Perceptron: Geometric Margins
Kernels Methods

Support Vector Machines (SVMs)

Perceptron: Geometric Margins

Machine Learning

The Online Learning Model: Perceptron Algorithm

« Examples arrive sequentially.

* We need to make a prediction.
Afterwards observe the outcome.

Fori=1,2,...,:

(e Example x;
Phase i: Online Algorithm & > Prediction h(x;)

— Ohserve ¢ (x;)

Mistake bound model

» Analysis wise, make no distributional assumptions.

e Goal: Minimize the number of mistakes.

Linear Separators

. Instance space X = R¢ X S
. Hypothegis c!iass of linear decision . X o
surfaces in R®. X 00
x " W
* h(x)=w- x +w,p,if h(x) > 0, then « o O
label x as +, otherwise label it as - X o

Claim: WLOG w, = 0.

Proof: Can simulate a non-zero threshold with a dummy input feature x
that is always set up to 1.

o x=(Xq,.,xg) X = (X1, 0, xq,1)
c w-x+wy20iff(Wy,...,wy,wp) - X=>0

where w = (Wq, ..., Wg)

Linear Separators: Perceptron Algorithm

« Set t=1, start with the all zero vector w;.
« Given example x, predict positive iff w; - x = 0

« On a mistake, update as follows:
« Mistake on positive, then update w;,; « w; + x

« Mistake on negative, then update w;,; < w; — x

Note: w; Is weighted sum of incorrectly classified examples
We = ailxil + -+ aikxik

We X =Q; Xi, X+ + QX ° X

Perceptron Algorithm: Example

EXGH‘\p'CI (_1’2)_ X
(1,0) +

LD+ X
(—1,0) -

(-1,-2)- X NP

(1,-1) + e

Algor'ithm: Wy = (0 O)
= Set t=1, start with all-zeroes weight vector w;.
. . - . WZ — Wl _ (_1)2) — (1) _2)
= Given example x, predict positive iff w; - x > 0.
= On amistake, update as follows: wsz =w, +(1,1) = (2,-1)
Mistake on positive, update wy,; < w; + x w, = w3 —(—1,-2) = (3,1)
Mistake on negative, update w;y,; « w; — x

Geometric Margin

Definition: The margin of example x w.r.t. a linear sep. w is the distance from x to
the plane w - x = 0 (or the negative if on wrong side)

Margin of positive example x;

Geometric Margin

Definition: The margin of example x w.r.t. a linear sep. w is the distance from x to
the plane w - x = 0 (or the negative if on wrong side)

Definition: The margin y,, of a set of examples S wrt a linear separator w is the
smallest margin over points x € S.

Geometric Margin

Definition: The margin of example x w.r.t. a linear sep. w is the distance from x to
the plane w - x = 0 (or the negative if on wrong side)

Definition: The margin y,, of a set of examples S wrt a linear separator w is the
smallest margin over points x € S.

Definition: The margin y of a set of examples S is the maximum y,,, over all linear
separators w.

Perceptron: Mistake Bound

Theorem: If data has margin y and all points inside a ball of radius R, then
Perceptron makes < (R /y)? mistakes.

(Normalized margin: multiplying all points by 100, or dividing all points by 100, doesn’t
change the number of mistakes; algorithm is invariant to scaling.)

Perceptron Algorithm: Analysis

Theorem: If data has margin y and all points ~ Update rule:

inside a ball of radius R, then Perceptron * Mistake on positive: we,q < we +x
makes < (R/]/)Z mistakes. « Mistake on negative: w;,; « w; — x
Proof:

Idea: analyze w; - w* and ||w¢||, where w* is the max-margin sep, |[w*|| = 1.
Claim 1: w; ;- w* = w; - w* + y. (because [(x)x - w* = y)

Claim 2: ||wes111? < |lwell? + R?. (by Pythagorean Theorem)

Wti1
After M mistakes: - i

Wye1 - W' = yM (by Claim 1) Wy .
Wy 411l < RVM (by Claim 2)

WM+1
I
Wiyet - W* < |[lwy41]l (since w* is unit length) <
W*

So,yM < RVM,so M < (5)2.

