
Classification

Data Mining 1

• Decision Tree Induction

Classification and Prediction

• Classification and prediction are two forms of data analysis that can be used to

extract models describing important data classes or to predict future data trends.

• Classification predicts categorical (discrete, unordered) labels,

• Prediction models continuous valued functions.

• Many classification and prediction methods have been proposed

– Some Classifiers: decision tree classifiers, Bayesian classifiers, Bayesian belief networks,

rule based classifiers, neural network technique, k-nearest-neighbor classifiers, support

vector machines, ...

– Some Prediction Methods: linear regression, nonlinear regression, neural network

technique, ...

• Classification and prediction have numerous applications, including fraud detection,

target marketing, performance prediction, manufacturing, and medical diagnosis.

Data Mining 2

Classification - A Two-Step Process

• Model construction: describing a set of predetermined classes

– Each tuple/sample is assumed to belong to a predefined class, as determined by the class

label attribute

– The set of tuples used for model construction is training set

– The model is represented as classification rules, decision trees, or mathematical formulae

• Model usage: for classifying future or unknown objects

– Estimate accuracy of the model

• The known label of test sample is compared with the classified result from the model

• Accuracy rate is the percentage of test set samples that are correctly classified by the

model

• Test set is independent of training set (otherwise overfitting)

– If the accuracy is acceptable, use the model to classify new data

Data Mining 3

General Approach for

Building Classification Model

Data Mining 4

Apply

Model

Induction

Deduction

Learn

Model

Model

Tid Attrib1 Attrib2 Attrib3 Class

1 Yes Large 125K No

2 No Medium 100K No

3 No Small 70K No

4 Yes Medium 120K No

5 No Large 95K Yes

6 No Medium 60K No

7 Yes Large 220K No

8 No Small 85K Yes

9 No Medium 75K No

10 No Small 90K Yes
10

Tid Attrib1 Attrib2 Attrib3 Class

11 No Small 55K ?

12 Yes Medium 80K ?

13 Yes Large 110K ?

14 No Small 95K ?

15 No Large 67K ?
10

Test Set

Learning

algorithm

Training Set

Decision Tree Classification

Data Mining 5

Decision Tree Induction

• Decision tree induction is the learning of decision trees (which represents discrete-

valued functions) from class-labeled training tuples.

• A decision tree is a flowchart-like tree structure, where each internal node denotes a

test on an attribute, each branch represents an outcome of the test, and each leaf node

holds a class label.

A decision tree for 

concept buys_computer

Data Mining 6

Decision Tree

• Decision trees represent a disjunction of conjunctions of constraints on the attribute

values of instances.

• Each path from the tree root to a leaf corresponds to a conjunction of attribute tests,

and

• The tree itself is a disjunction of these conjunctions.

(age= >=30 and student = yes)

or (age = 31..40)

or (age = >40 and credit_rating = fair)

Data Mining 7

Decision Tree

• Decision trees classify instances by sorting them down the tree from the root to some

leaf node, which provides the classification of the instance.

• Each inner node in the tree specifies a test of some attribute of the instance.

• Each branch descending from a node corresponds to one of the possible values for the

attribute.

• Each leaf node assigns a classification.

• The instance

(age <=30,

income = low,

student = no,

credit_rating = fair)

is classified as a negative instance.

Data Mining 8

Decision Tree Induction: Example

Training Data Set: buys_computer

Data Mining 9

age income student credit_rating buys_computer

<=30 high no fair no

<=30 high no excellent no

31…40 high no fair yes

>40 medium no fair yes

>40 low yes fair yes

>40 low yes excellent no

31…40 low yes excellent yes

<=30 medium no fair no

<=30 low yes fair yes

>40 medium yes fair yes

<=30 medium yes excellent yes

31…40 medium no excellent yes

31…40 high yes fair yes

>40 medium no excellent no

attributes class attribute

decision tree induction algorithm

learns this decision tree from

this training data set

Decision Tree Induction Algorithm

Generate_Decision_Tree(D,attribute_list)

create a node N;

if tuples in D are all of the same class C then

return N as a leaf node labeled with the class C;

