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Bayes Theorem - Example

Sample Space for {Aholds |T |T |E |E IT
evensAandB - fpnoigs [T [F [T [F [T |F |F

P(A) =4/7 P(B)=3/7 P(B|A) = 2/4 P(AIB) = 2/3
Is Bayes Theorem correct?
P(BJA) =P(AIB) P(B) / P(A) = (2/3*3/7) /417 =2/4 = CORRECT

P(AB) = P(B|A) P(A) / P(B) = (2/4* 417 3/7 = 2/3 = CORRECT



Naive Bayes Classifier

Practical Bayesian learning method is Naive Bayes Learner (Naive Bayes Classifier).

The naive Bayes classifier applies to learning tasks where each instance x is described
by a conjunction of attribute values and where the target function f(x) can take on any
value from some finite set V.

A set of training examples is provided, and a new instance is presented, described by
the tuple of attribute values (a, a, ...a,).

The learner is asked to predict the target value (classification), for this new instance.
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Naive Bayes Classifier

The Bayesian approach to classifying the new instance is to assign the most probable
target value vy, ,p, given the attribute values (a,, a, ... a,) that describe the instance.

VMAP = argn‘llax P(vjlay, ..., ap)
V]'E

By Bayes theorem:

. P(ay,...an|vj) P(vj)
VMmap = 4drgmax P(ay,..a0)
V]'EV 7nen

argmax P(aq, ..., a,|v;) P(vj)
ViEV

VMAP
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Naive Bayes Classifier

It is easy to estimate each of the P(v;) simply by counting the frequency with which
each target value v; occurs in the training data.

However, estimating the different P(a,,a,...a, | v;) terms is not feasible unless we have
a very, very large set of training data.

— The problem is that the number of these terms is equal to the number of possible instances
times the number of possible target values.

— Therefore, we need to see every instance in the instance space many times in order to obtain
reliable estimates.

The naive Bayes classifier is based on the simplifying assumption that the attribute
values are conditionally independent given the target value.

For a given the target value of the instance, the probability of observing conjunction
a,,a,...a, , 1S Just the product of the probabilities for the individual attributes:

P(ay, ..., an|vj) = I1; P(ailvj)

Naive Bayes classifier: vyg = argmax P(v;) HiP(ai|vi)
ViEV
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Naive Bayes in a Nutshell

Bayes rule:

P(Y = yi) P(Xq .. XnlY = yi)
Y P(Y = yj) P(X; .. Xu|Y = y))

P(Y = yrlX; ... Xy) =

Assuming conditional independence among X;’s:

P(Y =yi) [I;P(X;|Y = yx)

P(Y = X Xn —
(Y = yilXy1 ... Xp) 5 P(Y = y) [;PCX:|Y = y)

So, classification rule for Xew = < XTeW  XDeW> js:

Y"¥ — argmax P(Y =y) 1_[ PX?Y|Y = yik)
Yk ;
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Naive Bayes in a Nutshell

« Another way to view Naive Bayes when Y is a Boolean attribute:

« Decision rule: is this quantity greater or less than 1?

P(Y=1[X;..Xy)  P(Y=1) [[;PE|Y =1)
P(Y=0[X;..X,) P(Y=0) [[,PX;|]Y =0)
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Naive Bayes in a Nutshell

What if we have continuous X; ?

Still we have:

P(Y =y) [LPXilY = yi)

P(Y = X Xn —
(Y = yilXq . Xn) > P(Y = yj) [I; PCX:|Y = y))

Just need to decide how to represent P(X; | Y)

Common approach: assume P(Xi|Y=y,) follows a Normal (Gaussian) distribution
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Gaussian Distribution

(also called “Normal Distribution”)

Nommal distnbution with mean 0, standard deviation 1

0.4 A Normal Distribution

035 | . (Gaussian Distribution) is a

03t T bell-shaped distribution defined

0.35 | T by probability density function

02 b _

0.15 | -

01t . 1 _1 (ﬂ)z

005 | i p(x) = e2\o
. . | e 21162

-3 2 -1 0
« A Normal distribution is fully determined by two parameters in the formula: pand .
* If the random variable X follows a normal distribution:

- The probability that X will fall into the interval (a, b) is jbp(x) d(x)
- The expected, or mean value of X, E[X] = 2
- The variance of X, Var(X) = ¢?

