# **Association Rule Mining**

### • Frequent Itemsets, Association Rules

- Apriori Algorithm
- Compact Representation of Frequent Itemsets
- FP-Growth Algorithm: An Alternative Frequent Itemset Generation Algorithm
- Evaluation of Association Patterns

## **Frequent Pattern**

- Frequent Pattern: a pattern (a set of items, subsequences, substructures, etc.) that occurs frequently in a data set.
- For example, a set of items, such as milk and bread, that appear frequently together in a transaction data set is a *frequent itemset*.
- A subsequence, such as buying first a PC, then a digital camera, and then a memory card, if it occurs frequently in a shopping history database, is a (*frequent*) *sequential pattern*.
- A substructure can refer to different structural forms, such as subgraphs, subtrees, or sublattices, which may be combined with itemsets or subsequences. If a substructure occurs frequently, it is called a (*frequent*) *structured pattern*.

# Frequent Pattern Market Basket Analysis

- **Frequent Pattern**: a pattern that occurs frequently in a data set.
  - A set of items that appear frequently together in a transaction data set is called as a *frequent itemset*.
- An example of *frequent itemset mining* is **market basket analysis**.
  - This process analyzes customer buying habits by finding associations between the different items that customers place in their "shopping baskets".
  - If we think of the universe as the set of items available at the store, then each item has a Boolean variable representing the presence or absence of that item.
  - Each basket can then be represented by a Boolean vector of values assigned to these variables.
  - The Boolean vectors can be analyzed for buying patterns that reflect items that are frequently associated or purchased together.
  - These *patterns* can be represented in the form of *association rules*.

## **Basic Concepts: Frequent Patterns**

| Tid | Items bought                     |  |
|-----|----------------------------------|--|
| 10  | Beer, Nuts, Diaper               |  |
| 20  | Beer, Coffee, Diaper             |  |
| 30  | Beer, Diaper, Eggs               |  |
| 40  | Nuts, Eggs, Milk                 |  |
| 50  | Nuts, Coffee, Diaper, Eggs, Milk |  |



- itemset: A set of one or more items
  - **k-itemset**  $X = \{x_1, ..., x_k\}$
- (absolute) support of X: Frequency of an itemset X.
  - Absolute Support of {Beer} is 3
- (relative) support of X is the fraction of transactions that contains X (i.e., the probability that a transaction contains X).

Relative Support of {Beer} is 3/5

• An itemset X is **frequent** if **X's support** is no less than a **minsup** threshold.

## **Basic Concepts: Association Rules**

**Association Rule** 

- An implication expression of the form  $X \rightarrow Y$ , where X and Y are itemsets

#### **Association Rule Mining:**

- Find all the rules  $X \rightarrow Y$  with **minimum support** and **minimum confidence** 
  - **support**, probability that a transaction contains  $X \cup Y$ :  $P(X \cup Y)$ 
    - Fraction of transactions that contain both X and Y
  - **confidence**, conditional probability that a transaction having X also contains *Y* :  $P(Y|X) = support(X \cup Y) / support(X)$ 
    - Measures how often items in Y appear in transactions that contain X

## **Basic Concepts: Association Rules**

**Association Rule** 

- An implication expression of the form  $X \rightarrow Y$ , where X and Y are itemsets

#### **Association Rule Mining:**

• Find all the rules  $X \rightarrow Y$  with **minimum support** and **minimum confidence** 

Let minsup = 50%, minconf = 50%

#### **Frequent Pattterns**:

{Beer}:3, {Nuts}:3, {Diaper}:4, {Eggs}:3, {Beer, Diaper}:3

#### **Association Rules**:

- { Beer }  $\rightarrow$  { Diaper } (60\%, 100\%)
- { Diaper }  $\rightarrow$  { Beer } (60%, 75%)

| Tid | Items bought          |
|-----|-----------------------|
| 10  | Beer, Nuts, Diaper    |
| 20  | Beer, Coffee, Diaper  |
| 30  | Beer, Diaper, Eggs    |
| 40  | Nuts, Eggs, Milk      |
| 50  | Nuts, Coffee, Diaper, |
|     | Eggs, Milk            |

# Why Use Support and Confidence?

- **Support** is an important measure because a rule that has very low support may occur simply by chance.
  - A low support rule may be uninteresting from a business perspective because it may not be profitable to promote items that customers seldom buy together
  - For these reasons, support is often used to eliminate uninteresting rules
- **Confidence** measures the reliability of the inference made by a rule.
  - For a given rule  $X \rightarrow Y$ , the higher the confidence, the more likely it is for Y to be present in transactions that contain X.
- Association analysis results should be interpreted with caution.
  - The inference made by an association rule does not necessarily imply causality.
  - Instead, it suggests a strong co-occurrence relationship between items in the antecedent and consequent of the rule.

# **Association Rule Mining Task**

- Given a set of transactions T, the goal of association rule mining is to find all rules having
  - **support** ≥ *minsup* threshold
  - confidence  $\geq$  *minconf* threshold
- Brute-force approach:
  - List all possible association rules
  - Compute the support and confidence for each rule
  - Prune rules that fail the *minsup* and *minconf* thresholds
  - $\Rightarrow$  Computationally not feasible!