if attribute list is empty then

return N as a leaf node labeled with the majority class in D; // majority voting

apply attribute_selection_method(D, attribute list) to find the best splitting_criterion;

label node N with splitting criterion;

if splitting attribute is discrete-valued and multiway splits allowed then

attribute list  attribute list - splitting attribute; // remove splitting_attribute

for each outcome j of splitting_criterion

// partition the tuples and grow subtrees for each partition

let Dj be the set of data tuples in D satisfying outcome j; // a partition

if Dj is empty then

attach a leaf labeled with the majority class in D to node N;

else attach the node returned by Generate_decision_tree(Dj, attribute list) to node N;

return N;

Data Mining 10

Decision Tree Induction Algorithm: Example

Data Mining 11

select best attribute

that splits this data set.

Decision Tree Induction Algorithm: Example

Data Mining 12

Decision Tree Induction Algorithm: Example

Data Mining 13

yes

all examples are yes

Decision Tree Induction Algorithm: Example

Data Mining 14

yes

select best attribute

that splits this data set.

Decision Tree Induction Algorithm: Example

Data Mining 15

yes

Decision Tree Induction Algorithm: Example

Data Mining 16

yes

yesno
all examples are yes

all examples are no

Decision Tree Induction Algorithm: Example

Data Mining 17

yes

yesno select best attribute

that splits this data set.

Decision Tree Induction Algorithm: Example

Data Mining 18

yes

yesno

all examples are no
no

all examples are yes
yes

Decision Tree Induction Algorithm: Example

Data Mining 19

yes

yesno no yes

Design Issues of Decision Tree Induction

Data Mining 20

• How should training examples be split?

– Method for specifying test condition (Splitting Criterion)

• depending on attribute types

– Measure for evaluating the goodness of a test condition (Selecting Best Attribute)

• information gain, gain ratio, Gini index, misclassification error, statistical test, …

• How should the splitting procedure stop?

– Stop splitting if all the examples belong to the same class

– Early termination depending on the results of a statistical test.

Methods for Expressing Test Conditions

Splitting Criterion

Data Mining 21

• Depends on attribute types

– Binary

– Nominal

– Ordinal

– Continuous

• Depends on number of ways to split

– 2-way split (Binary split)

– Multi-way split

Test Condition for Nominal Attributes

• Multi-way split:

– Use as many partitions as distinct values

of the attribute.

Example:

MaritalStatus: {Single,Divorced,Married}

• Binary split:

– Divide attribute values into two non-

empty subsets.

Data Mining 22

Marital

Status

Single Divorced Married

{Single} {Married,

Divorced}

Marital

Status

{Married} {Single,

Divorced}

Marital

Status

OR OR

{Single,

Married}

Marital

Status

{Divorced}

Test Condition for Ordinal Attributes

• Multi-way split:

– Use as many partitions as

distinct values of the attribute.

Example:

ShirtSize: {S,M,L,XL}

• Binary split:

– Divide attribute values into

two non-empty subsets.

– Preserve order property

among attribute values

Data Mining 23

Shirt

Size

S M L XL

Shirt

Size

{S} {M,L,XL}

Shirt

Size

{S,M} {L,XL}

Shirt

Size

{S,M,L} {XL}

Shirt

Size

{S,L} {M,XL}

this grouping violates

order property

Test Condition for Continuous Attributes

• Multi-way split:

– Discretize the continuous attribute.

– Discretization to form an ordinal

categorical attribute

• Binary split:

– Divide attribute values into two non-

empty subsets from a cut-off point.

– Binary Decision: (Av) or (A> v)

• consider all possible splits and finds

the best cut

Data Mining 24

How to Determine the Best Split

• There are 9 positive examples and 5 negative examples.

• Which test condition (attribute) is the best?

