- Basic idea:
 - Receive feedback in the form of rewards
 - Agent's utility is defined by the reward function
 - Must (learn to) act so as to maximize expected rewards
 - All learning is based on observed samples of outcomes!.

- The agent needs to know that something good has happened and that something bad has happened as a result of its action.
- This kind of feedback is called a **reward**, or **reinforcement**.

- Assumes a Markov Decision Process (MDP):
 - A set of states $s \in S$
 - A set of actions (per state) A
 - A model T(s,a,s')
 - A reward function R(s,a,s')
- Still looking for a policy $\pi(s)$
 - $\pi(s)$ is the action recommended by the policy π for state s.
 - An optimal policy is a policy that yields the highest expected utility.
 - The expected utility of an action given the evidence, EU(a|e), is just the average utility value of the outcomes, weighted by the probability that the outcome occurs
- But we don't know T or R
 - i.e. we don't know which states are good or what the actions do
 - Must actually try actions and states out to learn
- The **task of reinforcement learning** is to use observed rewards to learn an optimal (or nearly optimal) policy for the environment.

Reinforcement Learning: Model-Based Learning

- Model-Based Idea:
 - Learn an approximate model based on experiences
 - Solve for values as if the learned model were correct
- Step 1: Learn empirical MDP model
 - Count outcomes s' for each s, a
 - Normalize to give an estimate of $\hat{T}(s, a, s')$
 - Discover each $\hat{R}(s, a, s')$ when we experience (s, a, s')
- Step 2: Solve the learned MDP
 - For example, use value iteration

Reinforcement Learning: Model-Based Learning: Example

Passive and Active Learning

- A **passive learner** simply watches the world going by, and tries to learn the utility of being in various states.
 - In passive learning, the agent's policy is fixed and the task is to learn the utilities of states (or state-action pairs).
 - This could also involve learning a model of the environment.
- An **active learner** must also act using the learned information, and can use its problem generator to suggest explorations of unknown portions of the environment.
 - In active learning, the agent must also learn what to do.
 - The principal issue is **exploration**: an agent must experience as much as possible of its environment in order to learn how to behave in it.

Passive Reinforcement Learning

- Simplified task: policy evaluation
 - Input: a fixed policy $\pi(s)$
 - You don't know the transitions T(s,a,s')
 - You don't know the rewards R(s,a,s')
 - Goal: learn the state values
- In this case:
 - Learner is "along for the ride"
 - No choice about what actions to take
 - Just execute the policy and learn from experience

Passive Reinforcement Learning

- Passive Reinforcement Learning:
 - Agent's policy π is fixed;
 - Learn state utility values U(s) without knowing the transition model P(s'|s,a) or the reward function R(s)
 - In policy iteration, we have learned how to evaluate a policy, i.e., compute U(s) given P(s'|s,a) and R(s)
- Two basic approaches:
 - **Model-based:** Build a model of R(s), P(s'|s,a) then evaluate policy
 - **Model-free**: Directly evaluate without building a model

Model-Based Passive Reinforcement Learning

Problem Formulation:

- We are given a policy, but we don't know the details of the environment
- Follow policy π , perform many trials/experiments to get sample sequences
- Estimate MDP model parameters R(s) and P(s'|s,a) given observed transitions and rewards
- If finite set of states and actions, can just count and average counts
- Use estimated MDP to evaluate policy

Trail:

- The agent executes a set of trials in the environment using its policy π .
- In each trial, the agent starts in the starting state and experiences a sequence of state transitions until it reaches one of the terminal states.
- Its percepts supply both the **current state** and the **reward** received in that state.

