Reinforcement Learning

Reinforcement Learning

e Basic idea:;
* Receive feedback in the form of rewards

« Agent’s utility is defined by the reward function
« Must (learn to) act so as to maximize expected rewards
« All learning is based on observed samples of outcomes!.

State: s
Reward: r

Actions: a

~

Environment

&

Reinforcement Learning

« The agent needs to know that something good has happened and that something bad has happened as
a result of its action.

* This kind of feedback is called a reward, or reinforcement.

State: s
Reward: r

Actions: a

e

Environment

&

Reinforcement Learning

Assumes a Markov Decision Process (MDP):
 Asetofstatesse S
 Aset of actions (per state) A
 Amodel T(s,a,5")
« Areward function R(s,a,s’)
Still looking for a policy 7(s)
* 7(s) 1s the action recommended by the policy & for state s.
« An optimal policy is a policy that yields the highest expected utility.

» The expected utility of an action given the evidence, EU(ale), is just the average utility value of the
outcomes, weighted by the probability that the outcome occurs

But we don’t know T or R
* l.e. we don’t know which states are good or what the actions do
« Must actually try actions and states out to learn

The task of reinforcement learning is to use observed rewards to learn an optimal (or nearly
optimal) policy for the environment.

Reinforcement Learning:
Model-Based Learning

 Model-Based ldea:
 Learn an approximate model based on experiences
» Solve for values as If the learned model were correct

« Step 1. Learn empirical MDP model
e Count outcomes s’ for each s, a
 Normalize to give an estimate of 7'(s, a, s")
 Discover each R(s,a,s’) when we experience (s, a, s”)

 Step 2: Solve the learned MDP
» For example, use value iteration

Input Policy 1

Reinforcement Learning:

Observed Episodes (Training)

Episode 1

-
B, east, C, -1
C, east, D, -1

Assume: v=1

Episode 3

4 ™
E, north, C, -1

C,east, D, -1

D, exit, x, +10
\. y,

D, exit, x, +10
. /

Episode 2

B, east, C, -1
C,east, D, -1

\.

D, exit, x, +10
J

~

Episode 4

C, east, A, -1

-

N
(E, north, C, -1

A, exit, x,-10
Y,

Model-Based Learning: Example

Learned Model

T(s,a,s)

~
T(B, east, C) =1.00
T(C, east, D) =0.75
T(C, east, A) =0.25

.

~

S

R(s,a,s")

4 R(B, east, C) =-1
R(C, east, D) =-1
R(D, exit, x) = +10

A

~

S

Passive and Active Learning

« A passive learner simply watches the world going by, and tries to learn the utility of being in various
states.

* In passive learning, the agent’s policy is fixed and the task is to learn the utilities of states (or
state—action pairs).

 This could also involve learning a model of the environment.

« An active learner must also act using the learned information, and can use its problem generator to
suggest explorations of unknown portions of the environment.

* In active learning, the agent must also learn what to do.

 The principal issue is exploration: an agent must experience as much as possible of its
environment in order to learn how to behave In it.

Passive Reinforcement Learning

= Simplified task: policy evaluation
= Input: a fixed policy n(s)
" You don’t know the transitions T(s,a,S)
" You don’t know the rewards R(S,a,S’)
» Goal: learn the state values

= |n this case:
* Learner is “along for the ride”
= No choice about what actions to take
= Just execute the policy and learn from experience

Passive Reinforcement Learning

 Passive Reinforcement Learning:
« Agent’s policy m is fixed;

« Learn state utility values U(s) without knowing the transition model P(s’|s,a) or the reward
function R(s)

* In policy iteration, we have learned how to evaluate a policy, i.e., compute U(s) given P(s’|s,a)
and R(s)

« Two basic approaches:

* Model-based: Build a model of R(s), P(s’|s,a) then evaluate policy
» Model-free: Directly evaluate without building a model

Model-Based Passive Reinforcement Learning

Problem Formulation:
« We are given a policy, but we don’t know the details of the environment
 Follow policy m, perform many trials/experiments to get sample sequences
 Estimate MDP model parameters R(s) and P(s’[s,a) given observed transitions and rewards
« [f finite set of states and actions, can just count and average counts
 Use estimated MDP to evaluate policy

» The agent executes a set of trials in the environment using its policy .