Data Mining 25

income

[3+,1-] [4+,2-] [2+,2-]

low medium high

[9+,5-]

age

[2+,3-] [4+,0-] [3+,2-]

30 31..40 >40

[9+,5-]

student

[3+,4-] [6+,1-]

no yes

[9+,5-]

credit

rating

[6+,2-] [3+,3-]

fair excellent

[9+,5-]

How to Determine the Best Split

• Greedy approach:

– Nodes with homogeneous (purer) class distribution are preferred

• Need a measure of node impurity:

[5+,5-] [9+,1-]

Non-homogeneous Homogeneous

High degree of impurity Low degree of impurity

• Measures of Node Impurity:

– entropy, Gini index, misclassification error, …

Data Mining 26

Finding the Best Split

1. Compute impurity measure (P) before splitting

2. Compute impurity measure (M) after splitting

• Compute impurity measure of each child node

• M is the weighted impurity of children

3. Choose the attribute test condition that produces the highest gain

Gain = P - M

or equivalently, lowest impurity measure after splitting (M)

Data Mining 27

Attribute Selection Measures

• An attribute selection measure is a heuristic for selecting the splitting criterion that

best separates a given data set D of class-labeled training tuples into individual

classes.

– to split D into smaller partitions according to the outcomes of the splitting criterion, ideally

each partition would be pure (i.e., all of the tuples that fall into a given partition would

belong to the same class).

• The attribute having the best score for the measure is chosen as the splitting

attribute for the given tuples.

• Three popular attribute selection measures:

information gain, gain ratio, and gini index.

Data Mining 28

Measure of Impurity: Entropy

• Given a collection S, containing positive and negative examples of some target

concept, the entropy of S relative to this boolean classification is:

Entropy(S) = -p+ log2p+ - p- log2p-

• S is a sample of training examples

• p+ is the proportion of positive examples

• p- is the proportion of negative examples

Data Mining 29

Measure of Impurity: Entropy

Entropy([12+,5-] =

– (12/17) log2(12/17) – (5/17) log2(5/17) = 0.874

Entropy([8+,8-] =

– (8/16) log2(8/16) – (8/16) log2(8/16) = 1.0

Entropy([8+,0-] =

– (8/8) log2(8/8) – (0/8) log2(0/8) = 0.0

– It is assumed that log2(0) is 0

Data Mining 30

Entropy – Non-Boolean Target Classification

• If the target attribute can take on c different values, then the entropy of S relative to

this c-wise classification is defined as

• pi is the proportion of S belonging to class i.

• The logarithm is still base 2 because entropy is a measure of the expected encoding

length measured in bits.

• If the target attribute can take on c possible values, the entropy can be as large as

log2c.

Data Mining 31

Entropy – Informaton Theory

• Entropy(S) = expected number of bits needed to encode class (+ or -) of randomly

drawn members of S (under the optimal, shortest length-code)

– if p+ is 1, the receiver knows the drawn example will be positive, so no message need be

sent, and the entropy is zero.

– if p+ is 0.5, one bit is required to indicate whether the drawn example is positive or

negative.

– if p+ is 0.8, then a collection of messages can be encoded using on average less than 1 bit

per message by assigning shorter codes to collections of positive examples and longer

codes to less likely negative examples.

• Information theory optimal length code assign –log2p bits to messages having

probability p.

• So the expected number of bits to encode (+ or -) of random member of S:

- p+ log2 p+ - p- log2p-

Data Mining 32

Attribute Selection Measure:

Information Gain

• Select the attribute with the highest information gain

• Let pi be the probability that an arbitrary tuple in D belongs to class Ci,

estimated by |Ci,D|/|D|

• Expected information (entropy) needed to classify a tuple in D:

• Information needed (after using A to split D into v partitions) to classify D:

• Information gained by branching on attribute A

Data Mining 33

Attribute Selection Measure:

Information Gain

• There are 9 positive examples and 5 negative examples.