# **Mining Association Rules**

| TID | Items                     |
|-----|---------------------------|
| 1   | Bread, Milk               |
| 2   | Bread, Diaper, Beer, Eggs |
| 3   | Milk, Diaper, Beer, Coke  |
| 4   | Bread, Milk, Diaper, Beer |
| 5   | Bread, Milk, Diaper, Coke |

#### Example of Rules:

 $\{ Milk, Diaper \} \rightarrow \{ Beer \}$  (s=0.4, c=0.67)  $\{ Milk, Beer \} \rightarrow \{ Diaper \}$  (s=0.4, c=1.0)  $\{ Diaper, Beer \} \rightarrow \{ Milk \}$  (s=0.4, c=0.67)  $\{ Beer \} \rightarrow \{ Milk, Diaper \}$  (s=0.4, c=0.67)  $\{ Diaper \} \rightarrow \{ Milk, Beer \}$  (s=0.4, c=0.5)  $\{ Milk \} \rightarrow \{ Diaper, Beer \}$  (s=0.4, c=0.5)

#### **Observations:**

- All the above rules are binary partitions of the same itemset: {Milk, Diaper, Beer}
- Rules originating from the same itemset have identical support but can have different confidence
- Thus, we may decouple the support and confidence requirements

# **Association Rule Mining**

- The problem of mining association rules can be reduced to that of mining frequent itemsets.
- In general, association rule mining can be viewed as a *two-step process*:
  - 1. Find all frequent itemsets: By definition, each of these itemsets will occur at least as frequently as a predetermined minimum support count, minsup.
    - Generate all itemsets whose **support**  $\geq$  **minsup**
  - 2. Generate strong association rules from the frequent itemsets: By definition, these rules must satisfy minimum support and minimum confidence.
    - Generate high confidence rules from each frequent itemset, where each rule is a binary partitioning of a frequent itemset
  - Frequent itemset generation is still computationally expensive

## **Association Rules - Example**

| Transactions |
|--------------|
| A,B,D        |
| A,B,C,D      |
| А            |
| A,B,C        |
| B,C          |
| В            |

- minsup = 0.5 minconf=0.7
- Find frequent itemsets and association rules satisfying minsup and minconf.

### **Association Rules - Example**

| Transactions |
|--------------|
| A,B,D        |
| A,B,C,D      |
| А            |
| A,B,C        |
| B,C          |
| В            |

minsup = 0.5 minconf=0.7

• Find frequent itemsets and association rules satisfying minsup and minconf.

**Frequent Itemsets:** 

- 1-itemsets: {A} support({A}) = 4/6 {B} support({B}) = 5/6 {C} support({C}) = 3/6 2-itemsets: {A,B} support({A,B}) = 3/6 {B,C} support({B,C}) = 3/6 Association Rules:  $A \rightarrow B$  conf( $A \rightarrow B$ ) = 3/4
  - $C \rightarrow B$  conf( $C \rightarrow B$ ) = 3/3

### **Frequent Itemset Generation**



Data Mining

## **Frequent Itemset Generation**

- Brute-force approach:
  - Each itemset in the lattice is a candidate frequent itemset
  - Count the support of each candidate by scanning the database



- Match each transaction against every candidate
- Complexity ~ O(NMW) => Expensive since  $M = 2^d !!!$

### **Computational Complexity**

- Given d unique items:
  - Total number of itemsets =  $2^d$
  - Total number of possible association rules:



$$R = \sum_{k=1}^{d-1} \left[ \begin{pmatrix} d \\ k \end{pmatrix} \times \sum_{j=1}^{d-k} \begin{pmatrix} d-k \\ j \end{pmatrix} \right]$$
$$= 3^{d} - 2^{d+1} + 1$$

If d=6, R = 602 rules

## **Frequent Itemset Generation Strategies**

- Reduce the number of candidates (M)
  - Complete search: M=2<sup>d</sup>
  - Use pruning techniques to reduce M
  - The **Apriori principle** is an effective way to eliminate some of the candidate itemsets without counting their support values.
- Reduce the number of comparisons (NM)
  - Use efficient data structures to store the candidates or transactions
  - No need to match every candidate against every transaction
- Reduce the number of transactions (N)
  - Reduce size of N as the size of itemset increases

- Frequent Itemsets, Association Rules
- Apriori Algorithm
- Compact Representation of Frequent Itemsets
- FP-Growth Algorithm: An Alternative Frequent Itemset Generation Algorithm
- Evaluation of Association Patterns

# Reducing Number of Candidates Apriori Principle

• Apriori Principle: If an itemset is frequent, then all of its subsets must also be frequent.

• Apriori principle holds due to the following property of the support measure:

 $\forall X, Y : (X \subseteq Y) \Longrightarrow s(X) \ge s(Y)$ 

- Support of an itemset never exceeds the support of its subsets
- This is known as the anti-monotone property of support



| TID | Items                     |
|-----|---------------------------|
| 1   | Bread, Milk               |
| 2   | Beer, Bread, Diaper, Eggs |
| 3   | Beer, Coke, Diaper, Milk  |
| 4   | Beer, Bread, Diaper, Milk |
| 5   | Bread, Coke, Diaper, Milk |



#### Items (1-itemsets)

| ltem   | Count |
|--------|-------|
| Bread  | 4     |
| Coke   | 2     |
| Milk   | 4     |
| Beer   | 3     |
| Diaper | 4     |
| Eggs   | 1     |

#### Minimum Support = 3

If every subset is considered,  ${}^{6}C_{1} + {}^{6}C_{2} + {}^{6}C_{3}$  6 + 15 + 20 = 41With support-based pruning, 6 + 6 + 4 = 16

#### **Generate 1-itemset candidates**

| TID | Items                     |
|-----|---------------------------|
| 1   | Bread, Milk               |
| 2   | Beer, Bread, Diaper, Eggs |
| 3   | Beer, Coke, Diaper, Milk  |
| 4   | Beer, Bread, Diaper, Milk |
| 5   | Bread, Coke, Diaper, Milk |



#### Items (1-itemsets)

| Item   | Count |
|--------|-------|
| Bread  | 4     |
| Coke   | 2     |
| Milk   | 4     |
| Beer   | 3     |
| Diaper | 4     |
| Eggs   | 1     |

#### Minimum Support = 3

If every subset is considered,  ${}^{6}C_{1} + {}^{6}C_{2} + {}^{6}C_{3}$  6 + 15 + 20 = 41With support-based pruning, 6 + 6 + 4 = 16