* In each trial, the agent starts in the starting state and experiences a sequence of state transitions
until it reaches one of the terminal states.

* |ts percepts supply both the current state and the reward received in that state.

Model-Based Passive Reinforcement Learning: Example

Start at s=(1,1) action a=up, based on

« reward =-0.04; end up at s’ = (1,2) 3| = | = | &
s=(1,2) action a=up, based on

* reward =-0.04; end up at s’ = (1,2) 2 f 1 1
s=(1,2) action a=up, based on

* reward =-0.04; end up at s’ = (1,3) 1 ? I N
s=(1,3) action a=right, based on = 1 2 3 4

* reward =-0.04; end up at s’ = (2,3)
s=(2,3) action a=right, based on r

* reward =-0.04; end up at s’ = (3,3)
s=(3,3) action a=right, based on =

* reward =-0.04; end up at s’ = (4,3) Estimate R((1,2)) = -0.04
s = (4, 2); no action available

« reward = 1.00; terminate

Estimate P(s’|s,a): P((1,3)|(1,2), up) =1/2 =0.5

Model-Based Passive Reinforcement Learning: Example

* \We can run more trails:

Trail 1: (1,1)>(1,2)>(1,2)>(1,3)>(2,3)>(3,3)>(4,3) N =
Trail 2: (1,1)>(1,2)>(1,3)>(2,3)>(3,3)>(4,3)

Trail 3: (1,1)>(1,2)>(1,3)>(2,3)>(2,3)>(3,3)>(4,3) ===
Trail 4: (1,1)>(1,1)>(1,2)>(1,3)>(2,3)>(3,3)>(4,3) T 2 s

Estimate P(s’|s,a): P((1,3)](1,2), up) =4/5=0.80

Estimate R((1,2)) = -0.04

Model-Based Passive Reinforcement Learning

« Empirical estimate of transition probability P:

!/ # o '
P(s'ls,a) = 24

« Empirical estimate of rewards R:

2s R(s)
R =S

 Given estimates of P and R, we can do MDP policy evaluation:

U(s) = R(s) + 1), P(s'| s, 2(s))U(s")

Model-Based Passive Reinforcement Learning

Advantage:
» Makes good use of data you have

Disadvantage:
 Require building the actual MDP model, which can be intractable if state space is too large

Model-Free Passive Reinforcement Learning

Strategy:
« evaluate policy directly, without first estimating P and R

Direct utility estimation:
 Calculate expected total reward from that state onward.
« When a trial hits a state, view it as a sample of the total reward from that state onward.

Model-Free Passive Reinforcement Learning
Direct Utility Estimation: Example

Start at s=(1,1) action a=up, based on

* reward =-0.04; endup ats’=(1,2) 3| = | = | =
s=(1,2) action a=up, based on

« reward =-0.04; end up ats’ = (1,2) 2 | =
s=(1,2) action a=up, based on

* reward =-0.04;endup ats’=(1,3) 1 ? I N
s=(1,3) action a=right, based on = 1 2 3 4

* reward =-0.04; endup ats’=(2,3)
s=(2,3) action a=right, based on «

* reward =-0.04; end up at s’ = (3,3)
s=(3,3) action a=right, based on =

* reward =-0.04; end up at s’ = (4,3)
s = (4, 2); no action available

« reward = 1.00; terminate

Estimate U™(1,2) = (0.84+0.80)/2 = 0.82

Model-Free Passive Reinforcement Learning
Direct Utility Estimation: Example

* \We can run more trails:

3 — —_— —
Trail 1: (1,1)=>(1,2)=>(1,2)>(1,3)=2>(2,3)2(3,3)2>(4,3) , f 1 =R
Trail 2: (1,1)>(1,2)>(1,3)>(2,3)>(3,3)>(4,3)
Trail 3: (1,1)>(1,2)>(1,3)>(2,3)>(2,3)>(3,3)> (4.3) ===
Trail 4: (1,1)=>(1,1)=>(1,2)>(1,3)2>(2,3)2(3,3)=>(4,3) 1 2 3 4

Estimate U7™(1,2) = (0.84+0.80+0.84+0.80+0.84)/5 = 0.824

Model-Free Passive Reinforcement Learning
Direct Utility Estimation

Advantage:
« estimates utility of policy without having to calculate P and S

Disadvantage:
 Need to wait until you reach terminal state.
 Estimates U(s) and U(s’) separately, ignoring their relationship:

U”(s) = R(s) + yz P(s"| S, yr(s))U”(s")

« Converges very slowly

Model-Free Passive Reinforcement Learning
Temporal-Difference (TD) Learning

« Key idea: Do not wait until the trial terminates, update after each state transition using a running
average

« More likely outcomes will contribute to the update more often

« Does not need a transition model, only experience

Model-Free Passive Reinforcement Learning
Temporal-Difference (TD) Learning

 Updates performed using exponential moving average:

Ui (5) < (1 — a)U; + a(R(s) + yUL(s"))

 Rearranging, we get:

Uit1(8) < Ufs) + a(R(s) + yU(s') — U(s))

« Without subscripts, we get the general update:

U™(s) < U™(s) + a(R(s) + yU"(s") — U™(s))

Model-Free Passive Reinforcement Learning
Temporal-Difference (TD) Learning Equation

learning discount
rate rate

U*(s) « U™(s) + CII(R(S) + }!U”(S’) - U"(s))

') l_'_l
estimated estimated
utility of s utility of s’
what we what we
observed predicted

A

U(s) — U™(s) + a(R(s) + yU(s') — U*(s))

error

U™(s) < U™(s) + a(R(s) + yU™(s) — U"(s))
update

Example: Temporal Difference Learning

Observed Transitions

States [B, east, C, -2 } [C, east, D, -2 }

Assume:y=1,a=1/2
U™(s) < U*(s) + a(R(s) + yU™(s") — U"(s))

update

Active Reinforcement Learning

« Passive agents follow a fixed policy, estimate expected utilities
 Active agents need to decide on what actions to perform to maximize expected utility

« Passive agents face a prediction problem, while active ones face a control problem

Active Reinforcement Learning

 Full reinforcement learning: optimal policies (like value iteration)
* You don’t know the transitions T(s,a,S)
* You don’t know the rewards R(s,a,S’)
* You choose the actions now
« Goal: learn the optimal policy / values

* In this case:
 Learner makes choices!
« Fundamental tradeoff: exploration vs. exploitation
* You actually take actions in the world and find out what happens...

Active Reinforcement Learning
Action-Utility Function

« TD-learning learns the utility of states U™(s) for one action

« Without a policy, we need to learn about all the actions,
Q(s, a): The expected value of taking action a in state s

* We can use Q values instead of U values

U(s) = max Q(s,a)

n(s) = aargmax O(s,a)

Active Reinforcement Learning
Q-Values

 Recall Bellman Equation given policy 7 :

U™(s) = R(s) + 1), P(s'| s, 7(s) U™(s")

 For optimal policy m*:

U*(s) = R(s) + y max [Z P(s'|s,a)U * (5’)]

acA(s)

« Q-values are similar to value function, but defined on state-action pair rather than just states.

