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Bayes Theorem - Example

Sample Space for   

events A and B

P(A) = 4/7 P(B) = 3/ 7 P(B|A) = 2/4 P(A|B) = 2/3

Is Bayes Theorem correct?

P(B|A) = P(A|B) P(B) / P(A) = ( 2/3 * 3/7 ) / 4/7 = 2/4   CORRECT

P(A|B) = P(B|A) P(A) / P(B) = ( 2/4 * 4/7 ) / 3/7 = 2/3   CORRECT

A holds T T F F T F T

B holds T F T F T F F



Naive Bayes Classifier

• Practical Bayesian learning method is Naive Bayes Learner (Naive Bayes Classifier).

• The naive Bayes classifier applies to learning tasks where each instance x is described 

by a conjunction of attribute values and where the target function f(x) can take on any 

value from some finite set V. 

• A set of training examples is provided, and a new instance is presented, described by 

the tuple of attribute values (al, a2 ...an). 

• The learner is asked to predict the target value (classification), for this new instance.
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Naive Bayes Classifier

• The Bayesian approach to classifying the new instance is to assign the most probable 

target value vMAP, given the attribute values (al, a2 ... an) that describe the instance.

𝐯𝐌𝐀𝐏 = 𝐚𝐫𝐠𝐦𝐚𝐱
𝐯𝐣∈𝐕

𝐏(𝐯𝐣|𝐚𝟏, … , 𝐚𝐧)

• By Bayes theorem:

𝐯𝐌𝐀𝐏 = 𝐚𝐫𝐠𝐦𝐚𝐱
𝐯𝐣∈𝐕

𝐏(𝐚𝟏,…,𝐚𝐧|𝐯𝐣) 𝐏(𝐯𝐣)

𝐏(𝐚𝟏,…,𝐚𝐧)

𝐯𝐌𝐀𝐏 = 𝐚𝐫𝐠𝐦𝐚𝐱
𝐯𝐣∈𝐕

𝐏(𝐚𝟏, … , 𝐚𝐧|𝐯𝐣) 𝐏(𝐯𝐣)
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Naive Bayes Classifier

• It is easy to estimate each of the P(vj) simply by counting the frequency with which 

each target value vj occurs in the training data. 

• However, estimating the different P(al,a2…an | vj) terms is not feasible unless we have 

a very, very large set of training data. 

– The problem is that the number of these terms is equal to the number of possible instances 

times the number of possible target values. 

– Therefore, we need to see every instance in the instance space many times in order to obtain 

reliable estimates.

• The naive Bayes classifier is based on the simplifying assumption that the attribute 

values are conditionally independent given the target value.

• For a given the target value of the instance, the probability of observing conjunction 

al,a2…an , is just the product of the probabilities for the individual attributes:

P(a1, … , an|vj) = ςiP(ai|vj)

• Naive Bayes classifier: 𝐯𝐍𝐁 = 𝐚𝐫𝐠𝐦𝐚𝐱
𝐯𝐣∈𝐕

𝐏(𝐯𝐣) ς𝐢𝐏(𝐚𝐢|𝐯𝐣)
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Naive Bayes in a Nutshell

Bayes rule:

Assuming conditional independence among Xi’s:

So, classification rule for Xnew =  < X1
new…Xn

new> is:
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P Y = yk X1…Xn =
P Y = yk P(X1…Xn|Y = yk)

σjP Y = yj P(X1…Xn|Y = yj)

𝐏 𝐘 = 𝐲𝐤 𝐗𝟏…𝐗𝐧 =
𝐏 𝐘 = 𝐲𝐤 ς𝐢𝐏(𝐗𝐢|𝐘 = 𝐲𝐤)

σ𝐣𝐏 𝐘 = 𝐲𝐣 ς𝐢𝐏(𝐗𝐢|𝐘 = 𝐲𝐣)