#### **Eliminate infrequent 1-itemset candidates**

| ltem   | Count |
|--------|-------|
| Bread  | 4     |
| Coke   | 2     |
| Milk   | 4     |
| Beer   | 3     |
| Diaper | 4     |
| Eggs   | 1     |

Items (1-itemsets)



Pairs (2-itemsets)

(No need to generate candidates involving Coke or Eggs)

Minimum Support = 3

If every subset is considered,  ${}^{6}C_{1} + {}^{6}C_{2} + {}^{6}C_{3}$  6 + 15 + 20 = 41With support-based pruning, 6 + 6 + 4 = 16 **Generate 2-itemset candidates** 

| ltem   | Count |
|--------|-------|
| Bread  | 4     |
| Coke   | 2     |
| Milk   | 4     |
| Beer   | 3     |
| Diaper | 4     |
| Eggs   | 1     |

#### Items (1-itemsets)

| Itemset        | Count |
|----------------|-------|
| {Bread,Milk}   | 3     |
| {Beer, Bread}  | 2     |
| {Bread,Diaper} | 3     |
| {Beer,Milk}    | 2     |
| {Diaper,Milk}  | 3     |
| {Beer,Diaper}  | 3     |

#### Pairs (2-itemsets)

(No need to generate candidates involving Coke or Eggs)

Minimum Support = 3

#### **Eliminate infrequent 2-itemset candidates**

If every subset is considered,  ${}^{6}C_{1} + {}^{6}C_{2} + {}^{6}C_{3}$  6 + 15 + 20 = 41With support-based pruning, 6 + 6 + 4 = 16

| ltem   | Count |
|--------|-------|
| Bread  | 4     |
| Coke   | 2     |
| Milk   | 4     |
| Beer   | 3     |
| Diaper | 4     |
| Eggs   | 1     |

#### Items (1-itemsets)

| Itemset        | Count |
|----------------|-------|
| {Bread,Milk}   | 3     |
| {Bread,Beer}   | 2     |
| {Bread,Diaper} | 3     |
| {Milk,Beer}    | 2     |
| {Milk,Diaper}  | 3     |
| {Beer,Diaper}  | 3     |

#### Pairs (2-itemsets)

(No need to generate candidates involving Coke or Eggs)

Triplets (3-itemsets)

Minimum Support = 3





#### **Generate 3-itemset candidates**

| ltem   | Count |
|--------|-------|
| Bread  | 4     |
| Coke   | 2     |
| Milk   | 4     |
| Beer   | 3     |
| Diaper | 4     |
| Eggs   | 1     |

#### Items (1-itemsets)

| Itemset        | Count |
|----------------|-------|
| {Bread,Milk}   | 3     |
| {Bread,Beer}   | 2     |
| {Bread,Diaper} | 3     |
| {Milk,Beer}    | 2     |
| {Milk,Diaper}  | 3     |
| {Beer,Diaper}  | 3     |

#### Pairs (2-itemsets)

(No need to generate candidates involving Coke or Eggs)

Triplets (3-itemsets)

Minimum Support = 3

If every subset is considered,  ${}^{6}C_{1} + {}^{6}C_{2} + {}^{6}C_{3}$  6 + 15 + 20 = 41With support-based pruning, 6 + 6 + 4 = 166 + 6 + 1 = 13



Prune 3-itemset candidates with infrequent 2-itemsets Eliminate infrequent 3-itemset candidates

### **Apriori Algorithm:** Finding Frequent Itemsets Using Candidate Generation

• <u>Apriori pruning principle</u>: If there is any itemset which is infrequent, its superset should not be generated/tested!

#### **Apriori Algorithm:** $F_k$ : frequent k-itemsets $L_k$ : candidate k-itemsets

- Let k=1
- Generate  $F_1 = \{ \text{frequent 1-itemsets} \}$
- Repeat until  $F_k$  is empty
  - Candidate Generation: Generate  $L_{k+1}$  from  $F_k$
  - Candidate Pruning: Prune candidate itemsets in  $L_{k+1}$  containing subsets of length k that are infrequent
  - Support Counting: Count the support of each candidate in  $L_{k+1}$  by scanning the DB
  - Candidate Elimination: Eliminate candidates in  $L_{k+1}$  that are infrequent, leaving only those that are frequent =>  $F_{k+1}$

### **Apriori Algorithm:** Candidate Generation: $F_{k-1} \times F_{k-1}$ Method

- Merge two frequent (k-1)-itemsets if their first (k-2) items are identical
- $F_3 = \{ABC, ABD, ABE, ACD, BCD, BDE, CDE\}$ 
  - Merge( $\underline{AB}C$ ,  $\underline{AB}D$ ) =  $\underline{AB}CD$
  - Merge( $\underline{AB}C$ ,  $\underline{AB}E$ ) =  $\underline{AB}CE$
  - Merge( $\underline{AB}D$ ,  $\underline{AB}E$ ) =  $\underline{AB}DE$
  - Do not merge(<u>ABD,ACD</u>) because they share only prefix of length 1 instead of length 2
- $L_4 = \{ABCD, ABCE, ABDE\}$  is the set of candidate 4-itemsets generated

### **Apriori Algorithm:** Candidate Pruning

- Let  $F_3 = \{ABC, ABD, ABE, ACD, BCD, BDE, CDE\}$  be the set of frequent 3-itemsets
- $L_4 = \{ABCD, ABCE, ABDE\}$  is the set of candidate 4-itemsets generated
- Candidate pruning
  - Prune ABCE because ACE and BCE are infrequent
  - Prune ABDE because ADE is infrequent
- After candidate pruning:  $L_4 = \{ABCD\}$

### **Apriori Algorithm:** Support Counting of Candidate Itemsets

- Scan the database of transactions to determine the support of each candidate itemset
  - Must match every candidate itemset against every transaction, which is an expensive operation
- To reduce the number of comparisons, store the candidates in a hash structure
  - Instead of matching each transaction against every candidate, match it against candidates contained in the hashed buckets



# **Apriori Algorithm**

Algorithm: Apriori. Find frequent itemsets using an iterative level-wise approach based on candidate generation.