- The standard deviation of X, o, =c
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Gaussian Naive Bayes (GNB)

Gaussian Naive Bayes (GNB) assumes

o, = xl¥ =y = 1 e3 (o)

/ 21wi2k

where

Uik 1S the mean of X; values of the instances whose Y attribute is y,.
oik IS the standard deviation of X; values of the instances whose Y attribute is y,.

Sometimes o;, and p; are assumed as o; and ;
* independent of Y

Machine Learning
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Gaussian Naive Bayes Algorithm
continuous X; (but still discrete Y)

Train Gaussian Naive Bayes Classifier: For each value y,
— Estimate P(Y = yy):
P(Y = yi) = (# of y, examples) / (total # of examples)

— For each attribute X;, in order to estimate P(X;|Y = yy):

« Estimate class conditional mean ;, and standard deviation o;,

Classify (X"eW):

YW  argmax P(Y = y) HP(X"eWIY Vi)

Yk
2
(R
Oik

Y'W — argmax P(Y =y) 1_[

Yk /21‘[0‘

Machine Learning
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Estimating Parameters:

« When the X; are continuous we must choose some other way to represent the
distributions P(Xi|Y).

« We assume that for each possible discrete value y, of Y, the distribution of each
continuous X; is Gaussian, and is defined by a mean and standard deviation specific to
X;and y,.

 In order to train such a Naive Bayes classifier we must therefore estimate the mean
and variance of each of these Gaussians:

Uil — E[X;‘}/ = _‘l.‘k]

67 = E[(Xi —up)?|Y = v
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Estimating Parameters:
Y discrete, X; continuous

For each k™ class (Y=y,) and it" feature (X;):
e ik IS the mean of X; values of the examples whose Y attribute is y,.

summation of all X, values of y;, examples

P = # of y;, examples

e 03 isthe variance of X; values of the examples whose Y attribute is y,.

summation of all (Xi — n,)? for X) where X! is ay, example

Cik = # of yi examples

Machine Learning

14



Estimating Parameters:

How many parameters must we estimate for Gaussian Naive Bayes if Y has
k possible values, and examples have n attributes?

= 2*n*k parameters (n*k mean values, and n*k variances)

PX; =x|]Y=y) = L_ e 21<x‘_’:ik)

/ chizk
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Logistic Regression



Logistic Regression

Idea:

Naive Bayes allows computing P(Y|X) by learning P(Y) and P(X|Y)

Why not learn P(Y|X) directly?

=>» logistic regression

Machine Learning
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Logistic Regression

Consider learning f: X =Y, where

Xis a vector of real-valued features, < X, ... X, >
Y is boolean (binary logistic regression)

* Ingeneral, Y is a discrete attribute and it can take k > 2 different values.

assume all X; are conditionally independent given Y.
model P(X; | Y=y,) as Gaussian

PV = ) = L e 2 o)

/2“0'i2k

model P(Y) as Bernoulli (7): summation of all possible probabilities is 1.

P(Y=1)=n P(Y=0)=1-n

What do these assumptions imply about the form of P(Y|X)?

Machine Learning
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Logistic Regression
Derive P(Y|X) for Gaussian P(Xi|Y=y,) assuming o;, = o;

- In addition, assume variance is independent of class, i.e. 6;, = 6;; = ©;

P(Y=1)PX|Y = 1)

P(Y = 1|X) = by Bayes theorem

Y=1% = SR =D PXIY = D 1 P(Y = 0) PX|Y = 0) y By

1
P(Y=1|X) = T PA=0) PRV = 0) givide numeratprhand
P(Y — 1) P(XlY — 1) enumerator with same term

P(Y =1|X) = 1 —pX d — pln(x)

W 1 +exp(Iln P(Y:O)P(XlY:O)) peboe end e

PP =D PXY =1
1
— — math fact

P(Y =1[X) POY = 0) PXIY = 0)

PY=1 TP PRY =1’

1 +exp(In
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Logistic Regression
Derive P(Y|X) for Gaussian P(Xi|Y=y,) assuming o;, = o;