D: [9+,5-]

Info(D) = Entropy(D) =

– (9/14) log2(9/14) – (5/14) log2(5/14) = 0.940

Data Mining 34

age

[2+,3-] [4+,0-] [3+,2-]

30 31..40 >40

[9+,5-] Infoage(D) = 5/14 * Info([2+,3-]) +

4/14 * Info([4+,0-]) +

5/14 * Info([3+,2-])

= (5/14)*0.971 + (4/14)*0.0 + (5/14)*0.971

= 0.694

Gain(age) = Info(D) - Infoage(D)

= 0.940 – 0.694 = 0.246

Attribute Selection Measure:

Information Gain

Info(D) = – (9/14) log2(9/14) – (5/14) log2(5/14) = 0.940

Data Mining 35

income

[3+,1-] [4+,2-] [2+,2-]

low medium high

[9+,5-]

Infoincome(D) = 4/14 * Info([3+,1-]) +

6/14 * Info([4+,2-]) +

4/14 * Info([2+,2-])

= (4/14)*0.811+ (6/14)*0.911 + (4/14)*1.0

= 0.911

Gain(income) = Info(D) - Infoincome(D)

= 0.940 – 0.911 = 0.029

Attribute Selection Measure:

Information Gain

Info(D) = – (9/14) log2(9/14) – (5/14) log2(5/14) = 0.940

Data Mining 36

student

[3+,4-] [6+,1-]

no yes

[9+,5-]

credit

rating

[6+,2-] [3+,3-]

fair excellent

[9+,5-]

Infostudent(D) = 7/14 * Info([3+,4-]) +

7/14 * Info([6+,1-])

= (7/14)*0.985+ (7/14)*0.592 = 0.789

Gain(student) = Info(D) - Infostudent(D)

= 0.940 – 0.789 = 0.151

Infocr (D) = 8/14 * Info([6+,2-]) +

6/14 * Info([3+,3-])

= (8/14)*0.811+ (6/14)*1.0 = 0.892

Gain(cr) = Info(D) - Infocr(D)

= 0.940 – 0.892 = 0.048

Computing Information Gain

for Continuous Valued Attributes

• Let attribute A be a continuous-valued attribute

• Must determine the best split point for A

– Sort the value A in increasing order

– Typically, the midpoint between each pair of adjacent values is considered as a

possible split point

• (ai+ai+1)/2 is the midpoint between the values of ai and ai+1

– The point with the minimum expected information requirement for A is selected

as the split-point for A

• Split:

– D1 is the set of tuples in D satisfying A ≤ split-point, and D2 is the set of tuples in

D satisfying A > split-point

Data Mining 37

Continuous Valued Attributes - Example

Temperature: 40 48 60 72 80 90

ClassAttribute : No No Yes Yes Yes No

Two candidate thresholds: (48+60)/2=54 (80+90)/2=85

Check the information gain for new boolean attributes:

Temperature>54 Temperature>85

Use these new boolean attributes same as other discrete valued attributes.

Data Mining 38

• Information gain measure is biased towards attributes with a large number of values

• Some decision tree induction algorithms (such as C4.5) uses gain ratio to overcome

the problem (normalization to information gain)

GainRatio(A) = Gain(A) / SplitInfoA(D)

• Ex.

GainRatio(income) = 0.029 / 1.557 = 0.019

• The attribute with the maximum gain ratio is selected as the splitting attribute

Gain Ratio for Attribute Selection

Data Mining 39

Measure of Impurity: GINI Index

• Gini Index for a given node t :

𝐆𝐈𝐍𝐈 𝐭 = 𝟏 − ෍

𝐣

[𝐩(𝐣|𝐭)]𝟐

(NOTE: p(j|t) is the relative frequency of class j at node t).

– Maximum (1 - 1/nc) when records are equally distributed among all classes,

implying least interesting information

– Minimum (0.0) when all records belong to one class, implying most interesting

information

Data Mining 40

Measure of Impurity: GINI Index
Computing Gini Index of a Single Node

Data Mining 41

𝐆𝐈𝐍𝐈 𝐭 = 𝟏 − ෍

𝐣

[𝐩(𝐣|𝐭)]𝟐

Measure of Impurity: GINI Index
Computing Gini Index for a Collection of Nodes

• When a node parent is split into k partitions (children)

where, ni = number of examples at child i,

n = number of examples at parent node p,

GINI(i) = GINI Index value of child i.

