknown target function f drawn from H .
- A set of m training examples is provided, where the target value of each example is corrupted by random noise drawn according to a Normal probability distribution
- Each training example is a pair of the form $\left(x_{i}, d_{i}\right)$ where $d_{i}=f\left(x_{i}\right)+e_{i}$.
- Here $f\left(x_{i}\right)$ is the noise-free value of the target function and e_{i} is a random variable representing the noise.
- It is assumed that the values of the e_{i} are drawn independently and that they are distributed according to a Normal distribution with zero mean.
- The task of the learner is to output a maximum likelihood hypothesis, or, equivalently, a MAP hypothesis assuming all hypotheses are equally probable a priori.

Learning A Linear Function

- The target function f corresponds to the solid line.
- The training examples $\left(\mathrm{x}_{\mathrm{i}}, \mathrm{d}_{\mathrm{i}}\right)$ are assumed to have Normally distributed noise e_{i} with zero mean added to the true target value $\mathrm{f}\left(\mathrm{x}_{\mathrm{i}}\right)$.
- The dashed line corresponds to the hypothesis h_{ML} with least-squared training error, hence the maximum likelihood hypothesis.
- Notice that the maximum likelihood hypothesis is not necessarily identical to the correct hypothesis, f , because it is inferred from only a limited sample of noisy training data.

Basic Concepts from Probability Theory

- Before showing why a hypothesis that minimizes the sum of squared errors in this setting is also a maximum likelihood hypothesis, let us quickly review basic concepts from probability theory
- A random variable can be viewed as the name of an experiment with a probabilistic outcome. Its value is the outcome of the experiment.
- A probability distribution for a random variable Y specifies the probability $\operatorname{Pr}(Y=y)$ that Y will take on the value y_{i}, for each possible value y_{i}.
- The expected value, or mean, of a random variable Y is $E[Y]=\sum_{i} y_{i} \operatorname{Pr}\left(Y=y_{i}\right)$. The symbol μ_{Y} is commonly used to represent $\mathrm{E}[\mathrm{Y}]$.
- The variance of a random variable is $\operatorname{Var}(Y)=E\left[\left(Y-\mu_{Y}\right)^{2}\right]$. The variance characterizes the width or dispersion of the distribution about its mean.
- The standard deviation of Y is $\sqrt{\operatorname{Var}(Y)}$. The symbol σ_{Y} is often used used to represent the standard deviation of Y.
- The Normal distribution is a bell-shaped probability distribution that covers many natural phenomena.
- The Central Limit Theorem is a theorem stating that the sum of a large number of independent, identically distributed random variables approximately follows a Normal distribution.

Basic Concepts from Probability Theory

A Normal Distribution (Gaussian Distribution) is a bell-shaped distribution defined by the probability density function

$$
\mathrm{p}(\mathrm{x})=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \mathrm{e}^{-\frac{1}{2}\left(\frac{\mathrm{x}-\mu}{\sigma}\right)^{2}}
$$

- A Normal distribution is fully determined by two parameters in the formula: μ and σ.
- If the random variable X follows a normal distribution:
- The probability that X will fall into the interval (a, b) is
- The expected, or mean value of $\boldsymbol{X}, \mathrm{E}[\mathrm{X}]=\mu$

$$
\int_{a}^{b} p(x) d(x)
$$

- The variance of $X, \operatorname{Var}(\mathrm{X})=\sigma^{2}$
- The standard deviation of $X, \sigma_{x}=\sigma$
- The Central Limit Theorem states that the sum of a large number of independent, identically distributed random variables follows a distribution that is approximately Normal.

Maximum Likelihood and

Least-Squared Error Hypotheses - Deriving $\mathbf{h}_{\text {ML }}$

- In order to find the maximum likelihood hypothesis, we start with our earlier definition but using lower case \boldsymbol{p} to refer to the probability density function.

$$
\mathrm{h}_{\mathrm{ML}}=\underset{\mathrm{h} \in \mathrm{H}}{\operatorname{argmax}} \mathrm{p}(\mathrm{D} \mid \mathrm{h})
$$

- We assume a fixed set of training instances $\left(\mathrm{x}_{1} \ldots \mathrm{x}_{\mathrm{m}}\right)$ and therefore consider the data D to be the corresponding sequence of target values $D=\left(d_{1} \ldots d_{m}\right)$.
- Here $d_{i}=f\left(x_{i}\right)+e_{i}$. Assuming the training examples are mutually independent given h, we can write $p(D \mid h)$ as the product of the various $p\left(d_{i} \mid h\right)$

$$
\mathrm{h}_{\mathrm{ML}}=\underset{\mathrm{h} \in \mathrm{H}}{\operatorname{argmax}} \prod_{\mathrm{i}=1}^{\mathrm{m}} \mathrm{p}\left(\mathrm{~d}_{\mathrm{i}} \mid \mathrm{h}\right)
$$

