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• Decision Tree Induction



Classification and Prediction

• Classification and prediction are two forms of data analysis that can be used to 

extract models describing important data classes or to predict future data trends. 

• Classification predicts categorical (discrete, unordered) labels, 

• Prediction models continuous valued functions.

• Many classification and prediction methods have been proposed 

– Some Classifiers: decision tree classifiers, Bayesian classifiers, Bayesian belief networks, 

rule based classifiers, neural network technique,  k-nearest-neighbor classifiers, support 

vector machines, ...

– Some Prediction Methods: linear regression, nonlinear regression, neural network 

technique, ...

• Classification and prediction have numerous applications, including fraud detection, 

target marketing, performance prediction, manufacturing, and medical diagnosis.
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Classification - A Two-Step Process 

• Model construction: describing a set of predetermined classes

– Each tuple/sample is assumed to belong to a predefined class, as determined by the class 

label attribute

– The set of tuples used for model construction is training set

– The model is represented as classification rules, decision trees, or mathematical formulae

• Model usage: for classifying future or unknown objects

– Estimate accuracy of the model

• The known label of test sample is compared with the classified result from the model

• Accuracy rate is the percentage of test set samples that are correctly classified by the 

model

• Test set is independent of training set (otherwise overfitting) 

– If the accuracy is acceptable, use the model to classify new data
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General Approach for 

Building Classification Model
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Apply 

Model

Induction

Deduction

Learn 

Model

Model

Tid Attrib1 Attrib2 Attrib3 Class 

1 Yes Large 125K No 

2 No Medium 100K No 

3 No Small 70K No 

4 Yes Medium 120K No 

5 No Large 95K Yes 

6 No Medium 60K No 

7 Yes Large 220K No 

8 No Small 85K Yes 

9 No Medium 75K No 

10 No Small 90K Yes 
10 

 

Tid Attrib1 Attrib2 Attrib3 Class 

11 No Small 55K ? 

12 Yes Medium 80K ? 

13 Yes Large 110K ? 

14 No Small 95K ? 

15 No Large 67K ? 
10 

 

Test Set

Learning

algorithm

Training Set



Decision Tree Classification
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Decision Tree Induction

• Decision tree induction is the learning of decision trees (which represents discrete-

valued functions) from class-labeled training tuples.

• A decision tree is a flowchart-like tree structure, where each internal node denotes a 

test on an attribute, each branch represents an outcome of the test, and each leaf node 

holds a class label.

A decision tree for           

concept buys_computer
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Decision Tree

• Decision trees represent a disjunction of conjunctions of constraints on the attribute 

values of instances. 

• Each path from the tree root to a leaf corresponds to a conjunction of attribute tests, 

and 

• The tree itself is a disjunction of these conjunctions.

(age= >=30  and student = yes)

or (age = 31..40)

or (age = >40  and credit_rating = fair)
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Decision Tree

• Decision trees classify instances by sorting them down the tree from the root to some 

leaf node, which provides the classification of the instance.

• Each inner node in the tree specifies a test of some attribute of the instance.

• Each branch descending from a node corresponds to one of the possible values for the 

attribute.

• Each leaf node assigns a classification.

• The instance 

(age <=30, 

income = low,

student = no,

credit_rating = fair)

is classified as a negative instance.
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Decision Tree Induction: Example

Training Data Set: buys_computer
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age income student credit_rating buys_computer

<=30 high no fair no

<=30 high no excellent no

31…40 high no fair yes

>40 medium no fair yes

>40 low yes fair yes

>40 low yes excellent no

31…40 low yes excellent yes

<=30 medium no fair no

<=30 low yes fair yes

>40 medium yes fair yes

<=30 medium yes excellent yes

31…40 medium no excellent yes

31…40 high yes fair yes

>40 medium no excellent no

attributes class attribute

decision tree induction algorithm

learns this decision tree from 

this training data set



Decision Tree Induction Algorithm

Generate_Decision_Tree(D,attribute_list)

create a node N;

