
Other Classification Methods
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• Instance-Based Learning (kNN)

• Artificial Neural Networks



Instance-Based Learning (kNN)

Machine Learning 2



Instance-Based Learning

• Instance-based learning methods simply store the training examples instead of 

learning explicit description of the target function.

– Generalizing the examples is postponed until a new instance must be classified. 

– When a new instance is encountered, its relationship to the stored examples is examined in 

order to assign a target function value for the new instance.

• One of instance-based learning methods is k-nearest neighbor method.

• Instance-based methods are referred to as lazy learning methods because they delay 

processing until a new instance must be classified. 

– Eager methods (decision tree, neural networks, …) generalize the training  set to learn a 

function. 

• A key advantage of lazy learning is that instead of estimating the target function once 

for the entire instance space, these methods can estimate it locally and differently for 

each new instance to be classified.
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k-Nearest Neighbor Learning (Classification)

• k-Nearest Neighbor Learning algorithm can be used in the prediction of values of 

continuous valued functions in addition to the prediction of class values of discrete-

valued functions (classification)

• k-Nearest Neighbor Learning algorithm assumes all instances correspond to points 
in the n-dimensional space Rn

• The nearest neighbors of an instance are defined in terms of Euclidean distance.

• Euclidean distance between the instances  xi = <xi1,…,xin>  and 

xj = <xj1,…,xjn> are:

• For a given instance xq,  Class(xq) is computed using the class values of k-nearest 

neighbors of xq
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k-Nearest Neighbor Classification

• Store all training examples <xi,Class(xi)>

• Calculate Class(xq) for a given instance xq using its k-nearest neighbors.

• Nearest neighbor: (k=1)

– Locate the nearest traing example xn, and estimate Class(xq) as Class(xn).

• k-Nearest neighbor: 

– Locate k nearest traing examples, and estimate Class(xq) using majority vote among 

class values of k nearest neighbors. 

• The test example is classified based on the majority class of its nearest neighbors:

where v is a class label, yi is the class label for one of the nearest neighbors, and I(.) is an 

indicator function that returns the value 1 if its argument is true and 0 otherwise.
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k-Nearest Neighbor Classification - Example
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3-Nearest Neighbor Classification of instance <3,3> 

• First three example are 3 Nearest Neighbors of instance <3,3>.

• Two of them is no and one of them is yes.

• Majority of classes of its neighbors  are no, the classification of instance <3,3> is no. 

A B Distance 
of <3,3>

1 1 8

2 1 5

3 2 1

7 7 32

8 8 50

A B Class

1 1 no

2 1 no

3 2 yes

7 7 yes

8 8 yes



Distance Weighted kNN Classification 

• In the majority voting approach, every neighbor has the same impact on the 

classification 

• We can weight the influence of each nearest neighbor xi according to its distance to 

instance xq.

• Using the distance-weighted voting scheme, the class label can be determined:
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Distance Weighted kNN Classification- Example 
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A B Class

1 1 no

2 1 no

3 2 yes

7 7 yes

8 8 yes

Distance Weighted 3-Nearest Neighbor Classification 

of instance <3,3> 
A B Distance 

of <3,3>

1 1 8

2 1 5

3 2 1

7 7 32

8 8 50

• First three example are 3 Nearest Neighbors of instance <3,3>.

• Weight of no = 1/8 + 1/5 = 13/40           Weight of  yes = 1/1 = 1

• Since 1 > 13/40, the classification of instance <3,3> is yes. 



k-Nearest Neighbor Algorithm

Consider the following set of training examples:

• Using 3-nearest neighbor algorithm, find the target classification for the instance 

<A=5,B=5>. Show your work.

• Using distance weighted 3-nearest neighbor algorithm, find the target classification 

for the instance <A=5,B=5>. Show your work.
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k-Nearest Neighbor Algorithm
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Distance of <5,5>

sqrt(32)

sqrt(10) * nearest

sqrt(5) * neighbors

sqrt(1) *

sqrt(32)

3-nearest neighbor:  2 yes, 1 no   YES

Weighted 3-nearest neighbor:

Weight of yes: 1/10 + 1/5 = 3/10

Weight of no : 1/1 = 1

Since 1 > 3/10   NO



k-Nearest Neighbor Classification - Issues
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• Choosing the value of k:

– If k is too small, sensitive to noise points

– If k is too large, neighborhood may 

include points from other classes.