𝐘𝐧𝐞𝐰 ← 𝐚𝐫𝐠𝐦𝐚𝐱
𝐲𝐤

𝐏 𝐘 = 𝐲𝐤 ෑ

𝐢

𝐏(𝐗𝐢
𝐧𝐞𝐰|𝐘 = 𝐲𝐤)



Naive Bayes in a Nutshell

• Another way to view Naïve Bayes when Y is a Boolean attribute:

• Decision rule: is this quantity greater or less than 1?
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P Y = 1 X1…Xn
P Y = 0 X1…Xn

=
P Y = 1 ς𝑖 P(Xi|Y = 1)

P Y = 0 ς𝑖 P(Xi|Y = 0)



Naive Bayes in a Nutshell

• What if we have continuous Xi ?

• Still we have:

• Just need to decide how to represent P(Xi | Y)

• Common approach: assume P(Xi|Y=yk) follows a Normal (Gaussian) distribution
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𝐏 𝐘 = 𝐲𝐤 𝐗𝟏…𝐗𝐧 =
𝐏 𝐘 = 𝐲𝐤 ς𝒊𝐏(𝑿𝐢|𝐘 = 𝒚𝒌)

σ𝐣𝐏 𝐘 = 𝐲𝐣 ς𝒊𝐏(𝑿𝒊|𝐘 = 𝒚𝐣)



Gaussian Distribution
(also called “Normal Distribution”)
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A Normal Distribution

(Gaussian Distribution) is a 

bell-shaped distribution defined 

by probability density function

• A Normal distribution is fully determined by two parameters in the formula:  and  .

• If the random variable X follows a normal distribution:

- The probability that X will fall into the interval (a, b) is

- The expected, or mean value of X, E[X] = 

- The variance of X, Var(X) = 2

- The standard deviation of X, x = 

𝐩 𝐱 =
𝟏

𝟐𝛑𝛔𝟐
𝐞
−
𝟏
𝟐

𝐱−𝛍
𝛔

𝟐

න
a

b

)p x d(x



Gaussian Naive Bayes (GNB)

Gaussian Naive Bayes (GNB)  assumes

where

• μik is the mean of Xi values of the instances whose Y attribute is yk.

• σik is the standard deviation of Xi values of the instances whose Y attribute is yk.

• Sometimes σik and μik are assumed as  σi and μi
• independent of Y
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P 𝐗𝐢 = 𝐱|𝐘 = 𝐲𝐤 =
𝟏

𝟐𝛑𝛔𝐢𝐤
𝟐
𝐞
−

𝟏

𝟐

𝐱−𝛍𝐢𝐤
𝛔𝐢𝐤

𝟐



Gaussian Naive Bayes Algorithm
continuous Xi  (but still discrete Y)

• Train Gaussian Naive Bayes Classifier:    For each value yk

– Estimate 𝐏 𝐘 = 𝐲𝐤 :

𝐏 𝐘 = 𝐲𝐤 = (# of yk examples) / (total # of examples)

– For each attribute Xi, in order to estimate P 𝐗𝐢|𝐘 = 𝐲𝐤 :

• Estimate class conditional mean ik and standard deviation 𝝈ik

• Classify (Xnew):
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𝐘𝐧𝐞𝐰 ← 𝐚𝐫𝐠𝐦𝐚𝐱
𝐲𝐤

𝐏 𝐘 = 𝐲𝐤 ෑ

𝐢

𝐏(𝐗𝐢
𝐧𝐞𝐰|𝐘 = 𝐲𝐤)

𝐘𝐧𝐞𝐰 ← 𝐚𝐫𝐠𝐦𝐚𝐱
𝐲𝐤

𝐏 𝐘 = 𝐲𝐤 ෑ

𝐢

𝟏

𝟐𝛑𝛔𝐢𝐤
𝟐

𝐞
−
𝟏
𝟐

𝐗𝐢
𝐧𝐞𝐰−𝛍𝐢𝐤
𝛔𝐢𝐤

𝟐



Estimating Parameters: 

• When the Xi are continuous we must choose some other way to represent the 

distributions P(Xi|Y).

