
Reinforcement Learning



Reinforcement Learning

• Basic idea:

• Receive feedback in the form of rewards

• Agent’s utility is defined by the reward function

• Must (learn to) act so as to maximize expected rewards

• All learning is based on observed samples of outcomes!.



Reinforcement Learning

• The agent needs to know that something good has happened and that something bad has happened as 
a result of its action.

• This kind of feedback is called a reward, or reinforcement. 



Reinforcement Learning

• Assumes a Markov Decision Process (MDP):

• A set of states s ∈ S

• A set of actions (per state) A

• A model T(s,a,s’)

• A reward function R(s,a,s’)

• Still looking for a policy 𝜋(s)

• π(s) is the action recommended by the policy π for state s.

• An optimal policy is a policy that yields the highest expected utility.

• The expected utility of an action given the evidence, EU(a|e), is just the average utility value of the 
outcomes, weighted by the probability that the outcome occurs

• But we don’t know T or R

• i.e. we don’t know which states are good or what the actions do

• Must actually try actions and states out to learn

• The task of reinforcement learning is to use observed rewards to learn an optimal (or nearly 
optimal) policy for the environment.



Reinforcement Learning:
Model-Based Learning

• Model-Based Idea:

• Learn an approximate model based on experiences

• Solve for values as if the learned model were correct

• Step 1: Learn empirical MDP model

• Count outcomes s’ for each s, a

• Normalize to give an estimate of

• Discover each when we experience (s, a, s’)

• Step 2: Solve the learned MDP

• For example, use value iteration



Reinforcement Learning:
Model-Based Learning: Example



Passive and Active Learning

• A passive learner simply watches the world going by, and tries to learn the utility of being in various 
states.

• In passive learning, the agent’s policy is fixed and the task is to learn the utilities of states (or 
state–action pairs).

• This could also involve learning a model of the environment.

• An active learner must also act using the learned information, and can use its problem generator to 
suggest explorations of unknown portions of the environment.

• In active learning, the agent must also learn what to do. 

• The principal issue is exploration: an agent must experience as much as possible of its 
environment in order to learn how to behave in it.



Passive Reinforcement Learning

 Simplified task: policy evaluation

 Input: a fixed policy (s)

 You don’t know the transitions T(s,a,s’)

 You don’t know the rewards R(s,a,s’)

 Goal: learn the state values

 In this case:

 Learner is “along for the ride”

 No choice about what actions to take

 Just execute the policy and learn from experience



Passive Reinforcement Learning

• Passive Reinforcement Learning: 

• Agent’s policy 𝜋 is fixed; 

• Learn state utility values U(s) without knowing the transition model P(s’|s,a) or the reward 
function R(s) 

• In policy iteration, we have learned how to evaluate a policy, i.e., compute U(s) given P(s’|s,a) 
and R(s)

• Two basic approaches:

• Model-based: Build a model of R(s), P(s’|s,a) then evaluate policy

• Model-free: Directly evaluate without building a model



Model-Based Passive Reinforcement Learning

Problem Formulation: 

• We are given a policy, but we don’t know the details of the environment

• Follow policy 𝜋, perform many trials/experiments to get sample sequences

• Estimate MDP model parameters R(s) and P(s’|s,a) given observed transitions and rewards

• If finite set of states and actions, can just count and average counts

• Use estimated MDP to evaluate policy

Trail:

• The agent executes a set of trials in the environment using its policy π.

• In each trial, the agent starts in the starting state and experiences a sequence of state transitions 
until it reaches one of the terminal states. 

• Its percepts supply both the current state and the reward received in that state.