Maximum Likelihood and

Least-Squared Error Hypotheses - Deriving $\mathbf{h}_{\text {ML }}$

- Given that the noise e_{i} obeys a Normal distribution with zero mean and unknown variance σ^{2}, each d_{i} must also obey a Normal distribution with variance σ^{2} centered around the true target value $f\left(x_{i}\right)$ rather than zero.
- $p\left(d_{i} \mid h\right)$ can be written as a Normal distribution with variance σ^{2} and mean $\mu=f\left(x_{i}\right)$.
- Let us write the formula for this Normal distribution to describe $\mathrm{p}\left(\mathrm{d}_{\mathrm{i}} \mid \mathrm{h}\right)$, beginning with the general formula for a Normal distribution and substituting appropriate μ and σ^{2}.
- Because we are writing the expression for the probability of d_{i} given that h is the correct description of the target function f , we will also substitute $\mu=\mathrm{f}\left(\mathrm{x}_{\mathrm{i}}\right)=\mathrm{h}\left(\mathrm{x}_{\mathrm{i}}\right)$,

$$
\begin{aligned}
& \mathrm{h}_{\mathrm{ML}}=\underset{\mathrm{h} \in \mathrm{H}}{\operatorname{argmax}} \prod_{\mathrm{i}=1}^{\mathrm{m}} \mathrm{p}\left(\mathrm{~d}_{\mathrm{i}} \mid \mathrm{h}\right) \quad \quad \mathrm{h}_{\mathrm{ML}}=\underset{\mathrm{h} \in \mathrm{H}}{\operatorname{argmax}} \prod_{\mathrm{i}=1}^{\mathrm{m}} \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{1}{2 \sigma^{2}}\left(d_{i}-\mu\right)^{2}} \\
& \mathbf{h}_{\mathbf{M L}}=\underset{\mathbf{h} \in \mathbf{H}}{\operatorname{argmax}} \prod_{\mathbf{i}=\mathbf{1}}^{m} \frac{1}{\sqrt{\mathbf{2 \pi \boldsymbol { \sigma } ^ { \mathbf { 2 } }}}} \boldsymbol{e}^{-\frac{\mathbf{1}}{\mathbf{2 \boldsymbol { \sigma } ^ { \mathbf { 2 } }}}\left(\boldsymbol{d}_{\boldsymbol{i}}-\mathbf{h}\left(\boldsymbol{x}_{\boldsymbol{i}}\right)\right)^{\mathbf{2}}}
\end{aligned}
$$

Maximum Likelihood and

Least-Squared Error Hypotheses - Deriving $\mathbf{h}_{\text {ML }}$

- Maximizing $\ln \mathbf{p}$ also maximizes \mathbf{p}.

$$
\mathrm{h}_{\mathrm{ML}}=\underset{\mathrm{h} \in \mathrm{H}}{\operatorname{argmax}} \sum_{\mathrm{i}=1}^{\mathrm{m}} \ln \frac{1}{\sqrt{2 \pi \sigma^{2}}}-\frac{1}{2 \sigma^{2}}\left(\mathrm{~d}_{\mathrm{i}}-\mathrm{h}\left(\mathrm{x}_{\mathrm{i}}\right)\right)^{2}
$$

- First term is constant, discard it.

$$
\mathrm{h}_{\mathrm{ML}}=\underset{\mathrm{h} \in \mathrm{H}}{\operatorname{argmax}} \sum_{\mathrm{i}=1}^{\mathrm{m}}-\frac{1}{2 \sigma^{2}}\left(\mathrm{~d}_{\mathrm{i}}-\mathrm{h}\left(\mathrm{x}_{\mathrm{i}}\right)\right)^{2}
$$

- Maximizing the negative quantity is equivalent to minimizing the corresponding positive quantity.

$$
\mathrm{h}_{\mathrm{ML}}=\underset{\mathrm{h} \in \mathrm{H}}{\operatorname{argmin}} \sum_{\mathrm{i}=1}^{\mathrm{m}} \frac{1}{2 \sigma^{2}}\left(\mathrm{~d}_{\mathrm{i}}-\mathrm{h}\left(\mathrm{x}_{\mathrm{i}}\right)\right)^{2}
$$

- Finally, we can again discard constants that are independent of \boldsymbol{h}.