• We assume that for each possible discrete value yk of Y, the distribution of each 

continuous Xi is Gaussian, and is defined by a mean and standard deviation specific to 

Xi and yk.

• In order to train such a Naive Bayes classifier we must therefore estimate the mean

and variance of each of these Gaussians:
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Estimating Parameters: 
Y discrete, Xi continuous

For each kth class (Y=yk) and ith feature (Xi):

• 𝛍𝐢𝐤 is the mean of Xi values of the examples whose Y attribute is yk.

• 𝛔𝐢𝐤
𝟐 is the variance of Xi values of the examples whose Y attribute is yk.
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𝛔𝐢𝐤
𝟐 =

summation of all (𝐗𝐢
𝐣
− ik)

2 for 𝐗𝐣 where 𝐗𝐣 is a yk example

# of 𝐲𝐤 examples

ik =
summation of all Xi values of 𝐲𝐤 examples

# of 𝐲𝐤 examples



Estimating Parameters: 

• How many parameters must we estimate for Gaussian Naive Bayes if Y has 

k possible values, and examples have n attributes?

 2*n*k  parameters  (n*k  mean values, and n*k variances)
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P 𝐗𝐢 = 𝐱|𝐘 = 𝐲𝐤 =
𝟏

𝟐𝛑𝛔𝐢𝐤
𝟐
𝐞
−

𝟏

𝟐

𝐱−𝛍𝐢𝐤
𝛔𝐢𝐤

𝟐



Logistic Regression
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Logistic Regression

Idea:

• Naive Bayes allows computing P(Y|X) by learning P(Y) and P(X|Y)

• Why not learn P(Y|X) directly?

 logistic regression
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Logistic Regression

• Consider learning f: X →Y, where

– X is a vector of real-valued features, < X1 … Xn >

– Y is boolean (binary logistic regression)

• In general, Y is a discrete attribute and it can take k  2 different values.

– assume all Xi are conditionally independent given Y.

– model P(Xi | Y=yk) as Gaussian

– model P(Y) as Bernoulli (π):  summation of all possible probabilities is 1.

P(Y=1) = π P(Y=0) = 1-π

• What do these assumptions imply about the form of P(Y|X)?
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P 𝐗𝐢|𝐘 = 𝐲𝐤 =
𝟏

𝟐𝛑𝛔𝐢𝐤
𝟐
𝐞
−

𝟏

𝟐

𝐗𝐢−𝛍𝐢𝐤
𝛔𝐢𝐤

𝟐



Logistic Regression
Derive P(Y|X) for Gaussian P(Xi|Y=yk) assuming σik = σi

• In addition, assume variance is independent of class, i.e. σi0 = σi1 = σi
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P Y = 1 X =
P Y = 1 P(X|Y = 1)

P Y = 1 P X Y = 1 + P Y = 0 P(X|Y = 0)
by Bayes theorem

P Y = 1 X =
1

1 +
P Y = 0 P(X|Y = 0)
P Y = 1 P(X|Y = 1)

divide numerator and 

denumerator with same term

P Y = 1 X =
1

1 + exp ( ln
P Y = 0 P X Y = 0
P Y = 1 P X Y = 1

)
exp(x)=ex and  x = eln(x)

P Y = 1 X =
1

1 + exp ( ln
P Y = 0
P Y = 1

+ ln
P X Y = 0
P X Y = 1

)

math fact



Logistic Regression
Derive P(Y|X) for Gaussian P(Xi|Y=yk) assuming σik = σi

• P(Y=1)=π and P(Y=0)=1-π by modelling P(Y) as Bernoulli 

• By independence assumption
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P Y = 1 X =
1

1 + exp ( ln
1−π

π
+ lnςi

P Xi Y = 0
P Xi Y = 1

)

math fact

P X Y = 0

P X Y = 1
=ෑ

i

P Xi Y = 0

P Xi Y = 1

P Y = 1 X =
1

1 + exp ( ln
1−π

π
+ σ𝑖 ln

P Xi Y = 0
P Xi Y = 1

)