* Q7(s, a) Is the expected total reward from state s onward if taking action a in state s, following policy
m after

Active Reinforcement Learning
Q-Values

* We can express the Q-value of a given state-action pair in terms of the Q-value of its neighbors.
U™(s) = R(s) + 7), P('| s, () U(s")
pr
Q%(s,a) = R(s) +7) P(s'| 5,a)U(s)
v

U*(s) = Q"(s, 7(s))

Q*(s,a) = R(s) +7) P(s'|5,)Q"(s', a(s"))

Active Reinforcement Learning
Optimal Q-Values

« When using optimal policy = *, we will take the action that leads to maximum total utility at each
state

n*(s) = argmaxQ*(s, a)

* Thus:
U*(s) = Q*(s.7%(s)) = max Q*(s,)
Q*(s,a) = R(s) +7), P(s'| s,)U*(s")

= R(s) + }’Z P(s’| s,a) max Q*(s’,a’)

Active Reinforcement Learning
Q-Learning

 Similar to Value Iteration, TD Learning

 Use information at s’ to update the estimated Q-value at (s,a) through update:

é*(s, a) < (1 - a)é*(s, a)+ a(r + ymz}xé*(s’, a))

 Given estimated value of Q*(s,a), we can derive an estimate of the optimal policy

?r*(s) = argmaxé*(s, a)

Q-Learning

* Q-Learning: sample-based Q-value iteration

Qt1(5,0) = Y T(s.0.8) |R(s,a,8) +7 maxQu(s',)

S

« Learn Q(s,a) values as you go
» Receive a sample (s,a,s’,r)
* Consider your old estimate: (s, a)
 Consider your new sample estimate:

sample = R(s,a,s’) + max Q(s',a")
a
* Incorporate the new estimate into a running average:

Q(s,a) — (1 — a)Q(s,a) + (@) [sample]

Q-Learning Properties

« Amazing result: Q-learning converges to optimal policy -- even if you’re acting suboptimally!
 This is called off-policy learning

» Caveats:
* You have to explore enough
* You have to eventually make the learning rate small enough
* ... but not decrease it too quickly
 Basically, in the limit, it doesn’t matter how you select actions (!)

Approximate Q-Learning

 Basic Q-Learning keeps a table of all g-values

« In realistic situations, we cannot possibly learn about every single state!
« Too many states to visit them all in training
« Too many states to hold the g-tables in memory

* Instead, we want to generalize:
 Learn about some small number of training states from experience
» Generalize that experience to new, similar situations
 This is a fundamental idea in machine learning, and we’ll see it over and over again

Approximate Q-Learning - Example: Pacman

Let’s say we discover In naive g-learning, Or even this one!
through experience we know nothing
that this state is bad: about this state:

Approximate Q-Learning - Feature-Based Representations

« Solution: describe a state using a vector of features
(properties)

- Features are functions from states to real numbers
(often 0/1) that capture important properties of the
state

« Example features:
« Distance to closest ghost
« Distance to closest dot
* Number of ghosts
1/ (dist to dot)?
* Is Pacman in a tunnel? (0/1)

* |s it the exact state on this slide?

» Can also describe a g-state (s, a) with features (e.g.
action moves closer to food)

Approximate Q-Learning - Linear Value Functions

 Using a feature representation, we can write a q function (or value function) for any state using a few
weights:

V(s) =w1f1(s) +wafa(s) + ... + wnfn(s)
Q(s,a) = wif1(s,a)twafa(s,a)+. .. Fwnfn(s,a)
« Advantage: our experience is summed up in a few powerful numbers

 Disadvantage: states may share features but actually be very different in value!

Approximate Q-Learning

[Q(s,a) = w1 f1(s,a)+wafo(s,a)+. . .+wnfnls, aq

* Q-learning with linear Q-functions:

transition = (s,a,r,s’)
o Q(S,(l)
Q(s,a) «— Q(s,a) + «[difference] Exact Q’s

difference = [7“ + v max Q(s',a")
a

w; — w; + « [difference] f;(s,a) Approximate Qs

* Intuitive interpretation:
 Adjust weights of active features
* E.g., if something unexpectedly bad happens, blame the features that were on:
disprefer all states with that state’s features

» Formal justification: online least squares