$$
\mathbf{h}_{M L}=\underset{h \in H}{\operatorname{argmin}} \sum_{i=1}^{m}\left(d_{i}-h\left(x_{i}\right)\right)^{2}
$$

Maximum Likelihood and Least-Squared Error Hypotheses

- The maximum likelihood hypothesis h_{ML} is the one that minimizes the sum of the squared errors between observed training values d_{i} and hypothesis predictions $h\left(\mathrm{x}_{\mathrm{i}}\right)$.
- This holds under the assumption that the observed training values d_{i} are generated by adding random noise to the true target value, where this random noise is drawn independently for each example from a Normal distribution with zero mean.
- Similar derivations can be performed starting with other assumed noise distributions, producing different results.
- Why is it reasonable to choose the Normal distribution to characterize noise?
- One reason, is that it allows for a mathematically straightforward analysis.
- A second reason is that the smooth, bell-shaped distribution is a good approximation to many types of noise in physical systems.
- Minimizing the sum of squared errors is a common approach in many neural network, curve fitting, and other approaches to approximating real-valued functions.

Bayes Optimal Classifier

- Normally we consider:
- What is the most probable hypothesis given the training data?
- We can also consider:
- What is the most probable classification of the new instance given the training data?
- Consider a hypothesis space containing three hypotheses, $\mathrm{hl}, \mathrm{h} 2$, and h 3 .
- Suppose that the posterior probabilities of these hypotheses given the training data are $.4, .3$, and .3 respectively.
- Thus, hl is the MAP hypothesis.
- Suppose a new instance x is encountered, which is classified positive by $h l$, but negative by $h 2$ and h 3 .
- Taking all hypotheses into account, the probability that x is positive is .4 (the probability associated with $h 1$), and the probability that it is negative is .6 .
- The most probable classification (negative) in this case is different from the classification generated by the MAP hypothesis.

Bayes Optimal Classifier

- The most probable classification of the new instance is obtained by combining the predictions of all hypotheses, weighted by their posterior probabilities.
- If the possible classification of the new example can take on any value $\boldsymbol{v}_{\boldsymbol{j}}$ from some set \mathbf{V}, then the probability $\mathbf{P}\left(\mathbf{v}_{\mathbf{j}} \mid \mathbf{D}\right)$ that the correct classification for the new instance is \boldsymbol{v}_{j} :

$$
\mathbf{P}\left(\mathbf{v}_{\mathbf{j}} \mid \mathbf{D}\right)=\sum_{\mathbf{h}_{\mathbf{i}} \in \mathbf{H}} \mathbf{P}\left(\mathbf{v}_{\mathbf{j}} \mid \mathbf{h}_{\mathbf{i}}\right) \mathbf{P}\left(\mathbf{h}_{\mathbf{i}} \mid \mathbf{D}\right)
$$

- Bayes optimal classification:

$$
\underset{\mathbf{v}_{\mathbf{j}} \in \mathbf{V}}{\operatorname{argmax}} \sum_{\mathbf{h}_{\mathbf{i}} \in \mathbf{H}} \mathbf{P}\left(\mathbf{v}_{\mathbf{j}} \mid \mathbf{h}_{\mathbf{i}}\right) \mathbf{P}\left(\mathbf{h}_{\mathbf{i}} \mid \mathbf{D}\right)
$$

Bayes Optimal Classifier - Example

$$
\begin{array}{lll}
\mathrm{P}\left(\mathrm{~h}_{1} \mid \mathrm{D}\right)=.4 & \mathrm{P}\left(-\mid \mathrm{h}_{1}\right)=0 & \mathrm{P}\left(+\mid \mathrm{h}_{1}\right)=1 \\
\mathrm{P}\left(\mathrm{~h}_{2} \mid \mathrm{D}\right)=.3 & \mathrm{P}\left(-\mid \mathrm{h}_{2}\right)=1 & \mathrm{P}\left(+\mid \mathrm{h}_{2}\right)=0 \\
\mathrm{P}\left(\mathrm{~h}_{3} \mid \mathrm{D}\right)=.3 & \mathrm{P}\left(-\mid \mathrm{h}_{3}\right)=1 & \mathrm{P}\left(+\mid \mathrm{h}_{3}\right)=0
\end{array}
$$

Probabilities:

$$
\begin{aligned}
& \sum_{h_{i} \in H} P\left(+\mid h_{i}\right) P\left(h_{i} \mid D\right)=.4 \\
& \sum_{h_{i} \in H} P\left(-\mid h_{i}\right) P\left(h_{i} \mid D\right)=.6
\end{aligned}
$$