P Y = 1 X =
1

1 + exp ( ln
P Y = 0
P Y = 1

+ ln
P X Y = 0
P X Y = 1

)

by assumptions above



Logistic Regression
Derive P(Y|X) for Gaussian P(Xi|Y=yk) assuming σik = σi

Since and     σi0 = σi1 = σi
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P 𝐗𝐢|𝐘 = 𝐲𝐤 =
𝟏

𝟐𝛑𝛔𝐢𝐤
𝟐
𝐞
−

𝟏

𝟐

𝐗𝐢−𝛍𝐢𝐤
𝛔𝐢𝐤

𝟐

ln
1−π

π
+෍

i

ln
P Xi Y = 0

P Xi Y = 1
= ln

1−π

π
+෍

i

μi1
2 − μi0

2

2σi
2 + ෍

i

μi0 − μi1

σi
2 Xi

𝐏 𝐘 = 𝟏 𝐗 =
𝟏

𝟏 + 𝐞𝐱𝐩 ( 𝐰𝟎 + σ𝐢𝐰𝐢 𝐗𝐢 )

P Y = 1 X =
1

1 + exp ( ln
1−π

π
+ σ𝑖 ln

P Xi Y = 0
P Xi Y = 1

)



Logistic Regression
Derive P(Y|X) for Gaussian P(Xi|Y=yk) assuming σik = σi

implies

implies

implies
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𝐏 𝐘 = 𝟏 𝐗 =
𝟏

𝟏 + 𝐞𝐱𝐩 ( 𝐰𝟎 + σ𝐢𝐰𝐢 𝐗𝐢 )

𝐏 𝐘 = 𝟎 𝐗 = 𝟏 − 𝐏 𝐘 = 𝟏 𝐗 =
𝐞𝐱𝐩 ( 𝐰𝟎 + σ𝐢𝐰𝐢 𝐗𝐢 )

𝟏 + 𝐞𝐱𝐩 ( 𝐰𝟎 + σ𝐢𝐰𝐢 𝐗𝐢 )

𝐏 𝐘 = 𝟎 𝐗

𝐏 𝐘 = 𝟏 𝐗
= 𝐞𝐱𝐩 ( 𝐰𝟎 +෍

𝐢

𝐰𝐢 𝐗𝐢 )

𝐥𝐧
𝐏 𝐘 = 𝟎 𝐗

𝐏 𝐘 = 𝟏 𝐗
= 𝐰𝟎+෍

𝐢

𝐰𝐢 𝐗𝐢

a linear 

classification 

rule



Logistic Regression

Logistic (sigmoid) function

• In Logistic Regression, P(Y|X) is assumed to be the following functional form which 

is a sigmoid (logistic) function.

• The sigmoid function  𝐲 =
𝟏

𝟏+𝐞𝐱𝐩(−𝒛)
takes a real value and maps it to the range [0,1].
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P Y = 1 X =
1

1 + exp ( w0 + σiwi Xi )



Logistic Regression is a Linear Classifier

• In Logistic Regression, P(Y|X) is assumed:

• Decision Boundary: 

P(Y=0|X) > P(Y=1|X)    Classification is 0   𝐰𝟎 + σ𝐢𝐰𝐢 𝐗𝐢 > 𝟎

P(Y=0|X) < P(Y=1|X)    Classification is 1   𝐰𝟎 + σ𝐢𝐰𝐢 𝐗𝐢 < 𝟎

– 𝐰𝟎 + σ𝐢𝐰𝐢 𝐗𝐢 is a linear decision boundary.
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P Y = 1 X =
1

1 + exp ( w0 + σiwi Xi )

P Y = 0 X =
exp ( w0 + σiwi Xi )

1 + exp ( w0 + σiwi Xi )