Perceptron Extensions

« Can use it to find a consistent separator (by cycling through the data) with
a given set S linearly separable by margin y (by cycling through the data).

» One can convert the mistake bound guarantee into a distributional
guarantee too (for the case where the x;s come from a fixed distribution).

» Can be adapted to the case where there is no perfect separator as long as the
so called hinge loss (i.e., the total distance needed to move the points to classify
them correctly large margin) is small.

e Can be kernelized to handle non-linear decision boundaries!

Perceptron Discussion

« Simple online algorithm for learning linear separators with a nice
guarantee that depends only on the geometric (aka L, L,) margin.

e |t can be kernelized to handle non-linear decision boundaries

« Simple, but very useful in applications like Branch prediction; it also has
interesting extensions to structured prediction.

Perceptron: Mistake Bound

Theorem: If data has margin y and all points inside a ball of radius R, then
Perceptron makes < (R /y)? mistakes.

(Normalized margin: multiplying all points by 100, or dividing all points by 100, doesn’t
change the number of mistakes; algo is invariant to scaling.)

Margin: the amount of
wiggle-room available for
a solution.

Implies that large margin classifiers
have smaller complexity!

Complexity of Large Margin Linear Sep.

Know that in R™ we can shatter n+l points with linear
separators, but not n+2 points (VC-dim of linear sep is n+l).

a?x) vl o,]
I, % <y What if we require that the points be «x xi H"'aﬁ °
L ~ linearly separated by margin y? x X E\E Dw

2]
Can have at most G) points inside ball of radius R
Lk - _n‘\':.'- .
\f{ﬂ/ that can be shattered at margin y (meaning that every

labeling is achievable by a separater of margin y).

So, large margin classifiers have smaller complexity!
Nice implications for usual distributional learning setting.

Less classifiers to worry about that will look good over
the sample, but bad over all....

Less prone to overfittingllll

Machine Learning 15

Margin Important Theme in ML

Both sample complexity and algorithmic implications.

Sample/Mistake Bound complexity:

If large margin, # mistakes Peceptron makes
is small (independent on the dim of the space)!

If large margin y and if alg. produces a large
margin classifier, then amount of data needed
depends only on R/y [Bartlett & Shawe-Taylor '99].

Suggests searching for a
large margin classifier..

Algorithmic Implications:

Perceptron, Kernels, SVMs...

16

What if Dataset is Not Linearly Separable

Problem: data not linearly separable in the most natural
feature representation.

No good linear
separator in pixel
representation.

Example: &

Solutions:

+ "Learn a wmore complex class of functions”

e.g., decision trees, neural networks, boosting).

* "Use a Kernel” (aneat solution that attracted a lot of attention)

* "Use a Deep Network”

+ "Combine Kernels and Deep Networks”

Machine Learning 17

Kernels Methods

Machine Learning

18

Overview of Kernel Methods

What is a Kernel?

A kernel K is a legal def of dot-product: i.e. there exists an

implicit mapping @ s.t. KE :;)) fb(g) fD(Q)

E.g., K(x)y)=(x-y+1)
¢: (n-dimensional space) — nd-dimensional space

Why Kernels matter?

Many algorithms interact with data only via dot-products.
So, if replace x - z with K(x,z) they act implicitly as if data
was in the higher-dimensional ®-space.

If data is linearly separable by large margin in the ®-space,
then good sample complexity.

[Or other regularity properties for controlling the capacity.]

Machine Learning 19

Kernels

Definition

K(-,-) is a kernel if it can be viewed as a legal definition of
inner product:

e 3p:X—>RN s.1.K(x2) = dx) - d(2)

Range of ¢ is called the ®-space.

N can be very large.

But think of & as implicit, not explicit!ll!