Result:

$$
\underset{\mathbf{v}_{\mathbf{j}} \in\{+,-\}}{\operatorname{argmax}} \sum_{\mathbf{h}_{\mathbf{i}} \in \mathbf{H}} \mathbf{P}\left(\mathbf{v}_{\mathbf{j}} \mid \mathbf{h}_{\mathbf{i}}\right) \mathbf{P}\left(\mathbf{h}_{\mathbf{i}} \mid \mathbf{D}\right) \Rightarrow-
$$

Bayes Optimal Classifier

- Although the Bayes optimal classifier obtains the best performance that can be achieved from the given training data, it can be quite costly to apply.
- The expense is due to the fact that it computes the posterior probability for every hypothesis in H and then combines the predictions of each hypothesis to classify each new instance.
- An alternative, less optimal method is the Gibbs algorithm:

1. Choose a hypothesis \boldsymbol{h} from H at random, according to the posterior probability distribution over H .
2. Use \boldsymbol{h} to predict the classification of the next instance \boldsymbol{x}.

Naive Bayes Classifier

- One highly practical Bayesian learning method is Naive Bayes Learner (Naive Bayes Classifier).
- The naive Bayes classifier applies to learning tasks where each instance \boldsymbol{x} is described by a conjunction of attribute values and where the target function $\mathrm{f}(\mathrm{x})$ can take on any value from some finite set V .
- A set of training examples is provided, and a new instance is presented, described by the tuple of attribute values $\left(\mathbf{a}_{1}, \mathbf{a}_{2} \ldots \mathbf{a}_{\mathbf{n}}\right)$.
- The learner is asked to predict the target value (classification), for this new instance.

Naive Bayes Classifier

- The Bayesian approach to classifying the new instance is to assign the most probable target value $v_{M A P}$, given the attribute values $\left(a_{1}, a_{2} \ldots a_{n}\right)$ that describe the instance.

$$
\mathbf{v}_{\mathbf{M A P}}=\underset{\mathbf{v}_{\mathbf{j}} \in \mathbf{V}}{\operatorname{argmax}} P\left(\mathbf{v}_{\mathbf{j}} \mid \mathbf{a}_{1}, \ldots, \mathbf{a}_{\mathbf{n}}\right)
$$

- By Bayes theorem:

$$
\begin{aligned}
& \mathbf{v}_{\mathbf{M A P}}=\underset{\mathbf{v}_{\mathbf{j}} \in \mathbf{V}}{\operatorname{argmax}} \frac{P\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{\mathbf{n}} \mid \mathbf{v}_{\mathbf{j}}\right) \mathbf{P}\left(\mathbf{v}_{\mathbf{j}}\right)}{P\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{\mathbf{n}}\right)} \\
& \mathbf{v}_{\mathbf{M A P}}=\underset{\mathbf{v}_{\mathbf{j}} \in \mathbf{V}}{\operatorname{argmax}} P\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{\mathbf{n}} \mid \mathbf{v}_{\mathbf{j}}\right) P\left(\mathbf{v}_{\mathbf{j}}\right)
\end{aligned}
$$

Naive Bayes Classifier

- It is easy to estimate each of the $\mathbf{P}\left(\mathbf{v}_{\mathbf{j}}\right)$ simply by counting the frequency with which each target value $\mathbf{v}_{\mathbf{j}}$ occurs in the training data.
- However, estimating the different $\mathbf{P}\left(\mathbf{a}_{1}, \mathbf{a}_{2} \ldots \mathbf{a}_{\mathbf{n}} \mid \mathbf{v}_{\mathbf{j}}\right)$ terms is not feasible unless we have a very, very large set of training data.
- The problem is that the number of these terms is equal to the number of possible instances times the number of possible target values.
- Therefore, we need to see every instance in the instance space many times in order to obtain reliable estimates.
- The naive Bayes classifier is based on the simplifying assumption that the attribute values are conditionally independent given the target value.
- For a given the target value of the instance, the probability of observing conjunction $\mathbf{a}_{1}, \mathbf{a}_{2} \ldots \mathbf{a}_{\mathbf{n}}$, is just the product of the probabilities for the individual attributes:

$$
P\left(a_{1}, \ldots, a_{n} \mid v_{j}\right)=\prod_{i} P\left(a_{i} \mid v_{j}\right)
$$