if tuples in D are all of the same class C then

return N as a leaf node labeled with the class C;

if attribute list is empty then

return N as a leaf node labeled with the majority class in D;    // majority voting

apply attribute_selection_method(D, attribute list) to find the best splitting_criterion;

label node N with splitting criterion;

if splitting attribute is discrete-valued and multiway splits allowed then 

attribute list  attribute list - splitting attribute;     // remove splitting_attribute

for each outcome j of splitting_criterion

// partition the tuples and grow subtrees for each partition

let Dj be the set of data tuples in D satisfying outcome j;  // a partition

if Dj is empty then

attach a leaf labeled with the majority class in D to node N;

else attach the node returned by Generate_decision_tree(Dj, attribute list) to node N;

return N;
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Decision Tree Induction Algorithm: Example
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select best attribute 

that splits this data set.



Decision Tree Induction Algorithm: Example
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Decision Tree Induction Algorithm: Example
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yes

all examples are yes



Decision Tree Induction Algorithm: Example
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yes

select best attribute 

that splits this data set.



Decision Tree Induction Algorithm: Example
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yes



Decision Tree Induction Algorithm: Example
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yes

yesno
all examples are yes

all examples are no



Decision Tree Induction Algorithm: Example
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yes

yesno select best attribute 

that splits this data set.



Decision Tree Induction Algorithm: Example
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yes

yesno

all examples are no
no

all examples are yes
yes



Decision Tree Induction Algorithm: Example
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yes

yesno no yes



Design Issues of Decision Tree Induction
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• How should training examples be split?

– Method for specifying test condition (Splitting Criterion)

• depending on attribute types

– Measure for evaluating the goodness of a test condition (Selecting Best Attribute)

• information gain, gain ratio, Gini index, misclassification error, statistical test, …

• How should the splitting procedure stop?

– Stop splitting if all the examples belong to the same class

– Early termination depending on the results of a statistical test.



Methods for Expressing Test Conditions

Splitting Criterion
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• Depends on attribute types

– Binary

– Nominal

– Ordinal

– Continuous

• Depends on number of ways to split

– 2-way split (Binary  split)

– Multi-way split



Test Condition for Nominal Attributes

• Multi-way split:

– Use as many partitions as distinct values 

of the attribute.

Example: 

MaritalStatus: {Single,Divorced,Married} 

• Binary split:

– Divide attribute values into two non-

empty subsets.
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Marital

Status

Single Divorced Married

{Single} {Married,

Divorced}

Marital

Status

{Married} {Single,

Divorced}

Marital

Status

OR OR

{Single,

Married}

Marital

Status

{Divorced}



Test Condition for Ordinal Attributes

• Multi-way split:

– Use as many partitions as 

distinct values of the attribute.

Example: 

ShirtSize: {S,M,L,XL} 

• Binary split:

– Divide attribute values into 

two non-empty subsets.

– Preserve order property 

among attribute values
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Shirt 

Size

S        M          L      XL

Shirt 

Size

{S}    {M,L,XL}

Shirt 

Size

{S,M}    {L,XL}

Shirt 

Size

{S,M,L}    {XL}

Shirt 

Size

{S,L}    {M,XL}

this grouping violates 

order property



Test Condition for Continuous Attributes

• Multi-way split:

– Discretize the continuous attribute.

– Discretization to form an ordinal 

categorical attribute

• Binary split:

– Divide attribute values into two non-

empty subsets from a cut-off point. 

– Binary Decision: (Av) or (A> v)

• consider all possible splits and finds 

the best cut
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How to Determine the Best Split

• There are 9 positive examples and 5 negative examples.

