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Mistake bound model

• Examples arrive sequentially.

The Online Learning Model: Perceptron Algorithm

• We need to make a prediction.

Afterwards observe the outcome.

• Analysis wise, make no distributional assumptions.

• Goal: Minimize the number of mistakes.

Online Algorithm

Example 𝑥𝑖

Prediction ℎ(𝑥𝑖)Phase i:

Observe c∗(𝑥𝑖)

For i=1, 2, …, :



Linear Separators
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• Instance space X = Rd

• Hypothesis class of linear decision 

surfaces in Rd.

• h x = w ⋅ x + w0, if ℎ 𝑥 ≥ 0, then 

label x as +, otherwise label it as -

Claim: WLOG w0 = 0.

Proof: Can simulate a non-zero threshold with a dummy input feature 𝑥0
that is always set up to 1.

• 𝑥 = 𝑥1, … , 𝑥𝑑 → 𝑥 = 𝑥1, … , 𝑥𝑑 , 1

• w ⋅ x + w0 ≥ 0 iff 𝑤1, … , 𝑤𝑑 , w0 ⋅ 𝑥 ≥ 0

where w = 𝑤1, … , 𝑤𝑑



• Set t=1, start with the all zero vector 𝑤1.

Linear Separators: Perceptron Algorithm

• Given example 𝑥, predict positive iff 𝑤𝑡 ⋅ 𝑥 ≥ 0

• On a mistake, update as follows:

• Mistake on positive, then update 𝑤𝑡+1 ← 𝑤𝑡 + 𝑥

• Mistake on negative, then update 𝑤𝑡+1 ← 𝑤𝑡 − 𝑥

Note: 𝑤𝑡 is weighted sum of incorrectly classified examples

𝑤𝑡 = 𝑎𝑖1𝑥𝑖1 +⋯+ 𝑎𝑖𝑘𝑥𝑖𝑘

𝑤𝑡 ⋅ 𝑥 = 𝑎𝑖1𝑥𝑖1 ⋅ 𝑥 + ⋯+ 𝑎𝑖𝑘𝑥𝑖𝑘 ⋅ 𝑥



Perceptron Algorithm: Example

Example: −1,2 −

-
+
+

𝑤1 = (0,0)

𝑤2 = 𝑤1 − −1,2 = (1,−2)

𝑤3 = 𝑤2 + 1,1 = (2,−1)

𝑤4 = 𝑤3 − −1,−2 = (3,1)

+
-

-
Algorithm:

 Set t=1, start with all-zeroes weight vector 𝑤1.

 Given example 𝑥, predict positive iff 𝑤𝑡 ⋅ 𝑥 ≥ 0.

 On a mistake, update as follows: 

• Mistake on positive, update 𝑤𝑡+1 ← 𝑤𝑡 + 𝑥

• Mistake on negative, update 𝑤𝑡+1 ← 𝑤𝑡 − 𝑥
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Geometric Margin

Definition: The margin of example 𝑥 w.r.t. a linear sep. 𝑤 is the distance from 𝑥 to 

the plane 𝑤 ⋅ 𝑥 = 0 (or the negative if on wrong side)

𝑥1
w

Margin of positive example 𝑥1

𝑥2

Margin of negative example 𝑥2



Geometric Margin

Definition: The margin 𝛾𝑤 of a set of examples 𝑆 wrt a linear separator 𝑤 is the 

smallest margin over points 𝑥 ∈ 𝑆.
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Definition: The margin of example 𝑥 w.r.t. a linear sep. 𝑤 is the distance from 𝑥 to 

the plane 𝑤 ⋅ 𝑥 = 0 (or the negative if on wrong side)
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Definition: The margin 𝛾 of a set of examples 𝑆 is the maximum 𝛾𝑤 over all linear 

separators 𝑤.

Geometric Margin

Definition: The margin 𝛾𝑤 of a set of examples 𝑆 wrt a linear separator 𝑤 is the 

smallest margin over points 𝑥 ∈ 𝑆.

Definition: The margin of example 𝑥 w.r.t. a linear sep. 𝑤 is the distance from 𝑥 to 

the plane 𝑤 ⋅ 𝑥 = 0 (or the negative if on wrong side)



Perceptron: Mistake Bound

Theorem: If data has margin 𝛾 and all points inside a ball of radius 𝑅, then 

Perceptron makes ≤ 𝑅/𝛾 2 mistakes.

(Normalized margin: multiplying all points by 100, or dividing all points by 100, doesn’t 

change the number of mistakes; algorithm is invariant to scaling.)
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Perceptron Algorithm: Analysis

Theorem: If data has margin 𝛾 and all points 

inside a ball of radius 𝑅, then Perceptron 

makes ≤ 𝑅/𝛾 2 mistakes.

