
Polynomial Curve Fitting
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Polynomial Curve Fitting
A Simple Regression Problem

• We observe a real-valued input variable x and we wish to use this observation to

predict the value of a real-valued target variable t.

• We use synthetically generated data from the function sin(2πx) with random noise 

included in the target values.

– A small level of random noise having a Gaussian distribution

• We have a training set comprising N observations of x, written x ≡ (x1, . . . , xN)T, 

together with corresponding observations of the values of t, denoted t ≡ (t1, . . . , tN)T.

• Our goal is to predict the value of t for some new value of x,
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Polynomial Curve Fitting

• A training data set of N = 10 points, 

(blue circles),

• The green curve shows the actual

function sin(2πx) used to generate the 

data. 

• Our goal is to predict the value of t for 

some new value of x, without 

knowledge of the green curve.
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Polynomial Curve Fitting

• We try to fit the data using a polynomial function of the form
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Polynomial Curve Fitting

• The values of the coefficients will be

determined by fitting the polynomial to

the training data.

• This can be done by minimizing an

error function that measures the misfit

between the function y(x,w), for any

given value of w, and the training set

data points.

• Error Function: the sum of the squares

of the errors between the predictions

y(xn,w) for each data point xn and the

corresponding target values tn.
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Polynomial Curve Fitting

• We can solve the curve fitting problem by choosing the value of w for which E(w) is 

as small as possible. 

• Since the error function is a quadratic function of the coefficients w, its derivatives 

with respect to the coefficients will be linear in the elements of w, and so the 

minimization of the error function has a unique solution, denoted by w*, 

• The resulting polynomial is given by the function y(x,w*).

• Choosing the order M of the polynomial  model selection.
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0th Order Polynomial
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1st Order Polynomial
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3rd Order Polynomial
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9th Order Polynomial
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Polynomial Curve Fitting

• The 0th order (M=0) and first order (M=1) polynomials give rather poor fits to the data 

and consequently rather poor representations of the function sin(2πx). 

• The third order (M=3) polynomial seems to give the best fit to the function sin(2πx) of 

the examples.

• When we go to a much higher order polynomial (M=9), we obtain an excellent fit to 

the training data. 

– In fact, the polynomial passes exactly through each data point and E(w*) = 0.
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Polynomial Curve Fitting

• We obtain an excellent fit to the training data with 9th order.

• However, the fitted curve oscillates wildly and gives a very poor representation of the 

function sin(2πx). 

• This behaviour is known as over-fitting

Machine Learning 12



Polynomial Curve Fitting
Over-fitting

• We can then evaluate the residual value of E(w*) for the training data, and we can also 

evaluate E(w*) for the test data set.

• Root-Mean-Square (RMS) Error:

– in which the division by N allows us to compare different sizes of data sets, and the square 

root ensures that ERMS is measured on the same scale as the target variable t.
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Polynomial Curve Fitting
Polynomial Coefficients

• Magnitude of coefficients increases dramatically as order of polynomial increases.

• Large positive and negative values so that the corresponding polynomial function 

matches each of the data points exactly, but between data points the function exhibits 

the large oscillations over-fitting
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Polynomial Curve Fitting

• Increasing the size of the data set reduces the over-fitting problem.

• 9th Order Polynomial.
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Polynomial Curve Fitting
regularization

• We may wish to use relatively complex and flexible models with data sets of limited 

size.

• The over-fitting phenomenon can be controlled with regularization, which involves 

adding a penalty term to the error function.

• Regularization:  Penalize large coefficient values

• the coefficient λ governs the relative importance of the regularization term compared 

with the sum-of-squares error term.
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Polynomial Curve Fitting
regularization

• Plots of M = 9 polynomials fitted to the data set using the regularized error function

no regularization (λ=0) too much regularization

Machine Learning 17



Polynomial Curve Fitting
regularization

• Polynomial Coefficients 
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Graph of the root-mean-square error 

versus ln λ for the M=9 polynomial.



Linear Basis Function Models
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Linear Basis Function Models 

• Generally

where 𝜙j(x) are known as basis functions.
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Linear Basis Function Models
Linear Regression

• The simplest linear model for regression is one that involves a linear combination of

the input variables. 

• It is often simply known as linear regression.

where

𝜙0(x) = 1   (=x0)

𝜙j(x) = xj j>0
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Linear Basis Function Models

Polynomial Curve Fitting: Polynomial basis functions

• 𝜙j(x) = xj
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Linear Basis Function Models

Gaussian basis functions

where the μj govern the locations of the basis functions in input space, and the parameter s 

governs their spatial scale.
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Linear Basis Function Models 
Sigmoidal basis functions

where σ(a) is the logistic sigmoid function 

defined by

• we can use the ‘tanh’ function because this is related to the logistic sigmoid by 

tanh(a) = 2σ(a) − 1,
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INSTANCE-BASE LEARNING
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INSTANCE-BASE LEARNING

• Instance-based learning methods simply store the training examples instead of learning 

explicit description of the target function.