Logistic Regression for More Than 2 Classes

• In general case of logistic regression, we have M classes and Y∊{y1,…,yM}

• for k < M

• for k = M    (no weights for the last class)
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𝐏 𝐘 = 𝐲𝐤 𝐗 =
𝐞𝐱𝐩 ( 𝐰𝐤𝟎 + σ𝐢𝐰𝐤𝐢 𝐗𝐢 )

𝟏 + σ𝐣=𝟏
𝐌−𝟏 𝐞𝐱𝐩 ( 𝐰𝐣𝟎 + σ𝐢𝐰𝐣𝐢 𝐗𝐢 )

𝐏 𝐘 = 𝐲𝐌 𝐗 =
𝟏

𝟏 + σ𝐣=𝟏
𝐌−𝟏 𝐞𝐱𝐩 ( 𝐰𝐣𝟎 + σ𝐢𝐰𝐣𝐢 𝐗𝐢 )



Training Logistic Regression

• We will focus on binary logistic regression.

• Training Data:  We have n training examples:  { <X1,Y1>, …, < Xn,Yn > }

• Attributes: We have d attributes:   We have to learn weights W: w0,w1,…,wd

• We want to learn weights which produces maximum probability for the training data.

Maximum Likelihood Estimate for parameters W:
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𝐖𝐌𝐋𝐄 = 𝐚𝐫𝐠𝐦𝐚𝐱
𝐖

𝐏 { 𝐗𝟏, 𝐘𝟏 , … , 𝐗𝐧, 𝐘𝐧 𝐖)

𝐖𝐌𝐋𝐄 = 𝐚𝐫𝐠𝐦𝐚𝐱
𝐖

ෑ
𝒋=𝟏

𝒏

𝐏 𝐗𝐣, 𝐘𝐣 𝐖)



Training Logistic Regression
Maximum Conditional Likelihood Estimate 

• Maximum Conditional Likelihood Estimate for parameters W:

where
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𝐖𝐌𝐋𝐄 = 𝐚𝐫𝐠𝐦𝐚𝐱
𝐖

ෑ
𝒋=𝟏

𝒏

𝐏 𝐗𝐣, 𝐘𝐣 𝐖)
data likelihood

𝐖𝐌𝐂𝐋𝐄 = 𝐚𝐫𝐠𝐦𝐚𝐱
𝐖

ෑ
𝐣=𝟏

𝐧

𝐏 𝐘𝐣 𝐗𝐣,𝐖)
conditional data likelihood

P Y = 0 X,W =
1

1 + exp ( w0 + σiwi Xi )

P Y = 1 X,W =
exp ( w0 + σiwi Xi )

1 + exp ( w0 + σiwi Xi )



Training Logistic Regression
Expressing Conditional Log Likelihood

• Log value of conditional data likelihood l(W)
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l(W) = 𝐥𝐧 ς𝐣=𝟏
𝐧 𝐏 𝐘𝐣 𝐗𝐣,𝐖) = σ𝐣=𝟏

𝐧 𝐥𝐧 𝐏 𝐘𝐣 𝐗𝐣,𝐖)

P Y = 0 X,W =
1

1 + exp ( w0 + σiwi Xi )
P Y = 1 X,W =

exp ( w0 + σiwi Xi )

1 + exp ( w0 + σiwi Xi )

l(W) = σ𝐣=𝟏
𝐧 𝐘𝐣 𝐥𝐧

𝐏 𝐘𝐣=𝟏 𝐗𝐣,𝐖)

𝐏 𝐘𝐣=𝟎 𝐗𝐣,𝐖)
+ 𝐥𝐧 𝐏 𝐘𝐣 = 𝟎 𝐗𝐣,𝐖)

