#### **Perceptron: Geometric Margins**

#### **Kernels Methods**

#### **Support Vector Machines (SVMs)**

#### **Perceptron: Geometric Margins**

# **The Online Learning Model: Perceptron Algorithm**

- Examples arrive sequentially.
- We need to make a prediction. Afterwards observe the outcome.

# For i=1, 2, ..., :Phase i:Online AlgorithmPhase i:Prediction $h(x_i)$ Observe $c^*(x_i)$

#### Mistake bound model

- Analysis wise, make no distributional assumptions.
- Goal: Minimize the number of mistakes.

#### **Linear Separators**

- Instance space  $X = R^d$
- Hypothesis class of linear decision surfaces in R<sup>d</sup>.
- $h(x) = w \cdot x + w_0$ , if  $h(x) \ge 0$ , then label x as +, otherwise label it as -

Claim: WLOG  $w_0 = 0$ .

*Proof:* Can simulate a non-zero threshold with a dummy input feature  $x_0$  that is always set up to 1.

•  $x = (x_1, \dots, x_d) \rightarrow \tilde{x} = (x_1, \dots, x_d, 1)$ 

•  $\mathbf{w} \cdot \mathbf{x} + \mathbf{w}_0 \ge 0$  iff  $(w_1, \dots, w_d, \mathbf{w}_0) \cdot \tilde{\mathbf{x}} \ge 0$ 

where  $\mathbf{w} = (w_1, \dots, w_d)$ 

#### **Linear Separators: Perceptron Algorithm**

- Set t=1, start with the all zero vector  $w_1$ .
- Given example *x*, predict positive iff  $w_t \cdot x \ge 0$
- On a mistake, update as follows:
  - Mistake on positive, then update  $w_{t+1} \leftarrow w_t + x$
  - Mistake on negative, then update  $w_{t+1} \leftarrow w_t x$

Note:  $w_t$  is weighted sum of incorrectly classified examples

$$w_t = a_{i_1} x_{i_1} + \dots + a_{i_k} x_{i_k}$$
$$w_t \cdot x = a_{i_1} x_{i_1} \cdot x + \dots + a_{i_k} x_{i_k} \cdot x$$

#### **Perceptron Algorithm: Example**

Example:

 $(-1,2) - \mathbf{X}$   $(1,0) + \mathbf{V}$   $(1,1) + \mathbf{X}$   $(-1,0) - \mathbf{V}$   $(-1,-2) - \mathbf{X}$   $(1,-1) + \mathbf{V}$ 



#### Algorithm:

- Set t=1, start with all-zeroes weight vector  $w_1$ .
- Given example x, predict positive iff  $w_t \cdot x \ge 0$ .
- On a mistake, update as follows:
  - Mistake on positive, update  $w_{t+1} \leftarrow w_t + x$
  - Mistake on negative, update  $w_{t+1} \leftarrow w_t x$

 $w_{1} = (0,0)$   $w_{2} = w_{1} - (-1,2) = (1,-2)$   $w_{3} = w_{2} + (1,1) = (2,-1)$  $w_{4} = w_{3} - (-1,-2) = (3,1)$ 

**Definition:** The margin of example x w.r.t. a linear sep. w is the distance from x to the plane  $w \cdot x = 0$  (or the negative if on wrong side)



**Definition:** The margin of example x w.r.t. a linear sep. w is the distance from x to the plane  $w \cdot x = 0$  (or the negative if on wrong side)

**Definition:** The margin  $\gamma_w$  of a set of examples *S* wrt a linear separator *w* is the smallest margin over points  $x \in S$ .



**Definition:** The margin of example x w.r.t. a linear sep. w is the distance from x to the plane  $w \cdot x = 0$  (or the negative if on wrong side)

**Definition:** The margin  $\gamma_w$  of a set of examples *S* wrt a linear separator *w* is the smallest margin over points  $x \in S$ .

**Definition:** The margin  $\gamma$  of a set of examples *S* is the maximum  $\gamma_w$  over all linear separators *w*.



#### **Perceptron: Mistake Bound**

**Theorem:** If data has margin  $\gamma$  and all points inside a ball of radius *R*, then Perceptron makes  $\leq (R/\gamma)^2$  mistakes.

(Normalized margin: multiplying all points by 100, or dividing all points by 100, doesn't change the number of mistakes; algorithm is invariant to scaling.)



# **Perceptron Algorithm: Analysis**

**Theorem:** If data has margin  $\gamma$  and all points inside a ball of radius *R*, then Perceptron makes  $\leq (R/\gamma)^2$  mistakes.