Model-Based Passive Reinforcement Learning: Example

• Start at s=(1,1)  action a=up, based on 𝜋

• reward = -0.04; end up at s’ = (1,2)

• s=(1,2) action a=up, based on 𝜋

• reward = -0.04; end up at s’ = (1,2)

• s=(1,2) action a=up, based on 𝜋

• reward = -0.04; end up at s’ = (1,3)

• s=(1,3) action a=right, based on 𝜋

• reward = -0.04; end up at s’ = (2,3)

• s=(2,3) action a=right, based on 𝜋

• reward = -0.04; end up at s’ = (3,3)

• s=(3,3) action a=right, based on 𝜋

• reward = -0.04; end up at s’ = (4,3)

• s = (4, 2); no action available

• reward = 1.00; terminate

Estimate P(s’|s,a): P((1,3)|(1,2), up) = 1/2 = 0.5

Estimate R((1,2)) = -0.04



Model-Based Passive Reinforcement Learning: Example

• We can run more trails:

Trail 1:  (1,1)(1,2)(1,2)(1,3)(2,3)(3,3)(4,3)

Trail 2:  (1,1)(1,2)(1,3)(2,3)(3,3)(4,3)

Trail 3:  (1,1)(1,2)(1,3)(2,3)(2,3)(3,3)(4,3)

Trail 4:  (1,1)(1,1)(1,2)(1,3)(2,3)(3,3)(4,3)

Estimate P(s’|s,a): P((1,3)|(1,2), up) = 4/5 = 0.80

Estimate R((1,2)) = -0.04



Model-Based Passive Reinforcement Learning

• Empirical estimate of transition probability P:

𝑃 𝑠′ 𝑠, 𝑎 =
#(𝑠,𝑎,𝑠′)

#(𝑠,𝑎)

• Empirical estimate of rewards R:

𝑅(𝑠) =
σ𝑠 𝑅(𝑠)

#(𝑠)

• Given estimates of P and R, we can do MDP policy evaluation:



Model-Based Passive Reinforcement Learning

Advantage: 

• Makes good use of data you have

Disadvantage: 

• Require building the actual MDP model, which can be intractable if state space is too large



Model-Free Passive Reinforcement Learning

Strategy: 

• evaluate policy directly, without first estimating P and R

Direct utility estimation: 

• Calculate expected total reward from that state onward. 

• When a trial hits a state, view it as a sample of the total reward from that state onward.



Model-Free Passive Reinforcement Learning
Direct Utility Estimation: Example

• Start at s=(1,1)  action a=up, based on 𝜋

• reward = -0.04; end up at s’ = (1,2)

• s=(1,2) action a=up, based on 𝜋

• reward = -0.04; end up at s’ = (1,2)

• s=(1,2) action a=up, based on 𝜋

• reward = -0.04; end up at s’ = (1,3)

• s=(1,3) action a=right, based on 𝜋

• reward = -0.04; end up at s’ = (2,3)

• s=(2,3) action a=right, based on 𝜋

• reward = -0.04; end up at s’ = (3,3)

• s=(3,3) action a=right, based on 𝜋

• reward = -0.04; end up at s’ = (4,3)

• s = (4, 2); no action available

• reward = 1.00; terminate

Estimate  U𝜋(1,2) = (0.84+0.80)/2 = 0.82



Model-Free Passive Reinforcement Learning 
Direct Utility Estimation: Example

• We can run more trails:

Trail 1:  (1,1)(1,2)(1,2)(1,3)(2,3)(3,3)(4,3)

Trail 2:  (1,1)(1,2)(1,3)(2,3)(3,3)(4,3)

Trail 3:  (1,1)(1,2)(1,3)(2,3)(2,3)(3,3)(4,3)

Trail 4:  (1,1)(1,1)(1,2)(1,3)(2,3)(3,3)(4,3)

Estimate  U𝜋(1,2) = (0.84+0.80+0.84+0.80+0.84)/5 = 0.824



Model-Free Passive Reinforcement Learning 
Direct Utility Estimation

Advantage: 

• estimates utility of policy without having to calculate P and S

Disadvantage: 

• Need to wait until you reach terminal state. 

• Estimates U(s) and U(s’) separately, ignoring their relationship:

• Converges very slowly



Model-Free Passive Reinforcement Learning 
Temporal-Difference (TD) Learning

• Key idea: Do not wait until the trial terminates, update after each state transition using a running 
average

• More likely outcomes will contribute to the update more often

• Does not need a transition model, only experience



Model-Free Passive Reinforcement Learning 
Temporal-Difference (TD) Learning

• Updates performed using exponential moving average:

• Rearranging, we get:

• Without subscripts, we get the general update:



Model-Free Passive Reinforcement Learning 
Temporal-Difference (TD) Learning Equation