Update rule: 

• Mistake on positive: 𝑤𝑡+1 ← 𝑤𝑡 + 𝑥

• Mistake on negative: 𝑤𝑡+1 ← 𝑤𝑡 − 𝑥

Proof:

Idea: analyze 𝑤𝑡 ⋅ 𝑤
∗ and ‖𝑤𝑡‖, where 𝑤∗ is the max-margin sep, ‖𝑤∗‖ = 1. 

Claim 1: 𝑤𝑡+1 ⋅ 𝑤
∗ ≥ 𝑤𝑡 ⋅ 𝑤

∗ + 𝛾.

Claim 2: 𝑤𝑡+1
2 ≤ 𝑤𝑡

2 + 𝑅2.

(because 𝑙 𝑥 𝑥 ⋅ 𝑤∗ ≥ 𝛾)

(by Pythagorean Theorem)

𝑤𝑡

𝑤𝑡+1

𝑥
After 𝑀 mistakes:

𝑤𝑀+1 ⋅ 𝑤
∗ ≥ 𝛾𝑀 (by Claim 1)

𝑤𝑀+1 ≤ 𝑅 𝑀 (by Claim 2)

𝑤𝑀+1 ⋅ 𝑤
∗ ≤ ‖𝑤𝑀+1‖ (since 𝑤∗ is unit length)

So, 𝛾𝑀 ≤ 𝑅 𝑀, so 𝑀 ≤
𝑅

𝛾

2
.



Perceptron Extensions

• Can use it to find a consistent separator (by cycling through the data) with 

a given set S linearly separable by margin 𝛾 (by cycling through the data).

• One can convert the mistake bound guarantee into a distributional 

guarantee too (for the case where the 𝑥𝑖s come from a fixed distribution).

• Can be adapted to the case where there is no perfect separator as long as the 

so called hinge loss (i.e., the total distance needed to move the points to classify 

them correctly large margin) is small. 

• Can be kernelized to handle non-linear decision boundaries!



Perceptron Discussion

• Simple online algorithm for learning linear separators with a nice 

guarantee that depends only on the geometric (aka 𝐿2, 𝐿2) margin.

• Simple, but very useful in applications like Branch prediction; it also has 

interesting extensions to structured prediction.

• It can be kernelized to handle non-linear decision boundaries



Perceptron: Mistake Bound

Theorem: If data has margin 𝛾 and all points inside a ball of radius 𝑅, then 

Perceptron makes ≤ 𝑅/𝛾 2 mistakes.

(Normalized margin: multiplying all points by 100, or dividing all points by 100, doesn’t 

change the number of mistakes; algo is invariant to scaling.)
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Margin: the amount of 
wiggle-room available for 
a solution. 

Implies that large margin classifiers 
have smaller complexity! 



Complexity of Large Margin Linear Sep.
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Margin Important Theme in ML
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What if Dataset is Not Linearly Separable
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Kernels Methods
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Overview of Kernel Methods
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Kernels
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Kernels: Example
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Kernels: Example
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Avoid explicitly expanding the features
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Kernelizing a learning algorithm
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Kernelizing the Perceptron Algorithm
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Kernelizing the Perceptron Algorithm
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Generalize Well if Good Margin
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Kernels: More Examples
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Support Vector Machines (SVMs)
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Support Vector Machines

• Support Vector Machines (SVMs)

– One of the most theoretically well motivated and practically most effective 

classification algorithms in machine learning.

– Directly motivated by Margins and Kernels!
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Geometric Margin

Machine Learning 32



Geometric Margin
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Margin Important Theme in ML
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Support Vector Machines (SVMs)
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Support Vector Machines (SVMs)
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Support Vector Machines (SVMs)
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Support Vector Machines (SVMs)
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SVMs (Lagrangian Dual)
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Kernelizing the Dual SVMs
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SVM - Support Vector Machines

• A new classification method for both linear and nonlinear data

• It uses a nonlinear mapping to transform the original training data into a higher 

dimension

• With the new dimension, it searches for the linear optimal separating hyperplane (i.e., 

“decision boundary”)

• With an appropriate nonlinear mapping to a sufficiently high dimension, data from two 

classes can always be separated by a hyperplane

• SVM finds this hyperplane using support vectors (“essential” training tuples) and 

margins (defined by the support vectors)

• SVMs are currently among the best performers for a number of classification tasks 

ranging from text to genomic data.

• SVMs can be applied to complex data types beyond feature vectors (e.g. graphs, 

sequences, relational data) by designing kernel functions for such data.
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