
Other Classification Methods

Data Mining 1

• Instance-Based Learning (kNN)

• Artificial Neural Networks

Instance-Based Learning (kNN)

Machine Learning 2

Instance-Based Learning

• Instance-based learning methods simply store the training examples instead of

learning explicit description of the target function.

– Generalizing the examples is postponed until a new instance must be classified.

– When a new instance is encountered, its relationship to the stored examples is examined in

order to assign a target function value for the new instance.

• One of instance-based learning methods is k-nearest neighbor method.

• Instance-based methods are referred to as lazy learning methods because they delay

processing until a new instance must be classified.

– Eager methods (decision tree, neural networks, …) generalize the training set to learn a

function.

• A key advantage of lazy learning is that instead of estimating the target function once

for the entire instance space, these methods can estimate it locally and differently for

each new instance to be classified.

Data Mining 3

k-Nearest Neighbor Learning (Classification)

• k-Nearest Neighbor Learning algorithm can be used in the prediction of values of

continuous valued functions in addition to the prediction of class values of discrete-

valued functions (classification)

• k-Nearest Neighbor Learning algorithm assumes all instances correspond to points
in the n-dimensional space Rn

• The nearest neighbors of an instance are defined in terms of Euclidean distance.

• Euclidean distance between the instances xi = <xi1,…,xin> and

xj = <xj1,…,xjn> are:

• For a given instance xq, Class(xq) is computed using the class values of k-nearest

neighbors of xq

Data Mining 4

n

r

jrirji xxxxd
1

2)(),(

k-Nearest Neighbor Classification

• Store all training examples <xi,Class(xi)>

• Calculate Class(xq) for a given instance xq using its k-nearest neighbors.

• Nearest neighbor: (k=1)

– Locate the nearest traing example xn, and estimate Class(xq) as Class(xn).

• k-Nearest neighbor:

– Locate k nearest traing examples, and estimate Class(xq) using majority vote among

class values of k nearest neighbors.

• The test example is classified based on the majority class of its nearest neighbors:

where v is a class label, yi is the class label for one of the nearest neighbors, and I(.) is an

indicator function that returns the value 1 if its argument is true and 0 otherwise.

Data Mining 5

k-Nearest Neighbor Classification - Example

Data Mining 6

3-Nearest Neighbor Classification of instance <3,3>

• First three example are 3 Nearest Neighbors of instance <3,3>.

• Two of them is no and one of them is yes.

• Majority of classes of its neighbors are no, the classification of instance <3,3> is no.

A B Distance
of <3,3>

1 1 8

2 1 5

3 2 1

7 7 32

8 8 50

A B Class

1 1 no

2 1 no

3 2 yes

7 7 yes

8 8 yes

Distance Weighted kNN Classification

• In the majority voting approach, every neighbor has the same impact on the

classification

• We can weight the influence of each nearest neighbor xi according to its distance to

instance xq.

• Using the distance-weighted voting scheme, the class label can be determined:

Data Mining 7

Distance Weighted kNN Classification- Example

Data Mining 8

A B Class

1 1 no

2 1 no

3 2 yes

7 7 yes

8 8 yes

Distance Weighted 3-Nearest Neighbor Classification

of instance <3,3>
A B Distance

of <3,3>

1 1 8

2 1 5

3 2 1

7 7 32

8 8 50

• First three example are 3 Nearest Neighbors of instance <3,3>.

• Weight of no = 1/8 + 1/5 = 13/40 Weight of yes = 1/1 = 1

• Since 1 > 13/40, the classification of instance <3,3> is yes.

k-Nearest Neighbor Algorithm

Consider the following set of training examples:

• Using 3-nearest neighbor algorithm, find the target classification for the instance

<A=5,B=5>. Show your work.

• Using distance weighted 3-nearest neighbor algorithm, find the target classification

for the instance <A=5,B=5>. Show your work.

Data Mining 9

k-Nearest Neighbor Algorithm

Data Mining 10

Distance of <5,5>

sqrt(32)

sqrt(10) * nearest

sqrt(5) * neighbors

sqrt(1) *

sqrt(32)

3-nearest neighbor: 2 yes, 1 no YES

Weighted 3-nearest neighbor:

Weight of yes: 1/10 + 1/5 = 3/10

Weight of no : 1/1 = 1

Since 1 > 3/10 NO

k-Nearest Neighbor Classification - Issues

Data Mining 11

• Choosing the value of k:

– If k is too small, sensitive to noise points

– If k is too large, neighborhood may

include points from other classes.