Example: Temporal Difference Learning

Assume:  = 1, α = 1/2

Observed Transitions

B, east, C, -2

0

0 0 8

0

0

-1 0 8

0

0

-1 3 8

0

C, east, D, -2

A

B C D

E

States



Active Reinforcement Learning

• Passive agents follow a fixed policy, estimate expected utilities

• Active agents need to decide on what actions to perform to maximize expected utility

• Passive agents face a prediction problem, while active ones face a control problem



Active Reinforcement Learning

• Full reinforcement learning: optimal policies (like value iteration)

• You don’t know the transitions T(s,a,s’)

• You don’t know the rewards R(s,a,s’)

• You choose the actions now

• Goal: learn the optimal policy / values

• In this case:

• Learner makes choices!

• Fundamental tradeoff: exploration vs. exploitation

• You actually take actions in the world and find out what happens…



Active Reinforcement Learning
Action-Utility Function

• TD-learning learns the utility of states Uπ(s) for one action

• Without a policy, we need to learn about all the actions,

Q(s, a): The expected value of taking action a in state s

• We can use Q values instead of U values



Active Reinforcement Learning
Q-Values

• Recall Bellman Equation given policy 𝜋 :

• For optimal policy 𝜋*:

• Q-values are similar to value function, but defined on state-action pair rather than just states.

• Q𝜋(s, a) is the expected total reward from state s onward if taking action a in state s, following policy 
𝜋 after



Active Reinforcement Learning
Q-Values

• We can express the Q-value of a given state-action pair in terms of the Q-value of its neighbors.



Active Reinforcement Learning
Optimal Q-Values

• When using optimal policy 𝜋 *, we will take the action that leads to maximum total utility at each 
state

• Thus:



Active Reinforcement Learning
Q-Learning

• Similar to Value Iteration, TD Learning

• Use information at s’ to update the estimated Q-value at (s,a) through update:

• Given estimated value of Q*(s,a), we can derive an estimate of the optimal policy



Q-Learning

• Q-Learning: sample-based Q-value iteration

• Learn Q(s,a) values as you go

• Receive a sample (s,a,s’,r)

• Consider your old estimate:

• Consider your new sample estimate:

• Incorporate the new estimate into a running average:



Q-Learning



Q-Learning Properties

• Amazing result: Q-learning converges to optimal policy -- even if you’re acting suboptimally!

• This is called off-policy learning

• Caveats:

• You have to explore enough

• You have to eventually make the learning rate small enough

• … but not decrease it too quickly

• Basically, in the limit, it doesn’t matter how you select actions (!)



Approximate Q-Learning

• Basic Q-Learning keeps a table of all q-values

• In realistic situations, we cannot possibly learn about every single state!

• Too many states to visit them all in training

• Too many states to hold the q-tables in memory

• Instead, we want to generalize:

• Learn about some small number of training states from experience

• Generalize that experience to new, similar situations

• This is a fundamental idea in machine learning, and we’ll see it over and over again



Approximate Q-Learning - Example: Pacman

Let’s say we discover 
through experience 

that this state is bad:

In naïve q-learning, 
we know nothing 
about this state:

Or even this one!



Approximate Q-Learning - Feature-Based Representations

• Solution: describe a state using a vector of features 
(properties)

• Features are functions from states to real numbers 
(often 0/1) that capture important properties of the 
state

• Example features:

• Distance to closest ghost

• Distance to closest dot

• Number of ghosts

• 1 / (dist to dot)2

• Is Pacman in a tunnel? (0/1)

• …… etc.

• Is it the exact state on this slide?

• Can also describe a q-state (s, a) with features (e.g. 
action moves closer to food)



Approximate Q-Learning - Linear Value Functions

• Using a feature representation, we can write a q function (or value function) for any state using a few 
weights:

• Advantage: our experience is summed up in a few powerful numbers

• Disadvantage: states may share features but actually be very different in value!



Approximate Q-Learning 

• Q-learning with linear Q-functions:

• Intuitive interpretation:

• Adjust weights of active features

• E.g., if something unexpectedly bad happens, blame the features that were on: 
disprefer all states with that state’s features

• Formal justification: online least squares

Exact Q’s

Approximate Q’s