• Which test condition (attribute) is the best?
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income

[3+,1-]     [4+,2-]    [2+,2-]

low      medium    high

[9+,5-]

age

[2+,3-]     [4+,0-]    [3+,2-]

30        31..40     >40

[9+,5-]

student

[3+,4-]                   [6+,1-]

no                           yes

[9+,5-]

credit 

rating

[6+,2-]                   [3+,3-]

fair                         excellent

[9+,5-]



How to Determine the Best Split

• Greedy approach: 

– Nodes with homogeneous (purer) class distribution are preferred

• Need a measure of node impurity:

[5+,5-] [9+,1-]

Non-homogeneous Homogeneous

High degree of impurity Low degree of impurity

• Measures of Node Impurity:

– entropy, Gini index, misclassification error, …
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Finding the Best Split

1. Compute impurity measure (P) before splitting

2. Compute impurity measure (M) after splitting

• Compute impurity measure of each child node

• M is the weighted impurity of children

3. Choose the attribute test condition that produces the highest gain

Gain = P - M

or equivalently, lowest impurity measure after splitting (M) 
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Attribute Selection Measures

• An attribute selection measure is a heuristic for selecting the splitting criterion that 

best separates a given data set D of class-labeled training tuples into individual 

classes. 

– to split D into smaller partitions according to the outcomes of the splitting criterion, ideally 

each partition would be pure (i.e., all of the tuples that fall into a given partition would 

belong to the same class). 

• The attribute having the best score for the measure is chosen as the splitting 

attribute for the given tuples. 

• Three popular attribute selection measures:

information gain, gain ratio, and gini index.
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Measure of Impurity: Entropy 

• Given a collection S, containing positive and negative examples of some target 

concept, the entropy of S relative to this boolean classification is:

Entropy(S) = -p+ log2p+ - p- log2p-

• S is a sample of training examples

• p+ is the proportion of positive examples

• p- is the proportion of negative examples
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Measure of Impurity: Entropy 

Entropy([12+,5-] = 

– (12/17) log2(12/17) – (5/17) log2(5/17)  =  0.874

Entropy([8+,8-] =  

– (8/16) log2(8/16) – (8/16) log2(8/16)  =  1.0

Entropy([8+,0-] =  

– (8/8) log2(8/8) – (0/8) log2(0/8)  =  0.0

– It is assumed that log2(0) is 0
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Entropy – Non-Boolean Target Classification

• If the target attribute can take on c different values, then the entropy of S relative to 

this c-wise classification is defined as

• pi is the proportion of S belonging to class i. 

• The logarithm is still base 2 because entropy is a measure of the expected encoding 

length measured in bits. 

• If the target attribute can take on c possible values, the entropy can be as large as 

log2c.
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Entropy – Informaton Theory

• Entropy(S) = expected number of bits needed to encode class (+ or -) of randomly 

drawn members of S (under the optimal, shortest length-code)

– if p+ is 1, the receiver knows the drawn example will be positive, so no message need be 

sent, and the entropy is zero. 

– if p+ is 0.5, one bit is required to indicate whether the drawn example is positive or 

negative. 

– if p+ is 0.8, then a collection of messages can be encoded using on average less than 1 bit 

per message by assigning shorter codes to collections of positive examples and longer 

codes to less likely negative examples.

• Information theory optimal length code assign –log2p bits to messages having 

probability p.

• So the expected number of bits to encode (+ or -) of random member of S:

- p+ log2 p+ - p- log2p-
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Attribute Selection Measure:

Information Gain

• Select the attribute with the highest information gain

• Let pi be the probability that an arbitrary tuple in D belongs to class Ci,            

estimated by |Ci,D|/|D|

• Expected information (entropy) needed to classify a tuple in D:

• Information needed (after using A to split D into v partitions) to classify D:

• Information gained by branching on attribute A
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Attribute Selection Measure:

Information Gain

• There are 9 positive examples and 5 negative examples.