Naive Bayes classifier: $\quad \mathbf{v}_{\mathbf{N B}}=\underset{\mathbf{v}_{\mathbf{j}} \in \mathbf{V}}{\operatorname{argmax}} P\left(\mathbf{v}_{\mathbf{j}}\right) \prod_{\mathbf{i}} P\left(\mathbf{a}_{\mathbf{i}} \mid \mathbf{v}_{\mathbf{j}}\right)$

Naive Bayes Classifier: Independence of Events

The events A and B are INDEPENDENT

$$
\text { if and only if } \quad \mathbf{P}(\mathbf{A}, \mathbf{B})=\mathbf{P}(\mathbf{A}) * \mathbf{P}(\mathbf{B})
$$

Example: Bit strings of length 3 is $\{000,001,010,011,100,101,110,111\}$
Event A: A randomly generated bit string of length three begins with a 1.
Event B: A randomly generated bit string of length three ends with a 1.
$\mathrm{P}(\mathrm{A})=4 / 8 \quad 100,101,110,111 \quad \mathrm{P}(\mathrm{B})=4 / 8 \quad 001,011,101,111$
$\mathrm{P}(\mathrm{A}, \mathrm{B})=2 / 8 \quad 101,111 \quad$ Are A and B independent?
$\mathrm{P}(\mathrm{A}) * \mathrm{P}(\mathrm{B})=(4 / 8) *(4 / 8)=16 / 64=2 / 8=\mathrm{P}(\mathrm{A}, \mathrm{B})$
$\quad \rightarrow$ A and B are independent.

Event C: A randomly generated bit string of length three contains with two 1s.
$\mathrm{P}(\mathrm{C})=3 / 8 \quad 011,101,110$
$\mathrm{P}(\mathrm{A}, \mathrm{C})=2 / 8 \quad 101,110 \quad$ Are A and C independent $?$
$\mathrm{P}(\mathrm{A}) * \mathrm{P}(\mathrm{C})=(4 / 8)^{*}(3 / 8)=12 / 64=3 / 16 \neq 2 / 8$
$\quad \rightarrow$ A and C are NOT independent.

Naive Bayes Classifier - Example

Day	Outlook	Temp.	Humidity	Wind	Play Tennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Weak	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Strong	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Naive Bayes Classifier - Example

- New instance to classify:
(Outlook=sunny, Temperature=cool, Humidity=high, Wind=strong)
- Our task is to predict the target value (yes or no) of the target concept PlayTennis for this new instance.

$$
\begin{aligned}
& \mathrm{v}_{\mathrm{NB}}= \underset{\mathrm{v}_{\mathbf{j}} \in\{\text { yes,no\}}}{\operatorname{argmax}} P\left(\mathrm{v}_{\mathbf{j}}\right) \quad \prod_{\mathrm{i}} \mathrm{P}\left(\mathrm{a}_{\mathbf{i}} \mid \mathrm{v}_{\mathbf{j}}\right) \\
& \mathbf{v}_{\mathrm{NB}}=\underset{\mathbf{v}_{\mathbf{j}} \in\{\text { yes,no }\}}{\operatorname{argmax}} \mathbf{P}\left(\mathbf{v}_{\mathbf{j}}\right) \mathbf{P}(\text { Outlook }=\mathbf{\text { sunny}} \mid \mathbf{v j}) P(\text { Temperature }=\mathbf{c o o l} \mid \mathbf{v j}) \\
& \mathbf{P}\left(\text { Humidity }=\mathbf{h i g h} \mid \mathbf{v}_{\mathbf{j}}\right) \mathbf{P}\left(\text { Wind }=\text { strong } \mid \mathbf{v}_{\mathbf{j}}\right)
\end{aligned}
$$

Naive Bayes Classifier - Example

- $\mathrm{P}(\mathrm{P} 1$ ayTennis $=$ yes $)=9 / 14=.64$
- $\mathrm{P}(\mathrm{P} 1$ ayTennis $=\mathrm{no})=5 / 14=.36$

$$
\begin{aligned}
& P(\text { yes }) P(\text { sunny } \mid \text { yes }) P(\text { cool } \mid \text { yes }) P(\text { high } \mid \text { yes }) P(\text { strong } \mid \text { yes })=.0053 \\
& P(\text { no }) P(\text { sunny } \mid \text { no }) P(\text { cool } \mid \text { no }) P(\text { high } \mid \text { no }) P(\text { strong } \mid \text { no })=.0206
\end{aligned}
$$

\rightarrow Thus, the naive Bayes classifier assigns the target value PlayTennis $=\boldsymbol{n o}$ to this new instance, based on the probability estimates learned from the training data.