• Scaling issues:

– Attributes may have to be scaled to prevent

distance measures from being dominated by

one of the attributes

X

Artificial Neural Networks

Machine Learning 12

Artificial Neural Networks

• Artificial neural networks (ANNs) provide a general, practical method for learning

real-valued, discrete-valued, and vector-valued functions from examples.

• Algorithms such as BACKPROPAGATION gradient descent to tune network

parameters to best fit a training set of input-output pairs.

• The study of artificial neural networks (ANNs) has been inspired in part by the

observation that biological learning systems are built of very complex webs of

interconnected neurons.

• Artificial neural networks are built out of a densely interconnected set of simple units,

where each unit takes a number of real-valued inputs (possibly the outputs of other

units) and produces a single real-valued output (which may become the input to many

other units).

Data Mining 13

Properties of Artificial Neural Networks

• A large number of very simple, neuron-like processing elements called units,

• A large number of weighted, directed connections between pairs of units

– Weights may be positive or negative real values

• Local processing in that each unit computes a function based on the outputs of a

limited number of other units in the network

• Each unit computes a simple function of its input values, which are the weighted

outputs from other units.

– If there are n inputs to a unit, then the unit's output, or activation is defined by a =

g((w1 * x1) + (w2 * x2) + ... + (wn * xn)).

– Each unit computes a (simple) function g of the linear combination of its inputs.

• Learning by tuning the connection weights

Data Mining 14

Artificial Neural Networks (ANN)

Data Mining 15

• Model is an assembly of inter-

connected nodes and weighted links

• Output node sums up each of its

input value according to the

weights of its links

• Compare output node against some

threshold t

Perceptron

Data Mining 16

x1

x2

xn

.

.

.

w1

w2

wn

w0

o

x0=1

𝑜 𝑥0, … , 𝑥𝑛 =
1 𝑖𝑓

𝑖=0

𝑛

𝑤𝑖𝑥𝑖 > 0

−1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑖=0

𝑛

𝑤𝑖𝑥𝑖

Perceptron

• Perceptron is a Linear Threshold Unit (LTU).

• A perceptron takes a vector of real-valued inputs, calculates a linear combination of
these inputs, then outputs 1 if the result is greater than some threshold and -1
otherwise.

• Given inputs xl through xn, the output o(x1, . . . , xn) computed by the perceptron is:

each wi is a real-valued constant, or weight, that determines the contribution of input
xi to the perceptron output.

• The quantity (-w0) is a threshold that the weighted combination of inputs must
surpass in order for the perceptron to output 1.

– To simplify notation, we imagine an additional constant input x0 = 1

Data Mining 17

Perceptron

Data Mining 18

• Learning a perceptron involves choosing values for weights w0, …,wn.

• A perceptron represents a hyperplane decision surface in the

n-dimensional space of instances.

• The perceptron outputs 1 for instances lying on one side of the hyperplane

and outputs -1 for instances lying on the other side.

• Some sets of positive and negative examples cannot be separated by any

hyperplane.

– Those that can be separated are called linearly separable sets of

examples.

• A single perceptron can be used to represent many boolean functions.

– AND, OR, NAND, NOR are representable by a perceptron

– XOR cannot be representable by a perceptron.

Representational Power of Perceptrons

Data Mining 19

+

+
+

+ -

-

-

-
x1

x2

+

+-

-

x1

x2

Representable by a perceptron NOT representable by a perceptron

Perceptron - Example

Data Mining 20

X Y Out

0 0 0

0 1 1

1 0 1

1 1 1

Give a perceptron to represent OR function.

Perceptron - Example

Data Mining 21

X Y Out

0 0 0

0 1 1

1 0 1

1 1 1

Give a perceptron to represent OR function.

Out is 1 if w0+w1*X+w2*Y > 0 ; 0 otherwise

What will be the weights?

X

Y

1

w1

w2

w0

Out

Perceptron - Example

Data Mining 22

X Y Out

0 0 0

0 1 1

1 0 1

1 1 1

Give a perceptron to represent OR function.

Out is 1 if w0+w1*X+w2*Y > 0 ; 0 otherwise

w0 = -0.5 w1 = 0.7 w2 = 0.7

X

Y

1

w1

w2

w0

Out

Perceptron - Example

Data Mining 23

Give a linear threshold unit (a perceptron) that implements

the following function by giving its weight values.

Perceptron - Example

Data Mining 24

Give a linear threshold unit (a perceptron) that implements

the following function by giving its weight values.

Out is 1 if w0+w1*x+w2*y > 0 ; 0 otherwise

What will be the weights?

x

y

1

w1

w2

w0

Out

Perceptron - Example

Data Mining 25

Give a linear threshold unit (a perceptron) that implements

the following function by giving its weight values.