Update rule:

- Mistake on positive:  $w_{t+1} \leftarrow w_t + x$
- Mistake on negative:  $w_{t+1} \leftarrow w_t x$

#### **Proof**:

Idea: analyze  $w_t \cdot w^*$  and  $||w_t||$ , where  $w^*$  is the max-margin sep,  $||w^*|| = 1$ . Claim 1:  $w_{t+1} \cdot w^* \ge w_t \cdot w^* + \gamma$ . (because  $l(x)x \cdot w^* \ge \gamma$ )

Claim 2:  $||w_{t+1}||^2 \le ||w_t||^2 + R^2$ . (by Pythagorean Theorem)

After *M* mistakes:

 $w_{M+1} \cdot w^* \ge \gamma M$  (by Claim 1)

 $||w_{M+1}|| \le R\sqrt{M}$  (by Claim 2)

 $w_{M+1} \cdot w^* \le ||w_{M+1}||$  (since  $w^*$  is unit length)

So, 
$$\gamma M \leq R\sqrt{M}$$
, so  $M \leq \left(\frac{R}{\gamma}\right)^2$ .







#### **Perceptron Extensions**

- Can use it to find a consistent separator (by cycling through the data) with a given set S linearly separable by margin  $\gamma$  (by cycling through the data).
- One can convert the mistake bound guarantee into a distributional guarantee too (for the case where the  $x_i$ s come from a fixed distribution).
- Can be adapted to the case where there is no perfect separator as long as the so called hinge loss (*i.e.*, *the total distance needed to move the points to classify them correctly large margin*) is small.
- Can be kernelized to handle non-linear decision boundaries!

#### **Perceptron Discussion**

- Simple online algorithm for learning linear separators with a nice guarantee that depends only on the geometric (aka  $L_2, L_2$ ) margin.
- It can be kernelized to handle non-linear decision boundaries
- Simple, but very useful in applications like Branch prediction; it also has interesting extensions to structured prediction.

# **Perceptron: Mistake Bound**

**Theorem**: If data has margin  $\gamma$  and all points inside a ball of radius *R*, then Perceptron makes  $\leq (R/\gamma)^2$  mistakes.

(Normalized margin: multiplying all points by 100, or dividing all points by 100, doesn't change the number of mistakes; algo is invariant to scaling.)



Margin: the amount of wiggle-room available for a solution.

Implies that large margin classifiers have smaller complexity!

# **Complexity of Large Margin Linear Sep.**

 Know that in R<sup>n</sup> we can shatter n+1 points with linear separators, but not n+2 points (VC-dim of linear sep is n+1).



What if we require that the points be linearly separated by margin  $\gamma$ ?



- Can have at most  $\left(\frac{R}{\gamma}\right)^2$  points inside ball of radius R that can be shattered at margin  $\gamma$  (meaning that every labeling is achievable by a separator of margin  $\gamma$ ).
- So, large margin classifiers have smaller complexity!
  - Nice implications for usual distributional learning setting.
  - Less classifiers to worry about that will look good over the sample, but bad over all....
- Less prone to overfitting!!!!

## **Margin Important Theme in ML**

Both sample complexity and algorithmic implications.

#### Sample/Mistake Bound complexity:

- If large margin, # mistakes Peceptron makes is small (independent on the dim of the space)!
- If large margin  $\gamma$  and if alg. produces a large margin classifier, then amount of data needed depends only on  $R/\gamma$  [Bartlett & Shawe-Taylor '99].
  - Suggests searching for a large margin classifier...

#### Algorithmic Implications:

· Perceptron, Kernels, SVMs ...



# What if Dataset is Not Linearly Separable

**Problem:** data not linearly separable in the most natural feature representation.

Example:





No good linear separator in pixel representation.

#### Solutions:

- "Learn a more complex class of functions"
  - (e.g., decision trees, neural networks, boosting).
- "Use a Kernel" (a neat solution that attracted a lot of attention)
- · "Use a Deep Network"
- · "Combine Kernels and Deep Networks"

#### **Kernels Methods**

#### **Overview of Kernel Methods**

What is a Kernel?