- Furthermore, by normalizing the above quantities to sum to one we can calculate the conditional probability that the target value is $\boldsymbol{n o}$, given the observed attribute values.

$$
.0206 /(.0206+.0053)=.795
$$

Estimating Probabilities

- $\mathbf{P}\left(\right.$ Wind $=$ strong | PlayTennis=no) by the fraction $\mathbf{n}_{\mathbf{c}} / \mathbf{n}$ where $\boldsymbol{n}=5$ is the total number of training examples for which PlayTennis=no, and $\boldsymbol{n}_{\boldsymbol{c}}=3$ is the number of these for which Wind=strong.
- When $\boldsymbol{n}_{\boldsymbol{c}}$ is zero
- $\mathbf{n}_{\mathbf{c}} / \mathbf{n}$ will be zero too
- this probability term will dominate
- To avoid this difficulty we can adopt a Bayesian approach to estimating the probability, using the m-estimate defined as follows.
m-estimate of probability: $\left(\mathbf{n}_{\mathbf{c}}+\mathbf{m} * \mathbf{p}\right) /(\mathbf{n}+\mathbf{m})$
- if an attribute has \boldsymbol{k} possible values we set $\mathrm{p}=1 / \mathrm{k}$.
- $\mathrm{p}=0.5$ because Wind has two possible values.
- m is called the equivalent sample size
- augmenting the \boldsymbol{n} actual observations by an additional m virtual samples distributed according to p .

Avoiding the Zero-Probability Problem

- Naïve Bayesian prediction requires each conditional probability to be a non-zero value. Otherwise, the predicted probability will be zero

$$
\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}} \mid \mathrm{C}_{\mathrm{i}}\right)=\mathrm{P}\left(\mathrm{x}_{1} \mid \mathrm{C}_{\mathrm{i}}\right) * \mathrm{P}\left(\mathrm{x}_{2} \mid \mathrm{C}_{\mathrm{i}}\right) * \ldots * \mathrm{P}\left(\mathrm{x}_{\mathrm{n}} \mid \mathrm{C}_{\mathrm{i}}\right)
$$

- In order to avoid zero probability values, we apply smoothing techniques.
- One of these smoothing techniques is add-one smoothing.
- $\mathrm{P}\left(\mathrm{A}=\mathrm{v} 1 \mid \mathrm{C}_{\mathrm{i}}\right)=\mathrm{N}_{\mathrm{v} 1 \mathrm{Ci}} / \mathrm{N}_{\mathrm{ci}}$

$$
\begin{aligned}
& \mathrm{P}\left(\mathrm{~A}=\mathrm{v} 1 \mid \mathrm{C}_{\mathrm{i}}\right)=\left(\mathrm{N}_{\mathrm{v} 1 \mathrm{Ci}}+1\right) /\left(\mathrm{N}_{\mathrm{ci}}+3\right) \\
& \mathrm{P}\left(\mathrm{~A}=\mathrm{v} 2 \mid \mathrm{C}_{\mathrm{i}}\right)=\left(\mathrm{N}_{\mathrm{v} 2 \mathrm{Ci}}+1\right) /\left(\mathrm{N}_{\mathrm{ci}}+3\right) \\
& \mathrm{P}\left(\mathrm{~A}=\mathrm{v} 3 \mid \mathrm{C}_{\mathrm{i}}\right)=\left(\mathrm{N}_{\mathrm{v} 3 \mathrm{Ci}}+1\right) /\left(\mathrm{N}_{\mathrm{ci}}+3\right)
\end{aligned}
$$

- $\mathrm{P}\left(\mathrm{A}=\mathrm{v} 2 \mid \mathrm{C}_{\mathrm{i}}\right)=\mathrm{N}_{\mathrm{v} 2 \mathrm{Ci}} / \mathrm{N}_{\mathrm{ci}}$
- $\mathrm{P}\left(\mathrm{A}=\mathrm{v} 3 \mid \mathrm{C}_{\mathrm{i}}\right)=\mathrm{N}_{\mathrm{v} 3 \mathrm{Ci}} / \mathrm{N}_{\mathrm{ci}}$

Naive Bayes Classifier - Example

Dataset has 14 tuples.