D:  [9+,5-]

Info(D) = Entropy(D) = 

– (9/14) log2(9/14) – (5/14) log2(5/14)  =  0.940
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age

[2+,3-]     [4+,0-]    [3+,2-]

30        31..40     >40

[9+,5-] Infoage(D) = 5/14 * Info([2+,3-]) + 

4/14 * Info([4+,0-]) + 

5/14 * Info([3+,2-])

= (5/14)*0.971 + (4/14)*0.0 + (5/14)*0.971

= 0.694

Gain(age) = Info(D) - Infoage(D) 

= 0.940 – 0.694 = 0.246



Attribute Selection Measure:

Information Gain

Info(D)  = – (9/14) log2(9/14) – (5/14) log2(5/14)  =  0.940
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income

[3+,1-]     [4+,2-]    [2+,2-]

low      medium    high

[9+,5-]

Infoincome(D) = 4/14 * Info([3+,1-]) + 

6/14 * Info([4+,2-]) + 

4/14 * Info([2+,2-])

= (4/14)*0.811+ (6/14)*0.911 + (4/14)*1.0

= 0.911

Gain(income) = Info(D) - Infoincome(D) 

= 0.940 – 0.911 = 0.029



Attribute Selection Measure:

Information Gain

Info(D)  = – (9/14) log2(9/14) – (5/14) log2(5/14)  =  0.940
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student

[3+,4-]                   [6+,1-]

no                           yes

[9+,5-]

credit 

rating

[6+,2-]                   [3+,3-]

fair                         excellent

[9+,5-]

Infostudent(D) = 7/14 * Info([3+,4-]) + 

7/14 * Info([6+,1-])  

= (7/14)*0.985+ (7/14)*0.592  =  0.789

Gain(student) = Info(D) - Infostudent(D) 

= 0.940 – 0.789 = 0.151

Infocr (D) = 8/14 * Info([6+,2-]) + 

6/14 * Info([3+,3-])  

= (8/14)*0.811+ (6/14)*1.0 =  0.892

Gain(cr) = Info(D) - Infocr(D) 

= 0.940 – 0.892 = 0.048



Computing Information Gain 

for Continuous Valued Attributes

• Let attribute A be a continuous-valued attribute

• Must determine the best split point for A

– Sort the value A in increasing order

– Typically, the midpoint between each pair of adjacent values is considered as a 

possible split point

• (ai+ai+1)/2 is the midpoint between the values of ai and ai+1

– The point with the minimum expected information requirement for A is selected 

as the split-point for A

• Split:

– D1 is the set of tuples in D satisfying A ≤ split-point, and D2 is the set of tuples in 

D satisfying A > split-point
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Continuous Valued Attributes - Example

Temperature: 40     48     60     72     80     90

ClassAttribute : No    No Yes   Yes Yes No

Two candidate thresholds:  (48+60)/2=54        (80+90)/2=85

Check the information gain for new boolean attributes: 

Temperature>54 Temperature>85

Use these new boolean attributes same as other discrete valued attributes.
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• Information gain measure is biased towards attributes with a large number of values

• Some decision tree induction algorithms (such as C4.5) uses gain ratio to overcome 

the problem (normalization to information gain)

GainRatio(A) = Gain(A) / SplitInfoA(D)

• Ex.

GainRatio(income) = 0.029 / 1.557 = 0.019

• The attribute with the maximum gain ratio is selected as the splitting attribute

Gain Ratio for Attribute Selection 
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Measure of Impurity: GINI Index

• Gini Index for a given node t :

𝐆𝐈𝐍𝐈 𝐭 = 𝟏 − ෍

𝐣

[𝐩(𝐣|𝐭)]𝟐

(NOTE: p(j|t) is the relative frequency of class j at node t).

– Maximum (1 - 1/nc) when records are equally distributed among all classes, 

implying least interesting information

– Minimum (0.0) when all records belong to one class, implying most interesting 

information
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Measure of Impurity: GINI Index
Computing Gini Index of a Single Node
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𝐆𝐈𝐍𝐈 𝐭 = 𝟏 − ෍

𝐣

[𝐩(𝐣|𝐭)]𝟐



Measure of Impurity: GINI Index
Computing Gini Index for a Collection of Nodes

• When a node parent is split into k partitions (children)

where, ni = number of examples at child i,

n = number of examples at parent node p,

GINI(i) = GINI Index value of child i.