Machine Learning

20

Kernels: Example

For n=2, d=2, the kernel K(x,z) = (x- z)4 corresponds to

(x1,x2) = D(x) = (xZ, x3,V2x,x2)

Original space d-space
X
A X2
X X x
X
X __L._ X
”.ﬂ"—. -hhh'n, x
X X/ © © \\x X
"' 0 O 0 fl X
1 -
. ° o /x . 4
x 9| . X
X X X 0 X X
X X
X X X Z3 X x X

Machine Learning

21

Kernels: Example
$:R? = R3, (x4,%,) = (%) = (x2,%x3,V2x,%,)

d) - d(2) = (x2,x3,V2x,%,) - (22, 22,V22,2,)

= (X12; +X22,)* = (x-2)* = K(x,2)

Original space

A N2
X X X
X
X Lo X
X x{," 0 0 H\\ X
"' 0 0 0O \1. ‘3{1
\ 0 : -
. 0., X
x ~9 | .
X X X
X Z,
X X X

Machine Learning

Kernels: Example

Note: feature space might not be unique.

$:R? = R3, (x1,%X;) = ©(x) = (x§,%3,V2x,%,)

d(x) - $(2) = (X%:K%!ﬁxlxz) (77, 75,V22,2,)

= (X,2; +%,2,)* = (x-2)* = K(x,2)

$:R? = R*, (x1,%5) = O(X) = (X7,X3,X1Xp, XpX;)

d(x) - P(z) = (X%rxgxx-ﬁz:?{zxﬂ ‘ (Zf! Z%! Z1Z3,Z971)

= (x-2)? =K(x,2)

Machine Learning

23

Avoid explicitly expanding the features

Feature space can grow really large and really quickly....

Crucial to think of ¢ as implicit, not explicit!ll!

Polynomial kernel degreee d, k(x,z) = (xT2)?* = ¢(x) - ¢ (2)

wd e . 2. . | d=4
- X1, X1 X2 ...Xg, X1 X2 ...Xgq-1 /

- Total number of such feature is
(d-l'ﬂ,—l) =(d+n—1)!
d dl(n— 1)!
_ d =6,n =100, there are 1.6 billion terms = ‘e 102

number of input dimensions

E E E & B ¥ z E

~1 d=3

number of monomial terms

0(n) computation!

k(x,z) = (xT2)4 = ¢p(x) - p(2)

24

Kernelizing a learning algorithm

+ If all computations involving instances are in terms of
inner products then:

= Conceptually, work in a very high diml space and the alg's
performance depends only on linear separability in that
extended space.

* Computationally, only need to modify the algo by replacing
each x -z with a K(x, z).

+ Examples of kernalizable algos:
* classification: Perceptron, SVM.

* regression: linear, ridge regression.

* clustering: k-means.

Machine Learning

25

Kernelizing the Perceptron Algorithm

Set t=1, start with the all zero vector w;.

\
. . . \ D
Given example x, predict + iff w, - x = 0 ’ o\ o
X X
On a mistake, update as follows: CX T
X \
: . \ O
Mistake on positive, w,,; < w, + x x X f .

Mistake on negative, wy 1 « wp — x ‘

Easy fo kernelize since w, is weighted sum of incorrectly
classified examples w, = a;, x;, + -+ a;,x;,

Replace we-x =a; x; - X+ +a;, Xy "X \yith
a;, K(xilix:) + -+ aikf{{:xi-_k;x)

Note: need to store all the mistakes so far.

Machine Learning 26

Kernelizing the Perceptron Algorithm

SO = &-space
Given x, predict + iff d(xi,_,) - p(x)
a;, K(x;,x)+--+ air_ 0 X xx\ o 4
X A O
On the t th mistake, update as follows: x X S
o]
X O
Mistake on positive, set a;, < 1; store x;, : \ 0

Mistake on negative, a; < —1; store x;,
Perceptron we = a; x; + -+ a;x;,
We X =a; X X+ +a,x, x = a K(x,x)++a;,K(x;,,x)

Exact same behavior/prediction rule as if mapped data in the
¢-space and ran Perceptron there!

Do this implicitly, so computational savings!l!!|

Machine Learning

27

Generalize Well if Good Margin

If data is linearly separable by margin in the ¢-space,
then small mistake bound.

R

If margin y in ¢-space, then Perceptron makes (V

—-—
- —

d-space

Machine Learning

2
) mistakes.