A kernel K is a legal def of dot-product: i.e. there exists an implicit mapping  $\Phi$  s.t. K( $\mathbb{Q}$ ,  $\mathbb{Q}$ ) =  $\Phi(\mathbb{Q})$ .  $\Phi(\mathbb{Q})$ 

E.g.,  $K(x,y) = (x \cdot y + 1)^d$ 

 $\varphi :$  (n-dimensional space)  $\rightarrow$  n^d-dimensional space

#### Why Kernels matter?

- Many algorithms interact with data only via dot-products.
- So, if replace  $x \cdot z$  with K(x, z) they act implicitly as if data was in the higher-dimensional  $\Phi$ -space.
- If data is linearly separable by large margin in the  $\Phi\mbox{-space},$  then good sample complexity.

[Or other regularity properties for controlling the capacity.]

#### Kernels

#### Definition

 $K(\cdot, \cdot)$  is a kernel if it can be viewed as a legal definition of inner product:

- $\exists \phi: X \to R^N \quad s.t. \quad K(x, z) = \phi(x) \cdot \phi(z)$ 
  - Range of  $\phi$  is called the  $\Phi$ -space.
  - N can be very large.
- But think of φ as implicit, not explicit!!!!

#### **Kernels: Example**



#### **Kernels: Example**

$$\begin{aligned} \varphi \colon \mathbb{R}^2 \to \mathbb{R}^3, \, (x_1, x_2) \to \Phi(x) &= (x_1^2, x_2^2, \sqrt{2}x_1 x_2) \\ \varphi(x) \cdot \varphi(z) &= (x_1^2, x_2^2, \sqrt{2}x_1 x_2) \cdot (z_1^2, z_2^2, \sqrt{2}z_1 z_2) \\ &= (x_1 z_1 + x_2 z_2)^2 = (x \cdot z)^2 = \mathbb{K}(x, z) \end{aligned}$$



#### **Kernels: Example**

**Note:** feature space might not be unique.

$$\begin{split} \varphi: \mathbb{R}^2 \to \mathbb{R}^3, \, (x_1, x_2) \to \Phi(x) &= (x_1^2, x_2^2, \sqrt{2}x_1 x_2) \\ \varphi(x) \cdot \varphi(z) &= (x_1^2, x_2^2, \sqrt{2}x_1 x_2) \cdot (z_1^2, z_2^2, \sqrt{2}z_1 z_2) \\ &= (x_1 z_1 + x_2 z_2)^2 = (x \cdot z)^2 = \mathbb{K}(x, z) \end{split}$$

$$\begin{split} \varphi: \mathbb{R}^2 \to \mathbb{R}^4, \, (x_1, x_2) \to \Phi(x) &= (x_1^2, x_2^2, x_1 x_2, x_2 x_1) \\ \varphi(x) \cdot \varphi(z) &= (x_1^2, x_2^2, x_1 x_2, x_2 x_1) \cdot (z_1^2, z_2^2, z_1 z_2, z_2 z_1) \\ &= (x \cdot z)^2 = \mathbb{K}(x, z) \end{split}$$

#### Avoid explicitly expanding the features

Feature space can grow really large and really quickly....

Crucial to think of  $\phi$  as implicit, not explicit!!!!

Polynomial kernel degreee d,  $k(x,z) = (x^{T}z)^{d} = \phi(x) \cdot \phi(z)$ 

$$- x_1^d, x_1 x_2 \dots x_d, x_1^2 x_2 \dots x_{d-1}$$

Total number of such feature is

$$\binom{d+n-1}{d} = \frac{(d+n-1)!}{d! (n-1)!}$$

- d = 6, n = 100, there are 1.6 billion terms



 $o(n) \ computation!$  $k(x,z) = (x^{\mathsf{T}}z)^d = \phi(x) \cdot \phi(z)$ 

# Kernelizing a learning algorithm

- If all computations involving instances are in terms of inner products then:
  - Conceptually, work in a very high diml space and the alg's performance depends only on linear separability in that extended space.
  - Computationally, only need to modify the algo by replacing each  $x \cdot z$  with a K(x, z).
- Examples of kernalizable algos:
  - classification: Perceptron, SVM.
  - regression: linear, ridge regression.
  - clustering: k-means.

#### **Kernelizing the Perceptron Algorithm**

- Set t=1, start with the all zero vector  $w_1$ .
- Given example x, predict + iff  $w_t \cdot x \ge 0$
- On a mistake, update as follows:
  - Mistake on positive,  $w_{t+1} \leftarrow w_t + x$
  - Mistake on negative,  $w_{t+1} \leftarrow w_t x$



Easy to kernelize since  $w_t$  is weighted sum of incorrectly classified examples  $w_t = a_{i_1}x_{i_1} + \dots + a_{i_k}x_{i_k}$ 

Replace 
$$w_t \cdot x = a_{i_1} x_{i_1} \cdot x + \dots + a_{i_k} x_{i_k} \cdot x$$
 with  
 $a_{i_1} K(x_{i_1}, x) + \dots + a_{i_k} K(x_{i_k}, x)$ 

Note: need to store all the mistakes so far.