P(Y=1)=n and P(Y=0)=1-r by modelling P(Y) as Bernoulli

By independence assumption PXIJY = 0) — PXi[Y = 0)
PxlY=1 1 I Px|y="1
P(Y = 1|X) = !
) 1 tex (lnP(Y=O)+ln P(Xleo))
PUN Py =1) PCX[Y = 1)
1
P(Y = 1|X) = - T - POX.IY = 0) by assumptions above
exp (In==+Inllisx v =1))
1
P(Y = 1|X) =

P(X;lY = 0) ) math fact
P(X;lY =1)

1 +exp(ln%+2iln
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Since

P(Y =1|X) =

Logistic Regression
Derive P(Y|X) for Gaussian P(Xi|Y=y,) assuming o;, = o;

2
Xi—Mik

1
PX;lY =yi) = —— e ? ( 71k ) and 6, = 6;; = 0

,chizk

1—m P(X;|Y = 0) 1-m ufy — ufp Miop — Mig
In—"+ )1 = In—+ ) +) X;
Y "Pxy=10 = " m _ 207 S

1

1 +exp(In2 4 3;0n ggilii%)
1
P(Y=1|X) =

1 +exp (wp + 2; Wi X;)
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Logistic Regression
Derive P(Y|X) for Gaussian P(Xi|Y=y,) assuming o;, = o;
1

P(Y=1|X) =
( X 1 +exp (wo +2; Wi Xj)

implies
exp (wp + 2 w; Xj )

P(lY=0(X) =1-P(Y =1(X) =
( %) ( %) 1 +exp(wp+2;w;Xj)
Implies

P(Y = 0]|X)
P(Y = 1X) = exp (wy +Zwi X;)
molics : a linear
classification

P(Y = 0|X) z rule
l = ) X
n P(Y= 1|X) Wy + . Wj A

1

Machine Learning
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Logistic Regression
Logistic (sigmoid) function
In Logistic Regression, P(Y|X) is assumed to be the following functional form which
Is a sigmoid (logistic) function.
1
1 +exp (wp+ 2w X)

P(Y=1|X) =

The sigmoid function y = takes a real value and maps it to the range [0,1].

1+exp(—2)

08

06/ «

Y

D4
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Logistic Regression is a Linear Classifier

In Logistic Regression, P(Y|X) is assumed:
1
1 +exp (wo+ 25w X;)

P(Y =1|X) =

y
exp (wo + X2 w; Xj ) ;
1 +exp (wpo + X;wj Xj)

P(Y=0|X) =
Decision Boundary:
P(Y=0|X) > P(Y=1|X) =» Classificationis0 = wy+Y;w;X; >0
P(Y=0|X) < P(Y=1|X) =» Classificationisl = wp+Y;w;X; <0

- Wo + X w; X Is a linear decision boundary.

Machine Learning
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Logistic Regression for More Than 2 Classes

In general case of logistic regression, we have M classes and Ye{y,,...,Yu}

fork <M

exp (Wio + i Wii Xi )
1 + %55t exp (wjo + 2w Xj)

P(Y = ylX) =

fork =M (no weights for the last class)

1

P(Y =yul|X) = =
1 + Y50 exp (wjo + X wji X;)
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Training Logistic Regression

« We will focus on binary logistic regression.
« Training Data: We have n training examples: { <X, Y1> ... <X"Y">}
 Attributes: We have d attributes: We have to learn weights W: wy,W,...,W,

« We want to learn weights which produces maximum probability for the training data.

Maximum Likelihood Estimate for parameters W:

Wyig = argmax P( {(X1, Y1), ..., (X", Y") | W)
\\

n
Wyig = argmax ‘ ‘ . P((X),Y))|w)
j=

Machine Learning 26



Training Logistic Regression
Maximum Conditional Likelihood Estimate

__— data likelihood

Wy g = argmax Hn P((X),Y)) | w)
w j=1

- Maximum Conditional Likelihood Estimate for parameters W.

n . conditional data likelihood
WycLE = argmax 1_[ P(Y | X, W)
w j=1

where

1
P(Y =0(X,W) =
( | ) 1 +eXp(WO+ZiWiXi)
exp (wq + ,; w; X;
P(Y=1|X,W) _ p( 0 21 1 1)

1 +exp (wg+ 2w X;)

Machine Learning
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Training Logistic Regression
Expressing Conditional Log Likelihood

Log value of conditional data likelihood 1(W)

(W) =1In [[L, P(Y | X, W) = ¥, InP(Y | X, W)