#### Input:

- D, a database of transactions;
- min\_sup, the minimum support count threshold.

#### Output: L, frequent itemsets in D.

#### Method:

```
L_{1} = \text{find\_frequent\_1-itemsets(D)};
for (k = 2; L_{k-1} \neq \phi; k++) {
C_{k} = \text{apriori\_gen}(L_{k-1});
for each transaction t \in D { // scan D for counts
C_{t} = \text{subset}(C_{k}, t); // get the subsets of t that are candidates
for each candidate c \in C_{t}
c.count++;
}
L_{k} = \{c \in C_{k} | c.count \ge min\_sup\}
}
return L = \bigcup_{k} L_{k};
```

## **Apriori Algorithm**

```
procedure apriori_gen(L_{k-1}:frequent (k-1)-itemsets)

for each itemset l_1 \in L_{k-1}

for each itemset l_2 \in L_{k-1}

if (l_1[1] = l_2[1]) \land (l_1[2] = l_2[2])

\land ... \land (l_1[k-2] = l_2[k-2]) \land (l_1[k-1] < l_2[k-1]) then {

c = l_1 \bowtie l_2; // join step: generate candidates

if has_infrequent_subset(c, L_{k-1}) then

delete c; // prune step: remove unfruitful candidate

else add c to C_k;

}

return C_k;
```

```
procedure has_infrequent_subset(c: candidate k-itemset;

L_{k-1}: frequent (k-1)-itemsets); // use prior knowledge

for each (k-1)-subset s of c

if s \notin L_{k-1} then

return TRUE;

return FALSE;
```

### **Apriori Algorithm - An Example**



# **Support Counting Using Hash Tree**

- Why counting supports of candidates a problem?
  - The total number of candidates can be very huge
  - One transaction may contain many candidates
  - Must match every candidate itemset against every transaction, which is an expensive operation
- Method:
  - Candidate itemsets are stored in a *hash-tree*
  - *Leaf* node of hash-tree contains a list of itemsets and counts
  - Interior node contains a hash table
  - *Subset function*: finds all the candidates contained in a transaction

### Support Counting Using Hash Tree Subset Operation

• Enumerating subsets of three items from a transaction t



### Support Counting Using Hash Tree Generate Candidate Hash Tree

- Suppose you have 15 candidate itemsets of length 3: {1 4 5}, {1 2 4}, {4 5 7}, {1 2 5}, {4 5 8}, {1 5 9}, {1 3 6}, {2 3 4}, {5 6 7}, {3 4 5}, {3 5 6}, {3 5 7}, {6 8 9}, {3 6 7}, {3 6 8}
- We need: Hash function
  - HashFunc: mod 3





#### Support Counting Using Hash Tree Generate Candidate Hash Tree



#### **Support Counting Using Hash Tree** Traverse Candidate Hash Tree to Update Support Counts





#### **Support Counting Using Hash Tree** Traverse Candidate Hash Tree to Update Support Counts



#### **Support Counting Using Hash Tree** Traverse Candidate Hash Tree to Update Support Counts



# **Factors Affecting Complexity of Apriori Algorithm**

- Choice of minimum support threshold
  - lowering support threshold results in more frequent itemsets
  - this may increase number of candidates and max length of frequent itemsets

#### • Dimensionality (number of items) of the data set

- more space is needed to store support count of each item
- if number of frequent items also increases, both computation and I/O costs may also increase

#### • Size of database

since Apriori makes multiple passes, run time of algorithm may increase with number of transactions

#### Average transaction width

- transaction width increases with denser data sets
- This may increase max length of frequent itemsets and number of subsets in a transaction increases with its width

# **Effect of Support Threshold**

• Effect of support threshold on the number of candidate and frequent itemsets



Number of candidate itemsets

Number of frequent itemsets

#### **Effect of Average Transaction Width**

• Effect of average transaction width on the number of candidate and frequent itemsets



# **Effect of Support Distribution**

- How to set the appropriate *minsup* threshold?
  - If *minsup* is set too high, we could miss itemsets involving interesting rare items (e.g., expensive products)
  - If *minsup* is set too low, it is computationally expensive and the number of itemsets is very large
- Using a single minimum support threshold may not be effective

# **Multiple Minimum Support**

- How to apply multiple minimum supports?
  - MS(i): minimum support for item i
  - e.g.: MS(Milk)=5%, MS(Coke)=3%, MS(Broccoli)=0.1%, MS(Salmon)=0.5%
  - $MS({Milk, Broccoli}) = min (MS(Milk), MS(Broccoli))$ = 0.1%
  - Challenge: Support is no longer anti-monotone
    - Suppose: Support(Milk, Coke) = 1.5% and Support(Milk, Coke, Broccoli) = 0.5%
    - {Milk,Coke} is infrequent but {Milk,Coke,Broccoli} is frequent

# **Multiple Minimum Support**

- Order the items according to their minimum support (in ascending order)
  - e.g.: MS(Milk)=5%, MS(Coke) = 3%, MS(Broccoli)=0.1%, MS(Salmon)=0.5%
  - Ordering: Broccoli, Salmon, Coke, Milk
- Need to modify Apriori such that:
  - L<sub>1</sub>: set of frequent items
  - $F_1$ : set of items whose support is  $\ge$  MS(1) where MS(1) is min<sub>i</sub>(MS(i))
  - $C_2$ : candidate itemsets of size 2 is generated from  $F_1$  instead of  $L_1$

# **Multiple Minimum Support**

- Modifications to Apriori:
  - In traditional Apriori,
    - A candidate (k+1)-itemset is generated by merging two frequent itemsets of size k
    - The candidate is pruned if it contains any infrequent subsets of size k
  - Pruning step has to be modified:
    - Prune only if subset contains the first item
    - e.g.: Candidate={Broccoli, Coke, Milk} (ordered according to minimum support)
    - {Broccoli, Coke} and {Broccoli, Milk} are frequent but {Coke, Milk} is infrequent
      - Candidate is not pruned because {Coke,Milk} does not contain the first item, i.e., Broccoli.