#### **Kernelizing the Perceptron Algorithm**

- Given x, predict + iff  $a_{i_1} K(x_{i_1}, x) + \dots + a_{i_{t-1}} K(x_{i_{t-1}}, x) \ge 0$
- On the t th mistake, update as follows:
  - Mistake on positive, set  $a_{i_t} \leftarrow 1$ ; store  $x_{i_t}$
  - Mistake on negative,  $a_{i_t} \leftarrow -1$ ; store  $x_{i_t}$

Perceptron  $w_t = a_{i_1}x_{i_1} + \dots + a_{i_k}x_{i_k}$ 

 $w_t \cdot x = a_{i_1} x_{i_1} \cdot x + \dots + a_{i_k} x_{i_k} \cdot x \quad \rightarrow \quad a_{i_1} K(x_{i_1}, x) + \dots + a_{i_k} K(x_{i_k}, x)$ 

Exact same behavior/prediction rule as if mapped data in the  $\phi$ -space and ran Perceptron there!

Do this implicitly, so computational savings!!!!!

 $\Phi$ -space

 $\begin{array}{c|c} x & x \\ x & x$ 

#### **Generalize Well if Good Margin**

- If data is linearly separable by margin in the  $\phi$ -space, then small mistake bound.
- If margin  $\gamma$  in  $\phi$ -space, then Perceptron makes  $\left(\frac{R}{\nu}\right)^2$  mistakes.



#### **Kernels: More Examples**

- Linear:  $K(x, z) = x \cdot z$
- Polynomial:  $K(x, z) = (x \cdot z)^d$  or  $K(x, z) = (1 + x \cdot z)^d$

• Gaussian: 
$$K(x, z) = \exp\left[-\frac{||x-z||^2}{2\sigma^2}\right]$$

• Laplace Kernel: 
$$K(x, z) = \exp\left[-\frac{||x-z||}{2\sigma^2}\right]$$

# **Support Vector Machines**

- Support Vector Machines (SVMs)
  - One of the most theoretically well motivated and practically most effective classification algorithms in machine learning.
  - Directly motivated by Margins and Kernels!

WLOG homogeneous linear separators  $[w_0 = 0]$ .

**Definition:** The margin of example x w.r.t. a linear sep. w is the distance from x to the plane  $w \cdot x = 0$ .



**Definition:** The margin of example x w.r.t. a linear sep. w is the distance from x to the plane  $w \cdot x = 0$ .

**Definition:** The margin  $\gamma_w$  of a set of examples S wrt a linear separator w is the smallest margin over points  $x \in S$ .

**Definition:** The margin  $\gamma$  of a set of examples S is the maximum  $\gamma_w$  over all linear separators w.



# **Margin Important Theme in ML**

Both sample complexity and algorithmic implications.

#### Sample/Mistake Bound complexity:

- If large margin, # mistakes Peceptron makes is small (independent on the dim of the space)!
- If large margin  $\gamma$  and if alg. produces a large margin classifier, then amount of data needed depends only on  $R/\gamma$  [Bartlett & Shawe-Taylor '99].

#### **Algorithmic Implications**





Directly optimize for the maximum margin separator: SVMs

First, assume we know a lower bound on the margin  $\gamma$ 

<u>Input</u>:  $\gamma$ , S={(x<sub>1</sub>, y<sub>1</sub>), ..., (x<sub>m</sub>, y<sub>m</sub>)};

Find: some w where:

- $||w||^2 = 1$
- For all i,  $y_i w \cdot x_i \ge \gamma$

<u>Output</u>: w, a separator of margin  $\gamma$  over S



Realizable case, where the data is linearly separable by margin  $\gamma$ 

Directly optimize for the maximum margin separator: SVMs

E.g., search for the best possible  $\gamma$ 

<u>Input</u>:  $S=\{(x_1, y_1), ..., (x_m, y_m)\};$ 

<u>Find</u>: some w and maximum  $\gamma$  where:

- $||w||^2 = 1$
- For all i,  $y_i w \cdot x_i \ge \gamma$

Output: maximum margin separator over S



Directly optimize for the maximum margin separator: SVMs

<u>Input</u>:  $S=\{(x_1, y_1), ..., (x_m, y_m)\};$ 

Maximize  $\gamma$  under the constraint:

- $||w||^2 = 1$
- For all i,  $y_i w \cdot x_i \ge \gamma$



Directly optimize for the maximum margin separator: SVMs



This is a constrained optimization problem.