Model-Based Passive Reinforcement Learning: Example

- Start at s=(1,1) action a=up, based on π
 - reward = -0.04; end up at s' = (1,2)
- s=(1,2) action a=up, based on π
 - reward = -0.04; end up at s' = (1,2)
- s=(1,2) action a=up, based on π
 - reward = -0.04; end up at s' = (1,3)
- s=(1,3) action a=right, based on π
 - reward = -0.04; end up at s' = (2,3)
- s=(2,3) action a=right, based on π
 - reward = -0.04; end up at s' = (3,3)
- s=(3,3) action a=right, based on π
 - reward = -0.04; end up at s' = (4,3)
- s = (4, 2); no action available
 - reward = 1.00; terminate

Estimate P(s'|s,a): P((1,3)|(1,2), up) = 1/2 = 0.5

Estimate R((1,2)) = -0.04

Model-Based Passive Reinforcement Learning: Example

• We can run more trails:

```
Trail 1: (1,1) \rightarrow (1,2) \rightarrow (1,2) \rightarrow (1,3) \rightarrow (2,3) \rightarrow (3,3) \rightarrow (4,3)

Trail 2: (1,1) \rightarrow (1,2) \rightarrow (1,3) \rightarrow (2,3) \rightarrow (3,3) \rightarrow (4,3)

Trail 3: (1,1) \rightarrow (1,2) \rightarrow (1,3) \rightarrow (2,3) \rightarrow (2,3) \rightarrow (3,3) \rightarrow (4,3)

Trail 4: (1,1) \rightarrow (1,1) \rightarrow (1,2) \rightarrow (1,3) \rightarrow (2,3) \rightarrow (3,3) \rightarrow (4,3)
```


Estimate P(s'|s,a): P((1,3)|(1,2), up) = 4/5 = 0.80

Estimate R((1,2)) = -0.04

Model-Based Passive Reinforcement Learning

• Empirical estimate of transition probability P:

$$P(s'|s,a) = \frac{\#(s,a,s')}{\#(s,a)}$$

• Empirical estimate of rewards R:

$$R(s) = \frac{\sum_{s} R(s)}{\#(s)}$$

• Given estimates of P and R, we can do MDP policy evaluation:

$$U(s) = R(s) + \gamma \sum_{s'} P(s' \mid s, \pi(s)) U(s')$$

Model-Based Passive Reinforcement Learning

Advantage:

• Makes good use of data you have

Disadvantage:

• Require building the actual MDP model, which can be intractable if state space is too large

Model-Free Passive Reinforcement Learning

Strategy:

• evaluate policy directly, without first estimating P and R

Direct utility estimation:

- Calculate expected total reward from that state onward.
- When a trial hits a state, view it as a sample of the total reward from that state onward.

Model-Free Passive Reinforcement Learning Direct Utility Estimation: Example

- Start at s=(1,1) action a=up, based on π
 - reward = -0.04; end up at s' = (1,2)
- s=(1,2) action a=up, based on π
 - reward = -0.04; end up at s' = (1,2)
- s=(1,2) action a=up, based on π
 - reward = -0.04; end up at s' = (1,3)
- s=(1,3) action a=right, based on π
 - reward = -0.04; end up at s' = (2,3)
- s=(2,3) action a=right, based on π
 - reward = -0.04; end up at s' = (3,3)
- s=(3,3) action a=right, based on π
 - reward = -0.04; end up at s' = (4,3)
- s = (4, 2); no action available
 - reward = 1.00; terminate

Estimate $U^{\pi}(1,2) = (0.84+0.80)/2 = 0.82$

Model-Free Passive Reinforcement Learning Direct Utility Estimation: Example

• We can run more trails:

```
Trail 1: (1,1) \rightarrow (1,2) \rightarrow (1,2) \rightarrow (1,3) \rightarrow (2,3) \rightarrow (3,3) \rightarrow (4,3)

Trail 2: (1,1) \rightarrow (1,2) \rightarrow (1,3) \rightarrow (2,3) \rightarrow (3,3) \rightarrow (4,3)

Trail 3: (1,1) \rightarrow (1,2) \rightarrow (1,3) \rightarrow (2,3) \rightarrow (2,3) \rightarrow (3,3) \rightarrow (4,3)

Trail 4: (1,1) \rightarrow (1,1) \rightarrow (1,2) \rightarrow (1,3) \rightarrow (2,3) \rightarrow (3,3) \rightarrow (4,3)
```


Estimate $U^{\pi}(1,2) = (0.84+0.80+0.84+0.80+0.84)/5 = 0.824$

Model-Free Passive Reinforcement Learning Direct Utility Estimation

Advantage:

• estimates utility of policy without having to calculate P and S

Disadvantage:

- Need to wait until you reach terminal state.
- Estimates U(s) and U(s') separately, ignoring their relationship:

$$U^{\pi}(s) = R(s) + \gamma \sum_{s'} P(s' \mid s, \pi(s)) U^{\pi}(s')$$

• Converges very slowly

Model-Free Passive Reinforcement Learning Temporal-Difference (TD) Learning

- Key idea: Do not wait until the trial terminates, update after each state transition using a running average
- More likely outcomes will contribute to the update more often
- Does not need a transition model, only experience

Model-Free Passive Reinforcement Learning Temporal-Difference (TD) Learning

• Updates performed using exponential moving average:

$$U_{i+1}(s) \leftarrow (1 - \alpha)U_i + \alpha(R(s) + \gamma U_i(s'))$$

• Rearranging, we get:

$$U_{i+1}(s) \leftarrow U_i(s) + \alpha(R(s) + \gamma U_i(s') - U_i(s))$$

• Without subscripts, we get the general update:

 $U^{\pi}(s) \leftarrow U^{\pi}(s) + \alpha(R(s) + \gamma U^{\pi}(s') - U^{\pi}(s))$

Model-Free Passive Reinforcement Learning Temporal-Difference (TD) Learning Equation

$$U^{\pi}(s) \leftarrow U^{\pi}(s) + \underbrace{\alpha(R(s) + \gamma U^{\pi}(s') - U^{\pi}(s))}_{\text{update}}$$

Example: Temporal Difference Learning

update

Active Reinforcement Learning

- Passive agents follow a fixed policy, estimate expected utilities
- Active agents need to decide on what actions to perform to maximize expected utility
- Passive agents face a prediction problem, while active ones face a control problem

Active Reinforcement Learning

- Full reinforcement learning: optimal policies (like value iteration)
 - You don't know the transitions T(s,a,s')
 - You don't know the rewards R(s,a,s')
 - You choose the actions now
 - Goal: learn the optimal policy / values
- In this case:
 - Learner makes choices!
 - Fundamental tradeoff: exploration vs. exploitation
 - You actually take actions in the world and find out what happens...

Active Reinforcement Learning Action-Utility Function

- TD-learning learns the utility of states $U^{\pi}(s)$ for one action
- Without a policy, we need to learn about all the actions,
 Q(s, a): The expected value of taking action a in state s
- We can use Q values instead of U values

$$U(s) = \max_{a} Q(s, a)$$
$$\pi(s) = \operatorname*{argmax}_{a} Q(s, a)$$

Active Reinforcement Learning Q-Values

• Recall Bellman Equation given policy π :

$$U^{\pi}(s) = R(s) + \gamma \sum_{s'} P(s' \,|\, s, \pi(s)) U^{\pi}(s')$$

• For optimal policy π^* :

$$U^*(s) = R(s) + \gamma \max_{\alpha \in A(s)} \left[\sum P(s' \mid s, \alpha) U^*(s') \right]$$

- Q-values are similar to value function, but defined on state-action pair rather than just states.
- $Q^{\pi}(s, a)$ is the expected total reward from state s onward if taking action a in state s, following policy π after

Active Reinforcement Learning Q-Values

• We can express the Q-value of a given state-action pair in terms of the Q-value of its neighbors.

$$U^{\pi}(s) = R(s) + \gamma \sum_{s'} P(s' | s, \pi(s)) U^{\pi}(s')$$
$$Q^{\pi}(s, a) = R(s) + \gamma \sum_{s'} P(s' | s, a) U^{\pi}(s')$$

$$U^{\pi}(s) = Q^{\pi}(s, \pi(s))$$

$$Q^{\pi}(s,a) = R(s) + \gamma \sum_{s'} P(s' | s, a) Q^{\pi}(s', \pi(s'))$$

Active Reinforcement Learning Optimal Q-Values

• When using optimal policy π *, we will take the action that leads to maximum total utility at each state

$$\pi^*(s) = \underset{a}{\operatorname{argmax}} Q^*(s, a)$$

• Thus:

$$U^{*}(s) = Q^{*}(s, \pi^{*}(s)) = \max_{a} Q^{*}(s, a)$$
$$Q^{*}(s, a) = R(s) + \gamma \sum_{s'} P(s' | s, a) U^{*}(s')$$
$$= R(s) + \gamma \sum_{s'} P(s' | s, a) \max_{a} Q^{*}(s', a')$$