Computing GAIN based on GINI Index:

– The gain is a criterion that can be used to determine the goodness of a split:

GAIN = GINI(parent) - GINIsplit

– Choose the attribute that minimizes weighted average Gini Index of the children

• Gini Index is used in decision tree algorithms such as CART, SLIQ, SPRINT

Data Mining 42

𝐆𝐈𝐍𝐈𝐬𝐩𝐥𝐢𝐭 = ෍

𝐢=𝟏

𝐤
𝐧𝐢
𝐧
𝐆𝐈𝐍𝐈(𝐢)

Binary Attributes: Computing Gini Index

Gini(N1) = 1 - (4/7)2 - (3/7)2 = 0.49 Gini(N1) = 1 - (1/5)2 - (4/5)2 = 0.32

Gini(N2) = 1 - (2/5)2 - (3/5)2 = 0.48 Gini(N2) = 1 - (5/7)2 - (2/7)2 = 0.408

GinisplitA = 7/12 * Gini(N1) + 5/12 * Gini(N2) GinisplitB = 5/12 * Gini(N1) + 7/12 * Gini(N2)

= 0.486 = 0.371

Data Mining 43

Categorical Attributes: Computing Gini Index

• Multiway split:

Data Mining 44

Car

Type

[1+,3-] [8+,0-] [1+,7-]

Family Sports Luxury

[10+,10-]

Gini(N1) = 1 - (1/4)2 - (3/4)2 = 0.375

Gini(N2) = 1 - (8/8)2 - (0/8)2 = 0

Gini(N3) = 1 - (1/8)2 - (7/8)2 = 0.219

GinisplitA = 4/20 * Gini(N1) + 8/20 * Gini(N2) + 8/20 *Gini(N3) = 0.163

Categorical Attributes: Computing Gini Index

• Binary split: find best partition of values (least Gini value)

Data Mining 45

Car

Type

[9+,3-] [1+,7-]

Family,

Sports Luxury

[10+,10-]

Gini=0.375

Car

Type

[1+,3-] [9+,7-]

Family Sports,

Luxury

[10+,10-]

Car

Type

[8+,0-] [2+,10-]

Sports Family,

Luxury

[10+,10-]

Gini=0.375 Gini=0.492

Ginisplit = 0.469

Gini=0Gini=0.219

Ginisplit = 0.313

Gini=0.278

Ginisplit = 0.168

Continuous Attributes: Computing Gini Index

• Sort the attribute on values

• Choose the split position that has the least Gini index

Data Mining 46

best split

Measure of Impurity: Misclassification Error

• Classification error at a node t :

• Maximum (1 - 1/nc) when records are equally distributed among all classes, implying

least interesting information

• Minimum (0) when all records belong to one class, implying most interesting

information

Data Mining 47

𝐄𝐫𝐫𝐨𝐫 𝐭 = 𝟏 − 𝐦𝐚𝐱
𝐢

𝐏(𝐢|𝐭)

Measure of Impurity: Misclassification Error
Computing Error of a Single Node

Data Mining 48

𝐄𝐫𝐫𝐨𝐫 𝐭 = 𝟏 − 𝐦𝐚𝐱
𝐢

𝐏(𝐢|𝐭)

Comparing Attribute Selection Measures

• All selection measures, in general, return good results but all measures have some

bias.

– Information gain:

• biased towards multivalued attributes

– Gain ratio:

• tends to prefer unbalanced splits in which one partition is much smaller than

the others

– Gini index:

• biased to multivalued attributes

• tends to favor tests that result in equal-sized partitions and purity in both

partitions

Data Mining 49

Other Attribute Selection Measures

• CHAID: a popular decision tree algorithm, measure based on χ2 test for independence

• G-statistic: has a close approximation to χ2 distribution

• Multivariate splits (partition based on multiple variable combinations)

– CART: finds multivariate splits based on a linear comb. of attrs.

• Which attribute selection measure is the best?

– Most give good results, none is significantly superior than others.

Data Mining 50

Model Overfitting

Training error: Train a model on the training dataset, then test the model on the same

training set. The error rate is called “training error,” which evaluates how well the model

fits the training data.

Test error: Test the model on a test dataset that is different from the training set. The

error rate is called “test error,” which evaluates how well the model generalizes to unseen

data.