 Famous example of constrained optimization: linear programming, where objective fn is linear, constraints are linear (in)equalities

Directly optimize for the maximum margin separator: SVMs

<u>Input</u>:  $S=\{(x_1, y_1), ..., (x_m, y_m)\};$ 

Maximize  $\gamma$  under the constraint:

- $\left| |w| \right|^2 = 1$
- For all i,  $y_i w \cdot x_i \ge \gamma$

This constraint is non-linear. In fact, it's even non-convex





Directly optimize for the maximum margin separator: SVMs

<u>Input</u>:  $S=\{(x_1, y_1), ..., (x_m, y_m)\};$ 

Maximize  $\gamma$  under the constraint:

- $||w||^2 = 1$
- For all i,  $y_i w \cdot x_i \ge \gamma$



 $w' = w/\gamma$ , then max  $\gamma$  is equiv. to minimizing  $||w'||^2$  (since  $||w'||^2 = 1/\gamma^2$ ). So, dividing both sides by  $\gamma$  and writing in terms of w' we get:

<u>Input</u>:  $S=\{(x_1, y_1), ..., (x_m, y_m)\};$ Minimize  $||w'||^2$  under the constraint:

• For all i,  $y_i w' \cdot x_i \ge 1$ 



Directly optimize for the maximum margin separator: SVMs

<u>Input</u>: S={ $(x_1, y_1)$ ,  $(x_m, y_m)$ }; argmin,  $||w||^2$ s.t.:

• For all i,  $y_i w \cdot x_i \ge 1$ 

This is a constrained optimization problem.

- The objective is convex (quadratic)
- All constraints are linear
- Can solve efficiently (in poly time) using standard quadratic programing (QP) software

Question: what if data isn't perfectly linearly separable?

<u>Issue 1</u>: now have two objectives

- maximize margin
- minimize # of misclassifications.

Ans 1: Let's optimize their sum: minimize  $||w||^2 + C(\# \text{ misclassifications})$ 

where C is some tradeoff constant.

<u>Issue 2</u>: This is computationally hard (NP-hard). [even if didn't care about margin and minimized # mistakes] NP-hard [Guruswami-Raghavendra'06]





Question: what if data isn't perfectly linearly separable? Replace "# mistakes" with upper bound called "hinge loss"



Total amount have to move the points to get them on the correct side of the lines  $w \cdot x = +1/-1$ , where the distance between the lines  $w \cdot x = 0$  and  $w \cdot x = 1$  counts as "1 unit".

# What if the data is far from being linearly separable?

Example:





No good linear separator in pixel representation.

# SVM philosophy: "Use a Kernel"

Input: S={
$$(x_1, y_1), ..., (x_m, y_m)$$
};  
Find argmin<sub>w, $\xi_1,...,\xi_m$</sub>   $||w||^2 + C \sum_i \xi_i$  s.t.:  
• For all i,  $y_i w \cdot x_i \ge 1 - \xi_i$   
 $\xi_i \ge 0$ 

#### Primal form

#### Which is equivalent to:

 $\sum y_i \alpha_i = 0$ 

• For all i, 
$$0 \le \alpha_i \le C_i$$

Lagrangian Dual

#### **SVMs (Lagrangian Dual)**



#### **Kernelizing the Dual SVMs**

Replace  $x_i \cdot x_j$ with  $K(x_i, x_j)$ .

- Final classifier is:  $w = \sum_{i} \alpha_{i} y_{i} x_{i}$
- The points  $x_i$  for which  $\alpha_i \neq 0$  are called the "support vectors"
- With a kernel, classify x using  $\sum_i \alpha_i y_i K(x,x_i)$

# **SVM - Support Vector Machines**

- A new classification method for both linear and nonlinear data
- It uses a nonlinear mapping to transform the original training data into a higher dimension
- With the new dimension, it searches for the linear optimal separating hyperplane (i.e., "decision boundary")
- With an appropriate nonlinear mapping to a sufficiently high dimension, data from two classes can always be separated by a hyperplane
- SVM finds this hyperplane using support vectors ("essential" training tuples) and margins (defined by the support vectors)
- SVMs are currently among the best performers for a number of classification tasks ranging from text to genomic data.
- SVMs can be applied to complex data types beyond feature vectors (e.g. graphs, sequences, relational data) by designing kernel functions for such data.