28

Kernels: More Examples

» Linear: K(x,z) =x-z

+ Polynomial: K(x,z) = (x-2)% or K(x,2z) = (1 + x - 2)4

[|x—z||°
202

+ Gaussian: K(x,z) = exp [—

|[x—z]]|
2 02

- Laplace Kernel: K(x, z) = exp [—

Machine Learning

29

Support Vector Machines (SVMs)

Support Vector Machines

Support Vector Machines (SVMs)

— One of the most theoretically well motivated and practically most effective
classification algorithms in machine learning.

— Directly motivated by Margins and Kernels!

Machine Learning

31

Geometric Margin

WLOG homogeneous linear separators [w, = 0].

Definition: The margin of example x w.r.t. a linear sep. w is the
distance from x to the plane w - x = 0.

Margin of example x,
If ||lw|| = 1, margin of x
\ w.rt. wis [x-w)|.

Margin of example x,

Machine Learning

32

Geometric Margin

Definition: The margin of example x w.r.t. a linear sep. w is the
distance from x to the plane w - x = 0.

Definition: The margin y,, of a set of examples S wrt a linear
separator w is the smallest margin over points x € S.

Definition: The margin y of a set of examples S is the maximum
v over all linear separators w.

Machine Learning

33

Margin Important Theme in ML

Both sample complexity and algorithmic implications.

Sample/Mistake Bound complexity:

If large margin, # mistakes Peceptron makes
is small (independent on the dim of the space)

If large margin y and if alg. produces a large
margin classifier, then amount of data needed
depends only on R/y [Bartlett & Shawe-Taylor '99].

Algorithmic Implications

P N Suggests searching for a large margin

N classifier.. SVMs

34

Support Vector Machines (SVMs)

Directly optimize for the maximum margin separator: SVMs

First, assume we know a lower bound on the margin y

M: Y, S:{(}{l, yl): ---r(Km! .}Im)};

Find: some w where:

e Jlwl]® =1

Forall i, yw-x; >y

Qutput: w, a separator of margin y over S

Realizable case, where the data is linearly separable by margin y

Machine Learning 35

Support Vector Machines (SVMs)

Directly optimize for the maximum margin separator: SVMs

E.g., search for the best possible y

M: Sz{(Xl: yl)r r(XlﬂJ ym)};

Find: some w and maximum y where:

. ||w||2 —1

Forall i, yyw-x; >y

Qutput: maximum margin separator over S

Machine Learning

36

Support Vector Machines (SVMs)

Directly optimize for the maximum margin separator: SVMs

M: Sz{(xliyl)f ---t(XIIl!yIIl)};
Maximize y under the constraint:
2
. wif* =1

Foralli, yyw-x; >y

Machine Learning

37

Support Vector Machines (SVMs)

Directly optimize for the maximum margin separator: SVMs

Input: S={(x1,y1),(Xm Ym)}: This is a
constrained

w nder the constraint: optimization

“ WI|2 =1 problem.
/- Foralli, yyw-x; >y
LN > J
?EAE?;:E constraints

Famous example of constrained optimization: linear programming,
where objective fn is linear, constraints are linear (in)equalities

Support Vector Machines (SVMs)

Directly optimize for the maximum margin separator: SVMs

M: S:{(XL yl)r ,(Xm, ym)};

Maximi % | ihe constraint:

For'all i, yyw-x; >y

This constraint is non-linear.

In fact, it's even non-convex

Machine Learning

39

Support Vector Machines (SVMs)

Directly optimize for the maximum margin separator: SVMs

In UT: S:{(X‘l!yl)t ---t(XIIlJyIH)}’.
Maximize y under the constraint:
2
e |lwl| =1

Foralli, yyw-x; =y

w' = w/y, then max y is equiv. to minimizing ||w'||? (since ||w'||* = 1/y?).
So, dividing both sides by y and writing in terms of w' we get:

M: S:{(X‘l!yl)t ---t(XIIlJyIH)}’.
Minimize ||w’||2 under the constraint:

Forall i, yyw'-x; > 1

Machine Learning 40

Support Vector Machines (SVMs)

Directly optimize for the maximum margin separator: SVMs

m: 5={(X1,y erym)}; This is a
argmin @ A constrained
optimization

problem.