Overfitting means a model fits the training data very well but generalizes to unseen data

poorly.

How do I know if my model is overfitting?

• Your model is overfitting if its training error is small (fits well with training data) but

the test error is large (generalizes poorly to unseen data).

Data Mining 51

Underfitting and Overfitting

Data Mining 52

Overfitting due to

• Noise

• Insufficient Examples

Two approaches to avoid overfitting

• Prepruning: Halt tree construction early ̵ do

not split a node if this would result in the

goodness measure falling below a threshold

• Postpruning: Remove branches from a “fully

grown” tree—get a sequence of progressively

pruned trees

• Overfitting means a model fits the training data very well but generalizes unseen data poorly.

• Overfitting: complex models are more likely to overfit than simple models

• Underfitting: when model is too simple, both training and test errors are large

Occam’s Razor

• Occam’s Razor: Given two models of similar generalization errors, one should

prefer the simpler model over the more complex model.

– For complex models, there is a greater chance that they are fitted accidentally by

errors in data.

• Therefore, one should include model complexity when evaluating a model.

Data Mining 53

Incorporating Model Complexity

• Overfitting results in decision trees that are more complex than necessary

• Training error no longer provides a good estimate of how well the tree will perform

on previously unseen records

• Need new ways for estimating errors (i.e. we need to incorporate Model Complexity).

– Estimating Generalization Errors

– Another way to incorporate model complexity is based on an information-

theoretic approach known as the minimum description length

Data Mining 54

Estimating Generalization Errors

• Re-substitution errors: error on training ( e(t))

• Generalization errors: error on testing ( e’(t))

• Methods for estimating generalization errors:

– Optimistic approach: e’(t) = e(t)

– Pessimistic approach:

• For each leaf node: e’(t) = (e(t)+0.5)

• Total errors: e’(T) = e(T) + N  0.5 (N: number of leaf nodes)

• For a tree with 30 leaf nodes and 10 errors on training (out of 1000 instances):

Training error = 10/1000 = 1%

Generalization error = (10 + 300.5)/1000 = 2.5%

– Reduced error pruning (REP):

• uses validation data set to estimate generalization error

Data Mining 55

Estimating Generalization Errors - Example

Data Mining 56

Simple TreeComplex Tree

LM

What are generalization errors for these two decision trees and Complex Tree without
left most inner node using two approaches?

Optimistic approach: Complex Tree Error Rate: 4/24
Simple Tree Error Rate: 6/24
Complex Tree Without LM: 4/24

Pessimistic approach: Complex Tree Error Rate: 4/24 + (7*0.5)/24 = 7.5/24
Simple Tree Error Rate: 6/24 + (4*0.5)/24 = 8/24
Complex Tree Without LM: 4/24 + (6*0.5)/24 = 7/24

Minimum Description Length (MDL)

Data Mining 57

• A builds a classification model that summarizes the relationship between x and y.

• The model can be encoded in a compact form before being transmitted to B.

• If the model is 100% accurate, then the cost of transmission is equivalent to the cost

of encoding the model.

• Otherwise, A must also transmit information about which record is classified

incorrectly by the model.

Minimum Description Length (MDL)

Data Mining 58

Cost(Model,Data) = Cost(Data|Model) + Cost(Model)

• Cost is the number of bits needed for encoding.

• Search for the least costly model.

Cost(Data|Model) encodes the misclassification errors.

Cost(Model) uses node encoding (number of children) plus splitting condition encoding.

Minimum Description Length (MDL)

• The total description length of a tree is given by:

Cost(tree, data) = Cost(tree) + Cost(data|tree)

• Each internal node of the tree is encoded by the ID of the splitting attribute. If there

are m attributes, the cost of encoding each attribute is log2m bits.

• Each leaf is encoded using the ID of the class it is associated with. If there are k

classes, the cost of encoding a class is log2k bits.

• Cost(tree) is the cost of encoding all the nodes in the tree.

– To simplify the computation, we can assume that the total cost of the tree is obtained by

adding up the costs of encoding each internal node and each leaf node.