• Y can take only values 0 or 1, so only one of the two terms in 

the expression will be non-zero for any given Yj

l(W) = σ𝐣=𝟏
𝐧 𝐘𝐣 𝐥𝐧 𝐏 𝐘𝐣 = 𝟏 𝐗𝐣,𝐖) + (𝟏 − 𝐘𝐣) 𝐥𝐧 𝐏 𝐘𝐣 = 𝟎 𝐗𝐣,𝐖)

l(W) = σ𝐣=𝟏
𝐧 𝐘𝐣 𝐰𝟎 +σ𝐢𝐰𝐢 𝐗𝐢

𝐣
− 𝐥𝐧(𝟏 + 𝐞𝐱𝐩(𝐰𝟎 +σ𝐢𝐰𝐢 𝐗𝐢

𝐣
) )



Training Logistic Regression
Maximizing Conditional Log Likelihood

Bad News: 

• Unfortunately, there is no closed form solution to maximizing l(W) with respect to W. 

Good News: 

• l(W) is concave function of W. Concave functions are easy to optimize.

• Therefore, one common approach is to use gradient ascent

• maximum of a concave function = minimum of a convex function

Gradient Ascent (concave) / Gradient Descent (convex)
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l(W) = σ𝐣=𝟏
𝐧 𝐘𝐣 𝐰𝟎 + σ𝐢𝐰𝐢 𝐗𝐢

𝐣
− 𝐥𝐧(𝟏 + 𝐞𝐱𝐩(𝐰𝟎 + σ𝐢𝐰𝐢 𝐗𝐢

𝐣
) )



Gradient Descent
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Gradient Descent
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gradient descent



Maximizing Conditional Log Likelihood

Gradient Ascent

Gradient = 
𝛛𝐥(𝐖)

𝛛𝐰𝟎
, … ,

𝛛𝐥(𝐖)

𝛛𝐰𝐧

Update Rule:
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l(W) = σ𝐣=𝟏
𝐧 𝐘𝐣 𝐰𝟎 + σ𝐢𝐰𝐢 𝐗𝐢

𝐣
− 𝐥𝐧(𝟏 + 𝐞𝐱𝐩(𝐰𝟎 + σ𝐢𝐰𝐢 𝐗𝐢

𝐣
) )

𝐰𝐢 = 𝐰𝐢 + 𝛈
𝛛𝐥(𝐖)

𝛛𝐰𝐢

gradient ascent

learning rate



Maximizing Conditional Log Likelihood

Gradient Ascent
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l(W) = σj=1
n Yj w0 + σiwi Xi

j
− ln( 1 + exp(w0 + σiwi Xi

j
) )

𝛛𝐥(𝐖)

𝛛𝐰𝐢
= σ𝒋=𝟏

𝒏 𝐘𝐣 𝐗𝐢
𝐣
− 𝐗𝐢

𝐣 𝐞𝐱𝐩(𝐰𝟎+σ𝐢𝐰𝐢 𝐗𝐢
𝐣
)

𝟏+𝐞𝐱𝐩(𝐰𝟎+σ𝐢𝐰𝐢 𝐗𝐢
𝐣
)

𝛛𝐥(𝐖)

𝛛𝐰𝐢
= σ𝒋=𝟏

𝒏 𝐗𝐢
𝐣
(𝐘𝐣 − 𝐏 𝐘𝐣 = 𝟏 𝐗𝐣,𝐖) ) 

𝐰𝐢 = 𝐰𝐢 + 𝛈σ𝒋=𝟏
𝒏 𝐗𝐢

𝐣
(𝐘𝐣 − 𝐏 𝐘𝐣 = 𝟏 𝐗𝐣,𝐖) )

Gradient ascent algorithm: iterate until change < 

For all i, repeat
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G.Naïve Bayes vs. Logistic Regression

The bottom line:

• GNB2 and LR both use linear decision surfaces, GNB need not

• Given infinite data, LR is better than GNB2 because training procedure does not make 

assumptions 1 or 2 (though our derivation of the form of P(Y|X) did).

• But GNB2 converges more quickly to its perhaps-less-accurate asymptotic error

• And GNB is both more biased (assumption1) and less (no assumption 2) than LR, so 

either might beat the other
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