Foralli, yyw-x; > 1

The objective is convex (quadratic)
All constraints are linear

Can solve efficiently (in poly time) using standard quadratic
programing (QP) software

Machine Learning 41

Support Vector Machines (SVMs)

(Question: what if data isn't perfectly linearly separable?

Issue 1: now have two objectives wox=—1

* maximize margin
e minimize & of misclassifications.

Ans 1: Let's optimize their sum: minimize

| w |2 + C(# misclassifications) -

where C is some tradeoff constant.

Issue 2: This is computationally hard (NP-hard). @%
[even if didn't care about margin and minimized # mistakes]

NP-hard [Guruswam i-Raghavendra'06é]

42

Support Vector Machines (SVMs)

Question: what if data isn't perfectly linearly separable?

Replace "# mistakes" with upper bound called “hinge loss"

I_HM: S:{(XIJ yl): ---:(XII"U yl’ll)]f
Minimize ||w’||2 under the constraint:

Forall i, yw -x; > 1

M: Sz{(x'l!yl)f ---t(XIIlJ ym)}r w-x=-—1
Find argminyg, . ||w||2 +C ;& st

Foralli,yyw-x; >1—¢; -
§i=0

¢; are “slack variables”

Machine Learning

43

Support Vector Machines (SVMs)

Question: what if data isn't perfectly linearly separable?
Replace "# mistakes" with upper bound called “hinge loss”

I_HM: S:{(le }’1), "'!(anf yl'[l)};
Find argmingg, ||w||;3 +C) ¢ st

« Foradlli,yw-x;>1-¢;
& =20

Total amount have to move the points to get them

on the correct side of the linesw - x = +1/—1,
where the distance between the lines w - x = 0 and

w-+x =1 counts as "1 unit”.

Machine Learning 44

Support Vector Machines (SVMs)

What if the data is far from being
linearly separable?

Example: Vs
‘A

SVM philosophy: "use a kernel”

No good linear
separator in pixel
representation.

Support Vector Machines (SVMs)

M: 5:{(}:1: yl)f ..,,(Km, ym)};

. . 2 Pr’imal
Find argming s = ||W|| + C ;& st form
Foralli,yw-x; >1-¢
§i=0
Which is equivalent to:
Input: S={(x4, y1), - (Xm, Ym)}: Lagrangian
Dual

- . 1
Find argming 5 2; 2 yiyj i0X; - Xj — 2 0 S.t.:

Foralli, 0<a; <C;

Z}’iﬂ-’i =0
i

46

SVMs (Lagrangian Dual)

Input: S={(xy,y1), - .(Xm) Ym)}:
Find argmin, —E i i ViVj 0GQGX; * Xj —) o s.t.

Foralli, 0<a; <C;

ZYiﬂiZU w -
i

Final classifier is: w = Y a;y;x;

The points x; for which «; = 0
are called the "support vectors”

Machine Learning

47

Kernelizing the Dual SVMs

I—nM: S:{(X1F Y1)r f(xlﬂl Ym)}'
. .1
Find argmmﬂazi 2 Vi¥; {Ii 2 0 8.t Replace x; - x,
Foralli, 0<q <C; with K(3“ii~‘-‘5i)-

Zbﬁﬂii =0
i

Final classifier is: w = }; o;y;x;
The points x; for which «; # 0 are called the "support vectors”

With a kernel, classify x using Y;; a;y;K(%, x;)

Machine Learning 48

SVM - Support Vector Machines

A new classification method for both linear and nonlinear data

It uses a nonlinear mapping to transform the original training data into a higher
dimension

With the new dimension, it searches for the linear optimal separating hyperplane (i.e.,
“decision boundary”)

With an appropriate nonlinear mapping to a sufficiently high dimension, data from two
classes can always be separated by a hyperplane

SVM finds this hyperplane using support vectors (“essential” training tuples) and
margins (defined by the support vectors)

SVMs are currently among the best performers for a number of classification tasks
ranging from text to genomic data.

SVMis can be applied to complex data types beyond feature vectors (e.g. graphs,
sequences, relational data) by designing kernel functions for such data.

Machine Learning 49