Computing GAIN based on GINI Index:

– The gain is a criterion that can be used to determine the goodness of a split:

GAIN = GINI(parent) - GINIsplit

– Choose the attribute that minimizes weighted average Gini Index of the children

• Gini Index is used in decision tree algorithms such as CART, SLIQ, SPRINT
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𝐆𝐈𝐍𝐈𝐬𝐩𝐥𝐢𝐭 = ෍

𝐢=𝟏

𝐤
𝐧𝐢
𝐧
𝐆𝐈𝐍𝐈(𝐢)



Binary Attributes: Computing Gini Index

Gini(N1) = 1 - (4/7)2 - (3/7)2 = 0.49 Gini(N1) = 1 - (1/5)2 - (4/5)2 = 0.32

Gini(N2) = 1 - (2/5)2 - (3/5)2 = 0.48 Gini(N2) = 1 - (5/7)2 - (2/7)2 = 0.408

GinisplitA = 7/12 * Gini(N1) + 5/12 * Gini(N2) GinisplitB = 5/12 * Gini(N1) + 7/12 * Gini(N2)

= 0.486 = 0.371
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Categorical Attributes: Computing Gini Index

• Multiway split:
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Car 

Type

[1+,3-]     [8+,0-]    [1+,7-]

Family      Sports       Luxury

[10+,10-]

Gini(N1) = 1 - (1/4)2 - (3/4)2 = 0.375

Gini(N2) = 1 - (8/8)2 - (0/8)2 = 0 

Gini(N3) = 1 - (1/8)2 - (7/8)2 = 0.219 

GinisplitA = 4/20 * Gini(N1) + 8/20 * Gini(N2) + 8/20 *Gini(N3) = 0.163



Categorical Attributes: Computing Gini Index

• Binary split: find best partition of values (least Gini value)
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Car 

Type

[9+,3-]                    [1+,7-]

Family,

Sports                          Luxury

[10+,10-]

Gini=0.375

Car 

Type

[1+,3-]                    [9+,7-]

Family                         Sports,

Luxury

[10+,10-]

Car 

Type

[8+,0-]                    [2+,10-]

Sports                           Family,

Luxury

[10+,10-]

Gini=0.375 Gini=0.492

Ginisplit = 0.469

Gini=0Gini=0.219

Ginisplit = 0.313

Gini=0.278

Ginisplit = 0.168



Continuous Attributes: Computing Gini Index

• Sort the attribute on values

• Choose the split position that has the least Gini index
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Measure of Impurity: Misclassification Error

• Classification error at a node t :

• Maximum (1 - 1/nc) when records are equally distributed among all classes, implying 

least interesting information

• Minimum (0) when all records belong to one class, implying most interesting 

information
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𝐄𝐫𝐫𝐨𝐫 𝐭 = 𝟏 − 𝐦𝐚𝐱
𝐢

𝐏(𝐢|𝐭)



Measure of Impurity: Misclassification Error
Computing Error of a Single Node
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𝐄𝐫𝐫𝐨𝐫 𝐭 = 𝟏 − 𝐦𝐚𝐱
𝐢

𝐏(𝐢|𝐭)



Comparing Attribute Selection Measures

• All selection measures, in general, return good results but all measures have some 

bias.

– Information gain: 

• biased towards multivalued attributes

– Gain ratio: 

• tends to prefer unbalanced splits in which one partition is much smaller than 

the others

– Gini index: 

• biased to multivalued attributes

• tends to favor tests that result in equal-sized partitions and purity in both 

partitions
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Other Attribute Selection Measures

• CHAID: a popular decision tree algorithm, measure based on χ2 test for independence

• G-statistic: has a close approximation to χ2 distribution 

• Multivariate splits (partition based on multiple variable combinations)

– CART: finds multivariate splits based on a linear comb. of attrs.

• Which attribute selection measure is the best?

– Most give good results, none is significantly superior than others.
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Model Overfitting

Training error: Train a model on the training dataset, then test the model on the same 

training set. The error rate is called “training error,” which evaluates how well the model 

fits the training data.

Test error: Test the model on a test dataset that is different from the training set. The 

error rate is called “test error,” which evaluates how well the model generalizes to unseen 

data.