• Scaling issues:

– Attributes may have to be scaled to prevent 

distance measures from being dominated by 

one of the attributes

X



Artificial Neural Networks
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Artificial Neural Networks

• Artificial neural networks (ANNs) provide a general, practical method for learning

real-valued, discrete-valued, and vector-valued functions from examples.

• Algorithms such as BACKPROPAGATION gradient descent to tune network

parameters to best fit a training set of input-output pairs.

• The study of artificial neural networks (ANNs) has been inspired in part by the

observation that biological learning systems are built of very complex webs of

interconnected neurons.

• Artificial neural networks are built out of a densely interconnected set of simple units,

where each unit takes a number of real-valued inputs (possibly the outputs of other

units) and produces a single real-valued output (which may become the input to many

other units).
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Properties of Artificial Neural Networks 

• A large number of very simple, neuron-like processing elements called units, 

• A large number of weighted, directed connections between pairs of units 

– Weights may be positive or negative real values 

• Local processing in that each unit computes a function based on the outputs of a 

limited number of other units in the network 

• Each unit computes a simple function of its input values, which are the weighted 

outputs from other units. 

– If there are n inputs to a unit, then the unit's output, or activation is defined by a = 

g((w1 * x1) + (w2 * x2) + ... + (wn * xn)). 

– Each unit computes a (simple) function g of the linear combination of its inputs. 

• Learning by tuning the connection weights 
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Artificial Neural Networks (ANN)
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• Model is an assembly of inter-

connected nodes and weighted links

• Output node sums up each of its 

input value according to the 

weights of its links

• Compare output node against some 

threshold t



Perceptron
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Perceptron

• Perceptron is a Linear Threshold Unit (LTU).

• A perceptron takes a vector of real-valued inputs, calculates a linear combination of 
these inputs, then outputs 1 if the result is greater than some threshold and -1 
otherwise.

• Given inputs xl through xn, the output o(x1, . . . , xn) computed by the perceptron is:

each wi is a real-valued constant, or weight, that determines the contribution of input 
xi to the perceptron output.

• The quantity (-w0) is a threshold that the weighted combination of inputs must 
surpass in order for the perceptron to output 1.

– To simplify notation, we imagine an additional constant input x0 = 1
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Perceptron
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• Learning a perceptron involves choosing values for weights w0, …,wn.

• A perceptron represents a hyperplane decision surface in the

n-dimensional space of instances.

• The perceptron outputs 1 for instances lying on one side of the hyperplane 

and outputs -1 for instances lying on the other side.

• Some sets of positive and negative examples cannot be separated by any 

hyperplane. 

– Those that can be separated are called linearly separable sets of 

examples.

• A single perceptron can be used to represent many boolean functions.

– AND, OR, NAND, NOR are representable by a perceptron

– XOR cannot be representable by a perceptron.



Representational Power of Perceptrons
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Perceptron - Example
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X Y Out

0 0 0

0 1 1

1 0 1

1 1 1

Give a perceptron to represent OR function.



Perceptron - Example
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X Y Out

0 0 0

0 1 1

1 0 1

1 1 1

Give a perceptron to represent OR function.

Out is 1 if  w0+w1*X+w2*Y > 0 ; 0 otherwise

What will be the weights?

X

Y

1

w1

w2

w0

Out



Perceptron - Example
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X Y Out

0 0 0

0 1 1

1 0 1

1 1 1

Give a perceptron to represent OR function.

Out is 1 if  w0+w1*X+w2*Y > 0 ; 0 otherwise

w0  = -0.5       w1 = 0.7        w2 = 0.7

X

Y

1

w1

w2

w0

Out



Perceptron - Example

Data Mining 23

Give a linear threshold unit (a perceptron) that implements 

the following function by giving its weight values.



Perceptron - Example
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Give a linear threshold unit (a perceptron) that implements 

the following function by giving its weight values.

Out is 1 if  w0+w1*x+w2*y > 0 ; 0 otherwise

What will be the weights?

x

y

1

w1

w2

w0

Out



Perceptron - Example
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Give a linear threshold unit (a perceptron) that implements 

the following function by giving its weight values.