Active Reinforcement Learning Q-Learning

- Similar to Value Iteration, TD Learning
- Use information at s' to update the estimated Q-value at (s,a) through update:

$$\hat{Q}^*(s,a) \leftarrow (1-\alpha)\hat{Q}^*(s,a) + \alpha(r + \gamma \max_{a'}\hat{Q}^*(s',a'))$$

• Given estimated value of $Q^*(s,a)$, we can derive an estimate of the optimal policy

$$\hat{\pi}^*(s) = \operatorname*{argmax}_{a} \hat{Q}^*(s, a)$$

Q-Learning

• Q-Learning: sample-based Q-value iteration

$$Q_{k+1}(s,a) \leftarrow \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma \max_{a'} Q_k(s',a') \right]$$

- Learn Q(s,a) values as you go
 - Receive a sample (s,a,s',r)
 - Consider your old estimate: Q(s, a)
 - Consider your new sample estimate:

 $sample = R(s, a, s') + \gamma \max_{a'} Q(s', a')$

• Incorporate the new estimate into a running average:

 $Q(s,a) \leftarrow (1-\alpha)Q(s,a) + (\alpha) [sample]$

Q-Learning

Q-Learning Properties

- Amazing result: Q-learning converges to optimal policy -- even if you're acting suboptimally!
- This is called off-policy learning
- Caveats:
 - You have to explore enough
 - You have to eventually make the learning rate small enough
 - ... but not decrease it too quickly
 - Basically, in the limit, it doesn't matter how you select actions (!)

Approximate Q-Learning

- Basic Q-Learning keeps a table of all q-values
- In realistic situations, we cannot possibly learn about every single state!
 - Too many states to visit them all in training
 - Too many states to hold the q-tables in memory
- Instead, we want to generalize:
 - Learn about some small number of training states from experience
 - Generalize that experience to new, similar situations
 - This is a fundamental idea in machine learning, and we'll see it over and over again

Approximate Q-Learning - Example: Pacman

Let's say we discover through experience that this state is bad:

In naïve q-learning, we know nothing about this state:

Or even this one!

Approximate Q-Learning - Feature-Based Representations

- Solution: describe a state using a vector of features (properties)
 - Features are functions from states to real numbers (often 0/1) that capture important properties of the state
 - Example features:
 - Distance to closest ghost
 - Distance to closest dot
 - Number of ghosts
 - $1 / (\text{dist to dot})^2$
 - Is Pacman in a tunnel? (0/1)
 - etc.
 - Is it the exact state on this slide?
 - Can also describe a q-state (s, a) with features (e.g. action moves closer to food)

Approximate Q-Learning - Linear Value Functions

• Using a feature representation, we can write a q function (or value function) for any state using a few weights:

$$V(s) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_n f_n(s)$$

$$Q(s,a) = w_1 f_1(s,a) + w_2 f_2(s,a) + \ldots + w_n f_n(s,a)$$

- Advantage: our experience is summed up in a few powerful numbers
- Disadvantage: states may share features but actually be very different in value!

Approximate Q-Learning

$$Q(s,a) = w_1 f_1(s,a) + w_2 f_2(s,a) + \ldots + w_n f_n(s,a)$$

• Q-learning with linear Q-functions:

 $\begin{aligned} & \text{transition} = (s, a, r, s') \\ & \text{difference} = \left[r + \gamma \max_{a'} Q(s', a') \right] - Q(s, a) \\ & Q(s, a) \leftarrow Q(s, a) + \alpha \text{ [difference]} \end{aligned} \qquad \text{Exact Q's} \\ & w_i \leftarrow w_i + \alpha \text{ [difference]} f_i(s, a) \end{aligned}$

- Intuitive interpretation:
 - Adjust weights of active features
 - E.g., if something unexpectedly bad happens, blame the features that were on: disprefer all states with that state's features
- Formal justification: online least squares