Overfitting means a model fits the training data very well but generalizes to unseen data 

poorly.

How do I know if my model is overfitting?

• Your model is overfitting if its training error is small (fits well with training data) but 

the test error is large (generalizes poorly to unseen data).
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Underfitting and Overfitting
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Overfitting due to 

• Noise 

• Insufficient Examples

Two approaches to avoid overfitting 

• Prepruning: Halt tree construction early ̵ do 

not split a node if this would result in the 

goodness measure falling below a threshold

• Postpruning: Remove branches from a “fully 

grown” tree—get a sequence of progressively 

pruned trees

• Overfitting means a model fits the training data very well but generalizes unseen data poorly.

• Overfitting: complex models are more likely to overfit than simple models

• Underfitting: when model is too simple, both training and test errors are large 



Occam’s Razor

• Occam’s Razor: Given two models of similar generalization errors, one should 

prefer the simpler model over the more complex model.

– For complex models, there is a greater chance that they are fitted accidentally by 

errors in data.

• Therefore, one should include model complexity when evaluating a model.
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Incorporating Model Complexity

• Overfitting results in decision trees that are more complex than necessary

• Training error no longer provides a good estimate of how well the tree will perform 

on previously unseen records

• Need new ways for estimating errors (i.e. we need to incorporate Model Complexity).

– Estimating Generalization Errors

– Another way to incorporate model complexity is based on an information-

theoretic approach known as the minimum description length
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Estimating Generalization Errors

• Re-substitution errors: error on training ( e(t) )

• Generalization errors: error on testing ( e’(t))

• Methods for estimating generalization errors:

– Optimistic approach: e’(t) = e(t)

– Pessimistic approach: 

• For each leaf node: e’(t) = (e(t)+0.5) 

• Total errors: e’(T) = e(T) + N  0.5 (N: number of leaf nodes)

• For a tree with 30 leaf nodes and 10 errors on training (out of 1000 instances):

Training error = 10/1000 = 1%

Generalization error = (10 + 300.5)/1000 = 2.5%

– Reduced error pruning (REP):

• uses validation data set to estimate generalization error
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Estimating Generalization Errors - Example
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Simple TreeComplex Tree

LM

What are generalization errors for these two decision trees and Complex Tree without 
left most inner node using two approaches?

Optimistic approach: Complex Tree Error Rate: 4/24
Simple Tree Error Rate: 6/24
Complex Tree Without LM: 4/24

Pessimistic approach:  Complex Tree Error Rate: 4/24 + (7*0.5)/24 = 7.5/24
Simple Tree Error Rate: 6/24 + (4*0.5)/24 = 8/24
Complex Tree Without LM: 4/24 + (6*0.5)/24 = 7/24



Minimum Description Length (MDL)
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• A builds a classification model that summarizes the relationship between x and y. 

• The model can be encoded in a compact form before being transmitted to B. 

• If the model is 100% accurate, then the cost of transmission is equivalent to the cost 

of encoding the model. 

• Otherwise, A must also transmit information about which record is classified 

incorrectly by the model. 



Minimum Description Length (MDL)
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Cost(Model,Data) = Cost(Data|Model) + Cost(Model)

• Cost is the number of bits needed for encoding.

• Search for the least costly model.

Cost(Data|Model) encodes the misclassification errors.

Cost(Model) uses node encoding (number of children) plus splitting condition encoding.



Minimum Description Length (MDL)

• The total description length of a tree is given by:

Cost(tree, data) = Cost(tree) + Cost(data|tree)

• Each internal node of the tree is encoded by the ID of the splitting attribute. If there 

are m attributes, the cost of encoding each attribute is log2m bits.

• Each leaf is encoded using the ID of the class it is associated with. If there are k 

classes, the cost of encoding a class is log2k bits.

• Cost(tree) is the cost of encoding all the nodes in the tree. 

– To simplify the computation, we can assume that the total cost of the tree is obtained by 

adding up the costs of encoding each internal node and each leaf node.