Two classes:
buyscomputer=yes
buyscomputer=no
$\mathrm{P}(\mathrm{bc}=\mathrm{yes})=9 / 14$
$\mathrm{P}(\mathrm{bc}=\mathrm{no})=5 / 14$

age	income	student	creditrating	buyscomputer
$<=30$	high	no	fair	no
$<=30$	high	no	excellent	no
$31 \ldots 40$	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
$31 \ldots 40$	low	yes	excellent	yes
$<=30$	medium	no	fair	no
$<=30$	low	yes	fair	yes
>40	medium	yes	fair	yes
$<=30$	medium	yes	excellent	yes
$31 \ldots 40$	medium	no	excellent	yes
$31 \ldots 40$	high	yes	fair	yes
>40	medium	no	excellent	no

Naive Bayes Classifier - Example

Computing Probabilities from Training Dataset

$\mathrm{P}($ age $=\mathrm{b} 31 \mid \mathrm{bc}=\mathrm{yes})=2 / 9$
$\mathrm{P}(\mathrm{age}=\mathrm{i} 31 \mid \mathrm{bc}=\mathrm{yes})=4 / 9$
$\mathrm{P}($ age $=\mathrm{g} 40 \mid \mathrm{bc}=\mathrm{yes})=3 / 9$

P(inc=high $\mid b c=y e s)=2 / 9$
$\mathrm{P}($ inc $=$ med $\mid b c=y e s)=4 / 9$
$\mathrm{P}($ inc $=\operatorname{low} \mid \mathrm{bc}=\mathrm{yes})=3 / 9$
$\mathrm{P}($ std $=y e s \mid b c=y e s)=6 / 9$
P ($\mathrm{std}=\mathrm{no} \mid \mathrm{bc}=\mathrm{yes}$) $=3 / 9$
$\mathrm{P}(\mathrm{cr}=\mathrm{exc} \mid \mathrm{bc}=\mathrm{yes})=3 / 9$
$\mathrm{P}(\mathrm{cr}=$ fair|bc=yes $)=6 / 9$
$\mathrm{P}(\mathrm{age}=\mathrm{b} 31 \mid \mathrm{bc}=\mathrm{no})=3 / 5$
$\mathrm{P}(\mathrm{age}=\mathrm{i} 31 \mid \mathrm{bc}=\mathrm{no})=0$
$\mathrm{P}(\mathrm{age}=\mathrm{g} 40 \mid \mathrm{bc}=\mathrm{no})=2 / 5$

P (inc=high|bc=no) $=2 / 5$
$\mathrm{P}(\mathrm{inc}=\mathrm{med} \mid \mathrm{bc}=\mathrm{no})=2 / 5$
$\mathrm{P}($ inc $=$ low $\mid \mathrm{bc}=$ no $)=1 / 5$
$\mathrm{P}(\mathrm{std}=\mathrm{yes} \mid \mathrm{bc}=\mathrm{no})=1 / 5$
$\mathrm{P}(\mathrm{std}=\mathrm{no} \mid \mathrm{bc}=\mathrm{no})=4 / 5$
$\mathrm{P}(\mathrm{cr}=\mathrm{exc} \mid \mathrm{bc}=\mathrm{no})=3 / 5$
$\mathrm{P}(\mathrm{cr}=$ fair $\mid \mathrm{bc}=\mathrm{no})=2 / 5$

age	income	student	creditrating	buyscomputer
$<=30$	high	no	fair	no
$<=30$	high	no	excellent	no
$31 \ldots 40$	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
$31 \ldots 40$	low	yes	excellent	yes
$<=30$	medium	no	fair	no
$<=30$	low	yes	fair	yes
>40	medium	yes	fair	yes
$<=30$	medium	yes	excellent	yes
$31 \ldots 40$	medium	no	excellent	yes
$31 \ldots 40$	high	yes	fair	yes
>40	medium	no	excellent	no

$$
\begin{aligned}
& \mathrm{P}(\mathrm{bc}=\mathrm{yes})=9 / 14 \\
& \mathrm{P}(\mathrm{bc}=\mathrm{no})=5 / 14
\end{aligned}
$$

Naive Bayes Classifier - Example

Finding Classification

$\mathrm{X}:($ age $<=30$, income $=$ medium, student $=$ yes, creditrating $=$ fair $)$

$$
\begin{aligned}
& \mathrm{P}(\mathrm{X} \mid \mathrm{bc}=\mathrm{yes})=\mathrm{P}(\text { age }=\mathrm{b} 30 \mid \mathrm{bc}=\mathrm{yes}) * \mathrm{P}(\text { inc }=\mathrm{med} \mid \mathrm{bc}=\mathrm{yes}) * \mathrm{P}(\text { std=yes } \mid \mathrm{bc}=\mathrm{yes}) * \mathrm{P}(\mathrm{cr}=\mathrm{fair} \mid \mathrm{bc}=\mathrm{yes}) \\
& \quad=2 / 9 * 4 / 9 * 6 / 9 * 6 / 9=0.044 \\
& \mathrm{P}(\mathrm{X} \mid \mathrm{bc}=\mathrm{no})=\mathrm{P}(\text { age }=\mathrm{b} 30 \mid \mathrm{bc}=\mathrm{no}) * \mathrm{P}(\text { inc=med } \mid \mathrm{bc}=\mathrm{no}) * \mathrm{P}(\mathrm{std}=\mathrm{yes} \mid \mathrm{bc}=\mathrm{no}) * \mathrm{P}(\mathrm{cr}=\mathrm{fair\mid} \mid \mathrm{bc}=\mathrm{no}) \\
& \quad=3 / 5 * 2 / 5 * 1 / 5 * 2 / 5=0.019
\end{aligned}
$$