# **Rule Generation in Apriori Algorithm**

- Given a frequent itemset L, find all non-empty subsets  $\mathbf{f} \subset \mathbf{L}$  such that candidate rule  $\mathbf{f} \rightarrow \mathbf{L} \mathbf{f}$  satisfies the minimum confidence requirement
  - If {A,B,C,D} is a frequent itemset, candidate rules:

|   | $\begin{array}{c} ABD \rightarrow C \\ C \rightarrow ABD \end{array}$ | $\begin{array}{c} ACD \rightarrow B \\ B \rightarrow ACD \end{array}$ | <br>9 |
|---|-----------------------------------------------------------------------|-----------------------------------------------------------------------|-------|
| / | $AC \rightarrow BD$<br>$BD \rightarrow AC$                            | $\begin{array}{c} AD \rightarrow BC \\ BC \rightarrow AD \end{array}$ |       |

• If |L| = k, then there are  $2^k - 2$  candidate association rules - (ignoring  $L \rightarrow \emptyset$  and  $\emptyset \rightarrow L$ )

# **Rule Generation in Apriori Algorithm**

- How to efficiently generate rules from frequent itemsets?
- In general, confidence does not have an anti-monotone property c(ABC→D) can be larger or smaller than c(AB→D)
- But confidence of rules generated from the same itemset has an anti-monotone property
  - E.g., Suppose {A,B,C,D} is a frequent 4-itemset:

 $c(ABC \rightarrow D) \ge c(AB \rightarrow CD) \ge c(A \rightarrow BCD)$ 

- Confidence is anti-monotone w.r.t. number of items on the RHS of the rule

#### **Rule Generation in Apriori Algorithm**



- Frequent Itemsets, Association Rules
- Apriori Algorithm
- Compact Representation of Frequent Itemsets
- FP-Growth Algorithm: An Alternative Frequent Itemset Generation Algorithm
- Evaluation of Association Patterns

# **Compact Representation of Frequent Itemsets**

- The number of frequent itemsets produced from a transaction data set can be very large.
- Some produced itemsets can be redundant because they have identical support as their supersets
- It is useful to identify a small representative set of itemsets from which all other frequent itemsets can be derived. → Need a compact representation
  - Maximal Frequent Itemsets and
  - Closed Frequent Itemsets

# **Maximal Frequent Itemsets**

**Maximal Frequent Itemset:** A maximal frequent itemset is defined as a frequent itemset for which none of its immediate supersets are frequent.

- Maximal frequent itemsets effectively provide a compact representation of frequent itemsets.
- Maximal frequent itemsets form the smallest set of itemsets from which all frequent itemsets can be derived.

#### **Maximal Frequent Itemsets**



# **Maximal Frequent Itemsets**

- Despite providing a compact representation, maximal frequent itemsets do not contain the support information of their subsets.
- For example, the support of the maximal frequent itemsets {a, c, e}, {a, d}, and {b,c,d,e} do not provide any hint about the support of their subsets.
- An additional pass over the data set is therefore needed to determine the support counts of the non-maximal frequent itemsets.
- It might be desirable to have a minimal representation of frequent itemsets that preserves the support information. → Closed Frequent Itemsets

## **Closed Frequent Itemsets**

**Closed Itemset:** An itemset X is **closed** if none of its immediate supersets has exactly the same support count as X.

- **Closed itemsets** provide a minimal representation of itemsets without losing their support information.
- Put another way, X is not closed if at least one of its immediate supersets has the same support count as X.

**Closed Frequent Itemset:** An itemset is a closed frequent itemset if it is closed and its support is greater than or equal to *minsup*.

#### **Closed Frequent Itemsets**



All subsets of a closed frequent itemset are frequent and their supports is greater than or equal to the support of that closed frequent itemset.

For example, all subsets of a closed frequent itemset **abc** are frequent and their supports  $\geq$  support of **abc**.

#### **Maximal vs Closed Itemsets**



#### **Maximal vs Closed Itemsets**



- Frequent Itemsets, Association Rules
- Apriori Algorithm
- Compact Representation of Frequent Itemsets
- FP-Growth Algorithm: An Alternative Frequent Itemset Generation Algorithm
- Evaluation of Association Patterns

# **FP-Growth (Frequent Pattern Growth) Algorithm**

- **FP-growth algorithm** that takes a radically different approach to discovering frequent itemsets.
  - The algorithm does not subscribe to the generate-and-test paradigm of Apriori
- **FP-growth algorithm** encodes the data set using a compact data structure called an **FP-tree** and extracts frequent itemsets directly from this structure.
  - Use a compressed representation of the database using an FP-tree
  - Once an FP-tree has been constructed, it uses a recursive divide-and-conquer approach to mine the frequent itemsets

- An FP-tree is a compressed representation of the input data.
- It is constructed by reading the data set one transaction at a time and mapping each transaction onto a path in the FP-tree.
  - Different transactions can have several items in common, their paths may overlap.
  - The more the paths overlap with one another, the more compression we can achieve using the FP-tree structure.