• Cost(data|tree) is encoded using the classification errors the tree commits on the

training set. Each error is encoded by log2n bits, where n is the total number of

training instances.

Data Mining 59

Minimum Description Length (MDL) - Example

• Consider the following decision trees. Assume they are generated from a data set that contains

16 binary attributes and 3 classes, C1, C2, and C3.

Data Mining 60

a) Decision tree with 7 errors
b) Decision tree with 4 errors

• Because there are 16 attributes, the cost for each internal node in the decision tree is: log2(m) = log2(16) = 4

• Furthermore, because there are 3 classes, the cost for each leaf node is: log2(k) = log2(3) = 2

• The cost for each misclassification error is log2(n).

• The overall cost for the decision tree (a) is 2×4+3×2+7×log2n = 14+7 log2n

and the overall cost for the decision tree (b) is 4×4+5×2+4×5 = 26+4 log2n.

• According to the MDL principle, tree (a) is better than (b) if n < 16 and is worse than (b) if n > 16.

How to Address Overfitting

• Pre-Pruning (Early Stopping Rule)

– Stop the algorithm before it becomes a fully-grown tree

– Typical stopping conditions for a node:

• Stop if all instances belong to the same class

• Stop if all the attribute values are the same

– More restrictive conditions:

• Stop if number of instances is less than some user-specified threshold

• Stop if class distribution of instances are independent of the available features

(e.g., using  2 test)

• Stop if expanding the current node does not improve impurity measures (e.g.,

Gini or information gain).

Data Mining 61

How to Address Overfitting

• Post-pruning

– Grow decision tree to its entirety

– Trim the nodes of the decision tree in a bottom-up fashion

– If generalization error improves after trimming, replace sub-tree by a leaf node.

– Class label of leaf node is determined from majority class of instances in the sub-

tree

– Can use MDL for post-pruning

Data Mining 62

Post-Pruning to avoid overfitting

Data Mining 63

Training Error (Before splitting) = 10/30

Pessimistic error = (10 + 0.5)/30 = 10.5/30

Training Error (After splitting) = 9/30

Pessimistic error (After splitting)

= (9 + 4  0.5)/30 = 11/30

PRUNE!

Classification in Large Databases

• Classification - a classical problem extensively studied by statisticians and machine

learning researchers

• Scalability: Classifying data sets with millions of examples and hundreds of attributes

with reasonable speed

– The efficiency of classical decision tree algorithms, such as ID3, C4.5, and CART, has

been well established for relatively small data sets.

– Efficiency becomes an issue of concern when these algorithms are applied to the mining of

very large real-world databases.

– New decision tree algorithms (such as Rainforest, SLIQ and SPRINT) that address

scalability issue

• Why is decision tree induction popular?

– relatively faster learning speed (than other classification methods)

– convertible to simple and easy to understand classification rules

– can use SQL queries for accessing databases

– comparable classification accuracy with other methods

Data Mining 64

Decision Tree Based Classification

• Advantages:

– Inexpensive to construct

– Extremely fast at classifying unknown records

– Easy to interpret for small-sized trees

– Robust to noise (especially when methods to avoid overfitting are employed)

– Can easily handle redundant or irrelevant attributes (unless the attributes are

interacting)

• Disadvantages:

– Space of possible decision trees is exponentially large. Greedy approaches are

often unable to find the best tree.

– Does not take into account interactions between attributes

– Each decision boundary involves only a single attribute

Data Mining 65

Expressiveness of Decision Tree Representation

• Test conditions involve using only a single attribute at a time.

– Tree-growing procedure can be viewed as the process of partitioning the attribute space

into disjoint regions until each region contains records of the same class.

– The border between two neighboring regions of different classes is a decision boundary.

– Since the test condition involves only a single attribute, the decision boundaries are

rectilinear.

• This limits the expressiveness of the decision tree representation for modeling

complex relationships among continuous attributes.

Data Mining 66

Expressiveness of Decision Tree Representation

Data Mining 67

• Test condition may involve

multiple attributes

• Decision tree induction cannot

handle this kind of data set.

• Decision tree induction can handle

this kind of data set.