– Generalizing the examples is postponed until a new instance must be classified. 

– When a new instance is encountered, its relationship to the stored examples is 

examined in order to assign a target function value for the new instance.

• Instance-based learning includes nearest neighbor, locally weighted regression and 

case-based reasoning methods.

• Instance-based methods are sometimes referred to as lazy learning methods because 

they delay processing until a new instance must be classified. 

• A key advantage of lazy learning is that instead of estimating the target function once 

for the entire instance space, these methods can estimate it locally and differently for 

each new instance to be classified.
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k-Nearest Neighbor Learning

• k-Nearest Neighbor Learning  algorithm assumes all instances correspond to points in 
the n-dimensional space Rn

• The nearest neighbors of an instance are defined in terms of Euclidean distance.

• Euclidean distance between the instances  xi = <xi1,…,xin>  and xj = <xj1,…,xjn> are:

• For a given query instance xq,  f(xq) is calculated the function values of k-nearest 

neighbor of xq
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k-Nearest Neighbor Learning

• Store all training examples <xi,f(xi)>

• Calculate f(xq) for a given query instance xq using k-nearest neighbor

• Nearest neighbor: (k=1)

– Locate the nearest traing example xn, and estimate f(xq) as

– f(xq)  f(xn) 

• k-Nearest neighbor: 

– Locate k nearest traing examples, and estimate f(xq) as

– If the target function is real-valued, take mean of f-values of k nearest neighbors. 

f(xq) = 

– If the target function is discrete-valued, take a vote among f-values of k nearest 

neighbors. 

Machine Learning 28



When To Consider Nearest Neighbor

• Instances map to points in Rn

• Less than 20 attributes per instance

• Lots of training data

• Advantages

– Training is very fast

– Learn complex target functions

– Can handle noisy data

– Does not loose any information

• Disadvantages

– Slow at query time

– Easily fooled by irrelevant attributes
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Distance-Weighted kNN
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k-Nearest Neighbor Classification - Example
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A B Class

1 1 no

2 1 no

3 2 yes

7 7 yes

8 8 yes

A B Distance 

of <3,3>

1 1 8

2 1 5

3 2 1

7 7 32

8 8 50

3-Nearest Neighbor Classification of instance <3,3> 

• First three example are 3 Nearest Neighbors of instance <3,3>.

• Two of them is no and one of them is yes.

• Majority of classes of its neighbors  are no, the classification of instance <3,3> is no. 



Distance Weighted kNN Classification- Example 
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A B Class

1 1 no

2 1 no

3 2 yes

7 7 yes

8 8 yes

A B Distance 

of <3,3>

1 1 8

2 1 5

3 2 1

7 7 32

8 8 50

Distance Weighted 3-Nearest Neighbor Classification 

of instance <3,3> 

• First three example are 3 Nearest Neighbors of instance <3,3>.

• Weight of no = 1/8 + 1/5 = 13/40           Weight of  yes = 1/1 = 1

• Since 1 > 13/40, the classification of instance <3,3> is yes. 



k-Nearest Neighbor Classification - Issues

• Choosing the value of k:

– If k is too small, sensitive to noise points

– If k is too large, neighborhood may 

include points from other classes.

• Scaling issues:

– Attributes may have to be scaled to 

prevent distance measures from being 

dominated by one of the attributes
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Curse of Dimensionality
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Locally Weighted Regression

• KNN forms local approximation to f for each query point xq

• Why not form an explicit approximation  f(x) for region surrounding xq

 Locally Weighted Regression

• Locally weighted regression uses nearby or distance-weighted training examples to 

form this local approximation to f. 

• We might approximate the target function in the neighborhood surrounding x, using a 

linear function, a quadratic function, a multilayer neural network. 

• The phrase "locally weighted regression" is called 

– local because the function is approximated based only on data near the query point, 

– weighted because the contribution of each training example is weighted by its distance 

from the query point, and 

– regression because this is the term used widely in the statistical learning community for the

problem of approximating real-valued functions.
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Locally Weighted Regression

• Given a new query instance xq, the general approach in locally weighted regression 

is to construct an approximation f that fits the training examples in the

neighborhood surrounding xq. 

• This approximation is then used to calculate the value f(xq), which is output as the 

estimated target value for the query instance.
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Case-based reasoning

• Instance-based methods

– lazy

– classification based on classifications of near (similar) instances

– data: points in n-dim. space

• Case-based reasoning

– as above, but data represented in symbolic form

– new distance metrics required
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Lazy & eager learning

• Lazy: generalize at query time

– kNN, CBR

• Eager: generalize before seeing query

– regression, ann, ID3, …

• Difference

– eager must create global approximation

– lazy can create many local approximation

– lazy can represent more complex functions using same H (H = linear functions)
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