- Each node in the tree contains the label of an item along with a counter that shows the number of transactions mapped onto the given path.
  - Initially, the FP-tree contains only the root node represented by the null symbol.
  - Every transaction maps onto one of the paths in the FP-tree.
- The size of an FP-tree is typically smaller than the size of the uncompressed data because many transactions in market basket data often share a few items in common.
  - best-case scenario, all transactions have same set of items

 $\rightarrow$  FP-tree contains only a single branch.

- − worst-case scenario happens when every transaction has a unique set of items
   → FP-tree is effectively the same as the size of the original data.
- physical storage requirement for FP-tree is higher because it requires additional space to store pointers between nodes and counters for each item.

| TID | Items         | After reading TID=1:                                  |
|-----|---------------|-------------------------------------------------------|
| 1   | {A,B}         |                                                       |
| 2   | $\{B,C,D\}$   | null                                                  |
| 3   | $\{A,C,D,E\}$ |                                                       |
| 4   | $\{A, D, E\}$ | A:1                                                   |
| 5   | $\{A,B,C\}$   |                                                       |
| 6   | $\{A,B,C,D\}$ |                                                       |
| 7   | {B,C}         | After reading TID=3:                                  |
| 8   | $\{A,B,C\}$   | null                                                  |
| 9   | {A,B,D}       |                                                       |
| 10  | {B,C,E}       | $B:1 \qquad \text{null} \bigcirc$                     |
|     |               | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |
|     |               | $E:1\bigcirc$                                         |

D:1

C:1



# **Frequent Itemset Generation in FP-Growth Algorithm**

- FP-growth is an algorithm that generates frequent itemsets from an FP-tree by exploring the tree in a bottom-up fashion.
  - This bottom-up strategy for finding frequent itemsets ending with a particular item is equivalent to the suffix-based approach
  - Since every transaction is mapped onto a path in the FP-tree, we can derive the frequent itemsets ending with a particular item, say **e**, by examining only the paths containing node **e**.
  - The algorithm looks for frequent itemsets ending in **e** first, followed by **d**, **c**, **b**, and finally, **a**.
- FP-growth finds all the frequent itemsets ending with a particular suffix by employing a divide-and-conquer strategy to split the problem into smaller subproblems.
  - To find all frequent itemsets ending in  $\mathbf{e}$ , we must first check whether the itemset  $\{\mathbf{e}\}$  itself is frequent.
  - If it is frequent, we consider the subproblem of finding frequent itemsets ending in **de**, followed by **ce**, **be**, and **ae**.
  - In turn, each of these subproblems are further decomposed into smaller subproblems.
  - By merging the solutions obtained from the subproblems, all the frequent itemsets ending in e can be found.

# Finding Frequent Itemsets Ending with e

- 1. The first step is to gather all the paths containing node **e**. These initial paths are called *prefix paths*
- 2. From the prefix paths, the support count for **e** is obtained by adding the support counts associated with node **e**. Assuming that the minimum support count is 2, {**e**} is declared a frequent itemset because its support count is 3.
- 3. Because **{e}** is frequent, the algorithm has to solve the subproblems of finding frequent itemsets ending in **de**, **ce**, **be**, and **ae**. Before solving these subproblems, it must first convert the prefix paths into a *conditional FP-tree*, which is structurally similar to an FP-tree, except it is used to find frequent itemsets ending with a particular suffix.
  - First, the support counts along the prefix paths must be updated because some of the counts include transactions that do not contain item e.
  - The prefix paths are truncated by removing the nodes for **e**.
  - After updating the support counts along the prefix paths, some of the items may no longer be frequent
    - the node b appears only once and has a support count equal to 1, which means that there is only one transaction that contains both b and e. Item b can be safely ignored from subsequent analysis because all itemsets ending in be must be infrequent.
- 4. FP-growth uses the conditional FP-tree for **e** to solve the subproblems of finding frequent itemsets ending in **de**, **ce**, and **ae**.

### **Prefix Paths Ending with e**

| TID | ltems         |
|-----|---------------|
| 1   | {A,B}         |
| 2   | {B,C,D}       |
| 3   | $\{A,C,D,E\}$ |
| 4   | $\{A, D, E\}$ |
| 5   | {A,B,C}       |
| 6   | $\{A,B,C,D\}$ |
| 7   | {B,C}         |
| 8   | {A,B,C}       |
| 9   | {A,B,D}       |
| 10  | {B,C,E}       |



# **Conditional FP-Tree for e**



- e is frequent (support=3), Remove e nodes from prefix paths
- Remove infrequent nodes



C:1

D:1

D:1

#### **Conditional FP-Tree for de**



#### **Conditional FP-Tree for ce**



Prefix Paths Ending with ce



**ce** is frequent (support=2)



#### **Conditional FP-Tree for ae**

| -        |               |    |  |  |
|----------|---------------|----|--|--|
| TID      | Items         | C  |  |  |
| 1        | {A,B}         |    |  |  |
| 2        | {B,C,D}       |    |  |  |
| 3        | $\{A,C,D,E\}$ |    |  |  |
| 4        | {A,D,E}       | Δ  |  |  |
| 5        | {A,B,C}       | A: |  |  |
| 6        | $\{A,B,C,D\}$ |    |  |  |
| 7        | {B,C}         |    |  |  |
| 8        | {A,B,C}       |    |  |  |
| 9        | {A,B,D}       |    |  |  |
| 10       | {B,C,E}       |    |  |  |
| minsup=2 |               |    |  |  |