Out is 1 if  w0+w1*x+w2*y > 0 ; 0 otherwise

w0  = 1 w1 = -0.6 w2 = -0.6

x

y

1

w1

w2

w0

Out



Perceptron - Example
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Give a linear threshold unit (a perceptron) that implements 

the following function by giving its weight values.



Perceptron - Example
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Give a linear threshold unit (a perceptron) that implements 

the following function by giving its weight values.

Out is 1 if  w0+w1*x+w2*y +w3*z > 0 ; 0 otherwise

What will be the weights?

x

y

1

w1

w2

w0

Out

z w3



Perceptron - Example
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Give a linear threshold unit (a perceptron) that implements 

the following function by giving its weight values.

Out is 1 if  w0+w1*x+w2*y +w3*z > 0 ; 0 otherwise

w0  = -0.5 w1 = 0.6 w2 = 0.3 w3=0.3

x

y

1

w1

w2

w0

Out

z w3



Perceptron Training Rule

• To learn an acceptable weight vector is to begin with random weights, then iteratively 

apply the perceptron to each training example, modifying the perceptron weights 

whenever it misclassifies an example.

– If the training example classifies correctly, weights are not updated.

• This process is repeated, iterating through the training examples as many times as 

needed until the perceptron classifies all training examples correctly. 

– Each pass through all of the training examples is called one epoch

• Weights are modified at each step according to perceptron training rule
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Perceptron Training Rule
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wi = wi + wi

wi =  (t - o) xi

t    is the target value

o   is the perceptron output

 is a small constant (e.g. 0.1) called learning rate

• If the output is correct (t=o) the weights wi are not changed

• If the output is incorrect (to) the weights wi are changed such that 

the output of the perceptron for the new weights is closer to t.

• The algorithm converges to the correct classification

• if the training data is linearly separable

• and  is sufficiently small 

• Weights are modified at each step according to perceptron training rule.



General Structure of ANN
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Multi-Layer Networks

• Single perceptron can only express linear decision surfaces.

• Multilayer networks are capable of expressing a rich variety of nonlinear decision 

surfaces.
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input layer

hidden layer

output layer



Multi-Layer Networks with Linear Units

Ex. XOR

• Multiple layers of cascaded linear units still produce only linear functions.
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OR AN
D

x1 x
2

w1=0.5

w1=0.

5
w2=0.

5

w2=0.

5

w1=0.

5
w2= -0.5

w0= -0.25

w0= -0.25

w0= -0.75

OR: 0.5*x1 + 0.5*x2 – 0.25   > 0

AND: 0.5*x1 + 0.5*x2 – 0.75   > 0

XOR: 0.5*x1 - 0.5*x2 – 0.25   > 0



Multi-Layer Networks with Linear Units - Example

• Give an artificial neural network for the following function. Make clear the structure 

of your ANN and the used weights.
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Multi-Layer Networks with Linear Units - Example

Give an artificial neural network for the following function. Make clear the structure of 

your ANN and the used weights.
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Multi-Layer Networks with Linear Units - Example
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Unit1:    w10 = -1    w12 = 0.4    w12 = 0.4

Unit2:    w20 = 1     w21 = -0.3   w22 = -0.3 

Unit3:    w30 = - 0.6   w31 = 0.5   w32 = 0.5     (and function)

x y unit1 unit2 unit3 Classification

1 1 0 1 0 0

1 2 1 1 1 1

2 1 1 1 1 1

2 2 1 0 0 0



Multi-Layer Networks with Non-Linear Units

• Multiple layers of cascaded linear units still produce only linear functions.

• We prefer networks capable of representing highly nonlinear functions.

• What we need is a unit whose output is a nonlinear function of its inputs, but whose 

output is also a differentiable function of its inputs. 

• One solution is the sigmoid unit, a unit very much like a perceptron, but based on a 

smoothed, differentiable threshold function.
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Algorithm for Learning ANN

• Initialize the weights (w0, w1, …, wk)

• Adjust the weights in such a way that the output of ANN is consistent with class 

labels of training examples

– Objective function:

– Find the weights wi’s that minimize the above objective function using 

backpropagation algorithm
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Units of ANN

• Perceptron (Linear Threshold Unit)

• Linear Unit produces continuous output o (not just –1,1)

o = w0 + w1 x1 + … + wn xn

• Sigmoid Unit
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