Out is 1 if w0+w1*x+w2*y > 0 ; 0 otherwise

w0 = 1 w1 = -0.6 w2 = -0.6

x

y

1

w1

w2

w0

Out

Perceptron - Example

Data Mining 26

Give a linear threshold unit (a perceptron) that implements

the following function by giving its weight values.

Perceptron - Example

Data Mining 27

Give a linear threshold unit (a perceptron) that implements

the following function by giving its weight values.

Out is 1 if w0+w1*x+w2*y +w3*z > 0 ; 0 otherwise

What will be the weights?

x

y

1

w1

w2

w0

Out

z w3

Perceptron - Example

Data Mining 28

Give a linear threshold unit (a perceptron) that implements

the following function by giving its weight values.

Out is 1 if w0+w1*x+w2*y +w3*z > 0 ; 0 otherwise

w0 = -0.5 w1 = 0.6 w2 = 0.3 w3=0.3

x

y

1

w1

w2

w0

Out

z w3

Perceptron Training Rule

• To learn an acceptable weight vector is to begin with random weights, then iteratively

apply the perceptron to each training example, modifying the perceptron weights

whenever it misclassifies an example.

– If the training example classifies correctly, weights are not updated.

• This process is repeated, iterating through the training examples as many times as

needed until the perceptron classifies all training examples correctly.

– Each pass through all of the training examples is called one epoch

• Weights are modified at each step according to perceptron training rule

Data Mining 29

Perceptron Training Rule

Data Mining 30

wi = wi + wi

wi = (t - o) xi

t is the target value

o is the perceptron output

 is a small constant (e.g. 0.1) called learning rate

• If the output is correct (t=o) the weights wi are not changed

• If the output is incorrect (to) the weights wi are changed such that

the output of the perceptron for the new weights is closer to t.

• The algorithm converges to the correct classification

• if the training data is linearly separable

• and is sufficiently small

• Weights are modified at each step according to perceptron training rule.

General Structure of ANN

Data Mining 31

Multi-Layer Networks

• Single perceptron can only express linear decision surfaces.

• Multilayer networks are capable of expressing a rich variety of nonlinear decision

surfaces.

Data Mining 32

input layer

hidden layer

output layer

Multi-Layer Networks with Linear Units

Ex. XOR

• Multiple layers of cascaded linear units still produce only linear functions.

Data Mining 33

OR AN
D

x1 x
2

w1=0.5

w1=0.

5
w2=0.

5

w2=0.

5

w1=0.

5
w2= -0.5

w0= -0.25

w0= -0.25

w0= -0.75

OR: 0.5*x1 + 0.5*x2 – 0.25 > 0

AND: 0.5*x1 + 0.5*x2 – 0.75 > 0

XOR: 0.5*x1 - 0.5*x2 – 0.25 > 0

Multi-Layer Networks with Linear Units - Example

• Give an artificial neural network for the following function. Make clear the structure

of your ANN and the used weights.

Data Mining 34

Multi-Layer Networks with Linear Units - Example

Give an artificial neural network for the following function. Make clear the structure of

your ANN and the used weights.

Data Mining 35

Multi-Layer Networks with Linear Units - Example

Data Mining 36

Unit1: w10 = -1 w12 = 0.4 w12 = 0.4

Unit2: w20 = 1 w21 = -0.3 w22 = -0.3

Unit3: w30 = - 0.6 w31 = 0.5 w32 = 0.5 (and function)

x y unit1 unit2 unit3 Classification

1 1 0 1 0 0

1 2 1 1 1 1

2 1 1 1 1 1

2 2 1 0 0 0

Multi-Layer Networks with Non-Linear Units

• Multiple layers of cascaded linear units still produce only linear functions.

• We prefer networks capable of representing highly nonlinear functions.

• What we need is a unit whose output is a nonlinear function of its inputs, but whose

output is also a differentiable function of its inputs.

• One solution is the sigmoid unit, a unit very much like a perceptron, but based on a

smoothed, differentiable threshold function.

Data Mining 37

Algorithm for Learning ANN

• Initialize the weights (w0, w1, …, wk)

• Adjust the weights in such a way that the output of ANN is consistent with class

labels of training examples

– Objective function:

– Find the weights wi’s that minimize the above objective function using

backpropagation algorithm

Data Mining 38

2

),(
i

iii XwfYE

Units of ANN

• Perceptron (Linear Threshold Unit)

• Linear Unit produces continuous output o (not just –1,1)

o = w0 + w1 x1 + … + wn xn

• Sigmoid Unit

Data Mining 39