1 exp (wo + % wi X;)
P(Y =0|X,W) = P(Y=1|X, W) =
( | ) 1 +exp(wg+2;wiXj) ( | ) 1 +exp(w0+ZiwiXi)

(W) =YL, Y InP(Y =1|X,W) + (1 -Y) InP(Y = 0| X/, W)

» Y can take only values O or 1, so only one of the two terms in
the expression will be non-zero for any given Y

P(Y'=1|X,W)
P(Yi=0| Xi,wW)

(W) =XL;Y In +InP(Y = 0| X/, W)

(W) = Y21 Y (WO + ) W X:) —In(1 + exp(wg + ); Wj X';) )
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Training Logistic Regression
Maximizing Conditional Log Likelihood

(W) = 2itq Y (WO + ) w; Xi) —In(1 + exp(wy + X; Wj X’;) )

Bad News:

Unfortunately, there is no closed form solution to maximizing (W) with respect to W.

Good News:

(W) is concave function of W. Concave functions are easy to optimize.

Therefore, one common approach is to use gradient ascent
maximum of a concave function = minimum of a convex function
Gradient Ascent (concave) / Gradient Descent (convex)

Machine Learning

29



Gradient Descent

Gradient
.. _[OE 0OF oF
VE[W] - 3’1”(}33’&}1?.“@”

Training rule:
Aw = —nVE|7]
1.e.,
OF

AW = =0
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Gradient Descent

Batch gradient. use error Ep(w) over entire training set D
Do until satisfied:

51{}{3 o ﬁ'wn
2. Update the vector of parameters: w — w — nVE D(W)

: OFE OE
1. Compute the gradient VEp(w) = [ p(W) D(W)]

gradient des

cent

Stochastic gradient: use error E4(w) over single examples d € D
Do until satisfied:
. Choose (with replacement) a random training example d € D
OEq(w)  OE4(w)
owy  Ow,
. Update the vector of parameters: w <— w — nV Ey(w)

i

2

2. Compute the gradient just for d : VE(w) =

)

Stochastic approximates Batch arbitrarily closely as 7) — 0
Stochastic can be much faster when D is very large
Intermediate approach: use error over subsets of D
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Maximizing Conditional Log Likelihood
Gradient Ascent

I(W) = S ¥ (wo + Ziwi X}) — In(1+ exp(wo + 5 w; X))

Gradient = [al(w) ) e OLW)
Iwg ow,
Update Rule:
A1(W) - gradient ascent

Wi =W+ 1

aWi
\ learning rate

Machine Learning
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Maximizing Conditional Log Likelihood
Gradient Ascent

(W) = SR, Y (wo + Ziw; X}) = In( 1+ exp(wo + X w; X))

OIW) _ yn  yjyl _ yi _eXP(WotX;wi X’;)
ow; 1=1Y Xi Xi 1+exp(wWo+X; Wj Xi)

ol(W) _ J rvi j '

= X (Y —P(Y = 1| X, W))

Gradient ascent algorithm: iterate until change < ¢
For all I, repeat

wi =w; + XL X (Y - P(Y = 1| X, W))

Machine Learning

33



G.Naive Bayes vs. Logistic Regression

Recall two assumptions deriving form of LR from GNBayes:
1. X; conditionally independent of X, given Y
2. POX 1Y =) = N(uwy,0), € not N(uy,oy)

Consider three learning methods:

*GNB (assumption 1 only) -- decision surface can be non-linear
*GNB2 (assumption 1 and 2) — decision surface linear
‘LR -- decision surface linear, trained without

assumption 1.

Which method works better if we have infinite training data, and...

‘Both (1) and (2) are satisfied: LR = GNB2 = GNB
(1) is satisfied, butnot (2) : GNB > GNB2, GNB > LR, LR > GNB2

*Neither (1) nor (2) is satisfied: GNB>GNB2, LR > GNB2, LR><GNB
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G.Naive Bayes vs. Logistic Regression

The bottom line:

GNB2 and LR both use linear decision surfaces, GNB need not

Given infinite data, LR is better than GNB2 because training procedure does not make
assumptions 1 or 2 (though our derivation of the form of P(Y|X) did).

But GNB2 converges more quickly to its perhaps-less-accurate asymptotic error

And GNB is both more biased (assumptionl) and less (no assumption 2) than LR, so
either might beat the other
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