Prefix Paths Ending with ae



**ae** is frequent (support=2)

Conditional FP-Tree for ae null (

### **Frequent Itemsets Ordered by Suffixes**

| TID | ltems         |
|-----|---------------|
| 1   | {A,B}         |
| 2   | {B,C,D}       |
| 3   | $\{A,C,D,E\}$ |
| 4   | {A,D,E}       |
| 5   | {A,B,C}       |
| 6   | ${A,B,C,D}$   |
| 7   | {B,C}         |
| 8   | {A,B,C}       |
| 9   | {A,B,D}       |
| 10  | {B,C,E}       |
| mi  | nsun=2        |

| Suffix | Frequent Itemsets                                                   |
|--------|---------------------------------------------------------------------|
| E      | $\{E\}, \{D,E\}, \{A,D,E\}, \{C,E\}, \{A,E\},$                      |
| D      | $\{D\}, \{C,D\}, \{B,C,D\}, \{A,C,D\}, \{B,D\}, \{A,B,D\}, \{A,D\}$ |
| C      | $\{C\}, \{B,C\}, \{A,B,C\}, \{A,C\}$                                |
| В      | $\{B\}, \{A,B\}$                                                    |
| A      | {A}                                                                 |



- Frequent Itemsets, Association Rules
- Apriori Algorithm
- Compact Representation of Frequent Itemsets
- FP-Growth Algorithm: An Alternative Frequent Itemset Generation Algorithm
- Evaluation of Association Patterns

### **Evaluation of Association Patterns**

- Association rule algorithms tend to produce too many rules
  - many of them are *uninteresting* or *redundant*
  - $\{A,B\} \rightarrow \{D\}$  is *Redundant* if  $\{A,B,C\} \rightarrow \{D\}$  and  $\{A,B\} \rightarrow \{D\}$ have same support & confidence
  - An association rule  $X \rightarrow Y$  is **redundant** if there exists another rule  $X' \rightarrow Y'$ , where X is a subset of X' and Y is a subset of Y', such that the support and confidence for both rules are identical.
- *Interestingness measure* can be used to prune/rank the derived patterns
- In the original formulation of association rules, support & confidence are the only measures used

### **Computing Interestingness Measure**

• Given a rule  $X \rightarrow Y$ , information needed to compute rule interestingness can be obtained from a contingency table

**Contingency table** for  $X \rightarrow Y$ 

|   | Y               | Y               |                 |
|---|-----------------|-----------------|-----------------|
| Х | f <sub>11</sub> | f <sub>10</sub> | f <sub>1+</sub> |
| x | f <sub>01</sub> | f <sub>00</sub> | <u>f</u> ₀+     |
|   | f <sub>+1</sub> | f <sub>+0</sub> | T               |

 $\begin{array}{l} f_{11}\text{: support of }X \text{ and }Y\\ f_{10}\text{: support of }X \text{ and }\overline{Y}\\ f_{01}\text{: support of }\overline{X} \text{ and }\underline{Y}\\ f_{00}\text{: support of }\overline{X} \text{ and }\overline{Y} \end{array}$ 

#### **Drawback of Confidence**

|     | Coffee | Coffee |     |
|-----|--------|--------|-----|
| Tea | 15     | 5      | 20  |
| Tea | 75     | 5      | 80  |
|     | 90     | 10     | 100 |

Association Rule: Tea  $\rightarrow$  Coffee

Confidence= P(Coffee|Tea) = 0.75 = support({Tea,Coffee}) / support({Tea})

but P(Coffee) = 0.9

- $\Rightarrow$  Although confidence is high, rule is misleading
- $\Rightarrow$  P(Coffee|Tea) = 0.9375

#### **Measure for Association Rules**

- So, what kind of rules do we really want?
  - Confidence( $X \rightarrow Y$ ) should be sufficiently high
    - To ensure that people who buy X will more likely buy Y than not buy Y
  - Confidence( $X \rightarrow Y$ ) > support(Y)
    - Otherwise, rule will be misleading because having item X actually reduces the chance of having item Y in the same transaction
    - Is there any measure that capture this constraint?
      - Answer: Yes. There are many of them.

#### **Statistical Independence**

- Population of 1000 students
  - 600 students know how to swim (S)
  - 700 students know how to bike (B)
  - 420 students know how to swim and bike (S,B)
  - $P(S \land B) = 420/1000 = 0.42$
  - $P(S) \times P(B) = 0.6 \times 0.7 = 0.42$
  - $P(S \land B) = P(S) \times P(B) =>$  Statistical independence
  - $P(S \land B) > P(S) \times P(B) =>$  Positively correlated
  - $P(S \land B) < P(S) \times P(B) =>$  Negatively correlated

#### **Statistical-Based Measures for Interestingness**

- Statistical-Based Measures use statistical dependence information.
- Two of them are **Lift** and **Interest** (they are equal).

Lift = P(Y|X) / P(Y)Interest = P(X,Y) / P(X) P(Y)

 $Lift(A,B) = conf(A \rightarrow B) / support(B)$ = support(A \cup B) / support(A) support(B) Interest(A,B) = support(A \cup B) / support(A) support(B)

 $Interest(A,B) \begin{cases} = 1 & if A and B are independent \\ > 1 & if A and B are positively correlated \\ < 1 & if A and B are negatively correlated \end{cases}$ 

### **Example: Lift/Interest**

|     | Coffee | Coffee |     |
|-----|--------|--------|-----|
| Tea | 15     | 5      | 20  |
| Tea | 75     | 5      | 80  |
|     | 90     | 10     | 100 |

Association Rule: Tea  $\rightarrow$  Coffee

Confidence= P(Coffee|Tea) = 0.75 = support({Tea,Coffee}) / support({Tea})

but P(Coffee) = 0.9

 $\rightarrow$  Lift = 0.75/0.9 = 0.8333 (< 1, therefore is negatively correlated)

### **Example: Lift/Interest**

- *play basketball*  $\Rightarrow$  *eat cereal* [40%, 66.7%] is misleading
  - The overall % of students eating cereal is 75% > 66.7%.
- *play basketball*  $\Rightarrow$  *not eat cereal* [20%, 33.3%] is more accurate, although with lower support and confidence

|            | Basketball | Not basketball | Sum (row) |
|------------|------------|----------------|-----------|
| Cereal     | 2000       | 1750           | 3750      |
| Not cereal | 1000       | 250            | 1250      |
| Sum(col.)  | 3000       | 2000           | 5000      |