• Cost(data|tree) is encoded using the classification errors the tree commits on the 

training set. Each error is encoded by log2n bits, where n is the total number of 

training instances.
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Minimum Description Length (MDL) - Example

• Consider the following decision trees. Assume they are generated from a data set that contains 

16 binary attributes and 3 classes, C1, C2, and C3.
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a) Decision tree with 7 errors
b) Decision tree with 4 errors

• Because there are 16 attributes, the cost for each internal node in the decision tree is: log2(m) = log2(16) = 4

• Furthermore, because there are 3 classes, the cost for each leaf node is:  log2(k) = log2(3) = 2

• The cost for each misclassification error is log2(n).

• The overall cost for the decision tree (a) is 2×4+3×2+7×log2n = 14+7 log2n

and the overall cost for the decision tree (b) is 4×4+5×2+4×5 = 26+4 log2n.

• According to the MDL principle, tree (a) is better than (b) if n < 16 and is worse than (b) if n > 16.



How to Address Overfitting

• Pre-Pruning (Early Stopping Rule)

– Stop the algorithm before it becomes a fully-grown tree

– Typical stopping conditions for a node:

• Stop if all instances belong to the same class

• Stop if all the attribute values are the same

– More restrictive conditions:

• Stop if number of instances is less than some user-specified threshold

• Stop if class distribution of instances are independent of the available features 

(e.g., using  2 test)

• Stop if expanding the current node does not improve impurity measures (e.g., 

Gini or information gain).
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How to Address Overfitting

• Post-pruning

– Grow decision tree to its entirety

– Trim the nodes of the decision tree in a bottom-up fashion

– If generalization error improves after trimming, replace sub-tree by a leaf node.

– Class label of leaf node is determined from majority class of instances in the sub-

tree

– Can use MDL for post-pruning
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Post-Pruning to avoid overfitting
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Training Error (Before splitting) = 10/30

Pessimistic error = (10 + 0.5)/30 = 10.5/30

Training Error (After splitting) = 9/30

Pessimistic error (After splitting)

= (9 + 4  0.5)/30 = 11/30

PRUNE!



Classification in Large Databases

• Classification - a classical problem extensively studied by statisticians and machine 

learning researchers

• Scalability: Classifying data sets with millions of examples and hundreds of attributes 

with reasonable speed

– The efficiency of classical decision tree algorithms, such as ID3, C4.5, and CART, has 

been well established for relatively small data sets. 

– Efficiency becomes an issue of concern when these algorithms are applied to the mining of 

very large real-world databases.

– New decision tree algorithms (such as Rainforest, SLIQ and SPRINT  ) that address 

scalability issue

• Why is decision tree induction popular?

– relatively faster learning speed (than other classification methods)

– convertible to simple and easy to understand classification rules

– can use SQL queries for accessing databases

– comparable classification accuracy with other methods
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Decision Tree Based Classification

• Advantages:

– Inexpensive to construct

– Extremely fast at classifying unknown records

– Easy to interpret for small-sized trees

– Robust to noise (especially when methods to avoid overfitting are employed)

– Can easily handle redundant or irrelevant attributes (unless the attributes are 

interacting)

• Disadvantages: 

– Space of possible decision trees is exponentially large. Greedy approaches are 

often unable to find the best tree.

– Does not take into account interactions between attributes

– Each decision boundary involves only a single attribute
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Expressiveness of Decision Tree Representation

• Test conditions involve using only a single attribute at a time.

– Tree-growing procedure can be viewed as the process of partitioning the attribute space 

into disjoint regions until each region contains records of the same class.

– The border between two neighboring regions of different classes is a decision boundary. 

– Since the test condition involves only a single attribute, the decision boundaries are 

rectilinear.

• This limits the expressiveness of the decision tree representation for modeling 

complex relationships among continuous attributes.
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Expressiveness of Decision Tree Representation
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• Test condition may involve 

multiple attributes

• Decision tree induction cannot 

handle this kind of data set.

• Decision tree induction can handle 

this kind of data set.