$P(X \mid b c=y e s) * P(b c=y e s)=0.044 * 9 / 14=0.028$
$\mathbf{P}(X \mid b c=n o) * P(b c=n o)=0.019 * 5 / 14=0.007$
\rightarrow Therefore, X belongs to class "buyscomputer $=$ yes"

Confidence of the classification: $\mathbf{0 . 0 2 8} /(0.028+0.007)=0.80 \quad \mathbf{8 0 \%}$

Learning To Classify Text

LEARN_NAIVE_BAYES_TEXT(Examples,V)

- Examples is a set of text documents along with their target values. V is the set of all possible target values.
- This function learns the probability terms $P\left(w_{k} \mid v_{j}\right)$, describing the probability that a randomly drawn word from a document in class v_{j} will be the English word w_{k}.
- It also learns the class prior probabilities $\mathrm{P}\left(\mathrm{v}_{\mathrm{j}}\right)$.

1. Collect all words, punctuation, and other tokens that occur in Examples

- Vocabulary \leftarrow the set of all distinct words and other tokens occurring in any text document from Examples

LEARN_NAIVE_BAYES_TEXT(Examples,V)

2. Calculate the required $\mathbf{P}\left(\mathbf{v}_{\mathbf{j}}\right)$ and $\mathbf{P}\left(\mathbf{w}_{\mathbf{k}} \mid \mathbf{v}_{\mathbf{j}}\right)$ probability terms

For each target value $\boldsymbol{v}_{\boldsymbol{j}}$ in \mathbf{V} do

- docs $_{\mathbf{j}} \leftarrow$ the subset of documents from Examples for which the target value is $\mathbf{v}_{\mathbf{j}}$
$-\mathbf{P}\left(\mathbf{v}_{\mathbf{j}}\right) \leftarrow \mid$ docs $_{\mathbf{j}}|/|$ Examples \mid
$-\mathbf{T e x t}_{\mathbf{j}} \leftarrow$ a single document created by concatenating all members of docs $_{\mathbf{j}}$
$-\mathbf{n} \leftarrow$ total number of distinct word positions in $\mathbf{T e x t}_{\mathbf{j}}$
- for each word $\mathbf{w}_{\mathbf{k}}$ in Vocabulary
- $\mathbf{n}_{\mathbf{k}} \leftarrow$ number of times word $\mathbf{w}_{\mathbf{k}}$ occurs in Text $_{\mathbf{j}}$
- $\mathbf{P}\left(\mathbf{w}_{\mathbf{k}} \mid \mathbf{v}_{\mathrm{j}}\right) \leftarrow\left(\mathbf{n}_{\mathrm{k}}+\mathbf{1}\right) /(\mathrm{n}+\mid$ Vocabulary $\mid)$

CLASSIFY_NAIVE_BAYES_TEXT(Doc)

- Return the estimated target value for the document Doc.
- $\mathbf{a}_{\mathbf{i}}$ denotes the word found in the $i^{\text {th }}$ position within Doc.
- positions \leftarrow all word positions in Doc that contain tokens found in Vocabulary
- Return $\mathbf{V}_{\mathbf{N B}}$, where

$$
v_{N B}=\underset{v_{j} \in V}{\operatorname{argmax}} P\left(v_{j}\right) \prod_{i \in \text { positions }} P\left(a_{i} \mid v_{j}\right)
$$

Naïve Bayes Classifier: Comments

- Advantages
- Easy to implement
- Good results obtained in most of the cases
- Disadvantages
- Assumption: class conditional independence, therefore loss of accuracy
- Practically, dependencies exist among variables
- E.g., hospitals: patients: Profile: age, family history, etc.

Symptoms: fever, cough etc., Disease: lung cancer, diabetes, etc.

- Dependencies among these cannot be modeled by Naïve Bayes Classifier
- How to deal with these dependencies? Bayesian Belief Networks