 $lift(B,C) = \frac{2000/5000}{3000/5000*3750/5000} = 0.89$  $lift(B,\neg C) = \frac{1000/5000}{3000/5000*1250/5000} = 1.33$ 

# **Limitations of Interest Factor**

• We expect the words *data* and *mining* to appear together more frequently than the words *compiler* and *mining* in a collection of computer science articles.

|                | p   | $\overline{p}$ |      |                | r  | $\overline{r}$ |      |
|----------------|-----|----------------|------|----------------|----|----------------|------|
| q              | 880 | 50             | 930  | s              | 20 | 50             | 70   |
| $\overline{q}$ | 50  | 20             | 70   | $\overline{s}$ | 50 | 880            | 930  |
|                | 930 | 70             | 1000 |                | 70 | 930            | 1000 |

Contingency tables for word pairs { p,q} and { r,s}.

- The interest factor for  $\{p,q\}$  is 1.02 and for  $\{r, s\}$  is 4.08.
  - Although p and q appear together in 88% of the documents, their interest factor is close to 1, which is the value when p and q are statistically independent.
  - On the other hand, the interest factor for  $\{r, s\}$  is higher than  $\{p, q\}$  even though r and s seldom appear together in the same document.
  - Confidence is perhaps the better choice in this situation because it considers the association between p and q (94.6%) to be much stronger than that between r and s (28.6%).

# Different Measures

- There are lots of measures proposed in the literature
- Some measures are good for certain applications, but not for others
- What criteria should we use to determine whether a measure is good or bad?

| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                        | )                                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                         | <u>)</u>                               |
| $\begin{array}{l lllllllllllllllllllllllllllllllllll$                                                                                                                                                          |                                        |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                        |                                        |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                        |                                        |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                        |                                        |
| 8 J-Measure (J) $\max\left(P(A,B)\log(\frac{P(B A)}{P(B)}) + P(A\overline{B})\log(\frac{P(\overline{B} A)}{P(\overline{B})})\right),$                                                                          |                                        |
| 8 J-Measure (J) $\max\left(P(A,B)\log(\frac{P(B A)}{P(B)}) + P(A\overline{B})\log(\frac{P(\overline{B} A)}{P(\overline{B})})\right),$                                                                          |                                        |
| $P(A,B)\log(\frac{P(A B)}{P(A)}) + P(\overline{A}B)\log(\frac{P(\overline{A} B)}{P(\overline{A})})\Big)$                                                                                                       |                                        |
|                                                                                                                                                                                                                |                                        |
| 9 Gini index (G) $\max \left( P(A)[P(B A)^2 + P(\overline{B} A)^2] + P(\overline{A})[P(B \overline{A})^2 + P(\overline{A})] \right)$                                                                           | $\overline{B} \overline{A}\rangle^2$ ] |
| $-P(B)^2 - P(\overline{B})^2,$                                                                                                                                                                                 |                                        |
| $P(B)[P(A B)^{2} + P(\overline{A} B)^{2}] + P(\overline{B})[P(A \overline{B})^{2} + P(\overline{A} B)^{2}]$                                                                                                    | $[ \overline{B}\rangle^2]$             |
| $-P(A)^2 - P(\overline{A})^2$                                                                                                                                                                                  |                                        |
| 10 Support (s) $P(A,B)$                                                                                                                                                                                        |                                        |
| 11 Confidence (c) $\max(P(B A), P(A B))$                                                                                                                                                                       |                                        |
| 12 Laplace (L) $\max\left(\frac{NP(A,B)+1}{NP(A)+2}, \frac{NP(A,B)+1}{NP(B)+2}\right)$                                                                                                                         |                                        |
| 13 Conviction (V) $\max\left(\frac{P(A)P(\overline{B})}{P(A\overline{B})}, \frac{P(B)P(\overline{A})}{P(B\overline{A})}\right)$                                                                                |                                        |
| 14 Interest (I) $\frac{P(A,B)}{P(A)P(B)}$                                                                                                                                                                      |                                        |
| 15 cosine (IS) $\frac{P(A,B)}{\sqrt{P(A)P(B)}}$                                                                                                                                                                |                                        |
| 16 Piatetsky-Shapiro's $(PS)$ $P(A,B) - P(A)P(B)$                                                                                                                                                              |                                        |
| 17 Certainty factor (F) $\max\left(\frac{P(B A) - P(B)}{1 - P(B)}, \frac{P(A B) - P(A)}{1 - P(A)}\right)$                                                                                                      |                                        |
| 18 Added Value $(AV)$ $\max(P(B A) - P(B), P(A B) - P(A))$                                                                                                                                                     |                                        |
| 19 Collective strength (S) $\frac{P(A,B) + P(\overline{AB})}{P(A)P(\overline{B}) + P(\overline{A})P(\overline{B})} \times \frac{1 - P(A)P(B) - P(\overline{A})P(\overline{B})}{1 - P(A,B) - P(\overline{AB})}$ |                                        |
| 20 Jaccard ( $\zeta$ ) $\frac{P(A,B)}{P(A)+P(B)-P(A,B)}$                                                                                                                                                       |                                        |
| 21 Klosgen (K) $\sqrt{P(A,B)} \max(P(B A) - P(B), P(A B) - P(A))$                                                                                                                                              |                                        |

### **Properties of A Good Measure**

3 properties a good measure M must satisfy:

- M(A,B) = 0 if A and B are statistically independent
- M(A,B) increase monotonically with P(A,B) when P(A) and P(B) remain unchanged
- M(A,B) decreases monotonically with P(A) [or P(B)] when P(A,B) and P(B) [or P(A)] remain unchanged