
Association Rule Mining

Data Mining 1



Data Mining 2

• Frequent Itemsets, Association Rules

• Apriori Algorithm

• Compact Representation of Frequent Itemsets

• FP-Growth Algorithm: An Alternative Frequent 

Itemset Generation Algorithm

• Evaluation of Association Patterns



Frequent Pattern 

• Frequent Pattern: a pattern (a set of items, subsequences, substructures, etc.) that 

occurs frequently in a data set.

• For example, a set of items, such as milk and bread, that appear frequently together in 

a transaction data set is a frequent itemset. 

• A subsequence, such as buying first a PC, then a digital camera, and then a memory 

card, if it occurs frequently in a shopping history database, is a (frequent) sequential 

pattern. 

• A substructure can refer to different structural forms, such as subgraphs, subtrees, or 

sublattices, which may be combined with itemsets or subsequences. If a substructure 

occurs frequently, it is called a (frequent) structured pattern. 

Data Mining 3



Frequent Pattern

Market Basket Analysis

• Frequent Pattern: a pattern that occurs frequently in a data set.

– A set of items that appear frequently together in a transaction data set is called as a 

frequent itemset. 

• An example of frequent itemset mining is market basket analysis. 

– This process analyzes customer buying habits by finding associations between the different 

items that customers place in their “shopping baskets”.

– If we think of the universe as the set of items available at the store, then each item has a 

Boolean variable representing the presence or absence of that item. 

– Each basket can then be represented by a Boolean vector of values assigned to these 

variables.

– The Boolean vectors can be analyzed for buying patterns that reflect items that are 

frequently associated or purchased together. 

– These patterns can be represented in the form of association rules.

Data Mining 4



Basic Concepts: Frequent Patterns

Data Mining 5

• itemset: A set of one or more items

– k-itemset X = {x1, …, xk}

• (absolute) support of X: Frequency of an 
itemset X.

– Absolute Support of {Beer} is 3

• (relative) support of X is the fraction of 
transactions that contains X (i.e., the 
probability that a transaction contains X).

– Relative Support of {Beer} is 3/5

• An itemset X is frequent if X’s support 
is no less than a minsup threshold.

Tid Items bought

10 Beer, Nuts, Diaper

20 Beer, Coffee, Diaper

30 Beer, Diaper, Eggs

40 Nuts, Eggs, Milk

50 Nuts, Coffee, Diaper, Eggs, Milk

Customer

buys diaper

Customer

buys both

Customer

buys beer



Basic Concepts: Association Rules

Association Rule

– An implication expression of the form X  Y, where X and Y are itemsets

Association Rule Mining:

• Find all the rules X  Y with minimum support and minimum confidence

– support, probability that a transaction contains XY :  P(XY)

• Fraction of transactions that contain both X and Y

– confidence, conditional probability that a transaction having X also contains Y :  

P(Y/X) = support(XY) / support(X)

• Measures how often items in Y appear in transactions that contain X

Data Mining 6



Basic Concepts: Association Rules

Association Rule

– An implication expression of the form X  Y, where X and Y are itemsets

Association Rule Mining:

• Find all the rules X  Y with minimum support and minimum confidence

Let  minsup = 50%, minconf = 50%

Frequent Pattterns: 

{Beer}:3, {Nuts}:3, {Diaper}:4, {Eggs}:3, 

{Beer, Diaper}:3

Association Rules: 

– { Beer } { Diaper } (60%, 100%)

– { Diaper }  { Beer } (60%, 75%)

Data Mining 7

Tid Items bought

10 Beer, Nuts, Diaper

20 Beer, Coffee, Diaper

30 Beer, Diaper, Eggs

40 Nuts, Eggs, Milk

50 Nuts, Coffee, Diaper, 

Eggs, Milk



Why Use Support and Confidence? 

• Support is an important measure because a rule that has very low support may occur 

simply by chance. 

– A low support rule may be uninteresting from a business perspective because it may not be 

profitable to promote items that customers seldom buy together 

– For these reasons, support is often used to eliminate uninteresting rules

• Confidence measures the reliability of the inference made by a rule. 

– For a given rule X  Y, the higher the confidence, the more likely it is for Y to be present 

in transactions that contain X.

• Association analysis results should be interpreted with caution. 

– The inference made by an association rule does not necessarily imply causality. 

– Instead, it suggests a strong co-occurrence relationship between items in the antecedent and 

consequent of the rule.

Data Mining 8



Association Rule Mining Task

• Given a set of transactions T, the goal of association rule mining is to find all rules 

having 

– support ≥ minsup threshold

– confidence ≥ minconf threshold

• Brute-force approach:

– List all possible association rules

– Compute the support and confidence for each rule

– Prune rules that fail the minsup and minconf thresholds

 Computationally not feasible!

Data Mining 9



Mining Association Rules

Data Mining 10

TID Items 

1 Bread, Milk 

2 Bread, Diaper, Beer, Eggs 

3 Milk, Diaper, Beer, Coke  

4 Bread, Milk, Diaper, Beer 

5 Bread, Milk, Diaper, Coke  

 

Example of Rules:

{Milk,Diaper}  {Beer} (s=0.4, c=0.67)

{Milk,Beer}  {Diaper} (s=0.4, c=1.0)

{Diaper,Beer}  {Milk} (s=0.4, c=0.67)

{Beer}  {Milk,Diaper} (s=0.4, c=0.67) 

{Diaper}  {Milk,Beer} (s=0.4, c=0.5) 

{Milk}  {Diaper,Beer} (s=0.4, c=0.5)

Observations:

• All the above rules are binary partitions of the same itemset: {Milk, Diaper, Beer}

• Rules originating from the same itemset have identical support but can have different 

confidence

• Thus, we may decouple the support and confidence requirements



Association Rule Mining

• The problem of mining association rules can be reduced to that of mining frequent 

itemsets.

• In general, association rule mining can be viewed as a two-step process:

1. Find all frequent itemsets: By definition, each of these itemsets will occur at least as

frequently as a predetermined minimum support count, minsup.

– Generate all itemsets whose support  minsup

2. Generate strong association rules from the frequent itemsets: By definition, these

rules must satisfy minimum support and minimum confidence.

– Generate high confidence rules from each frequent itemset, where each rule is a 

binary partitioning of a frequent itemset

– Frequent itemset generation is still computationally expensive

Data Mining 11



Association Rules - Example

Data Mining 12

Transactions

A,B,D

A,B,C,D

A

A,B,C

B,C

B

minsup = 0.5             minconf=0.7

• Find frequent itemsets and association rules satisfying

minsup and minconf.



Association Rules - Example

Data Mining 13

Transactions

A,B,D

A,B,C,D

A

A,B,C

B,C

B

minsup = 0.5             minconf=0.7

• Find frequent itemsets and association rules satisfying

minsup and minconf.

Frequent Itemsets:

1-itemsets:  {A}     support({A}) = 4/6 

{B}  support({B}) = 5/6

{C}  support({C}) = 3/6

2-itemsets:  {A,B} support({A,B}) = 3/6

{B,C} support({B,C}) = 3/6

Association Rules:   

A→B conf(A→B) = 3/4

C→B conf(C→B) = 3/3



Frequent Itemset Generation

Data Mining 14

Given d items, there are 2d

possible candidate itemsets

An itemset lattice



Frequent Itemset Generation

Data Mining 15

• Brute-force approach: 

– Each itemset in the lattice is a candidate frequent itemset

– Count the support of each candidate by scanning the database

– Match each transaction against every candidate

– Complexity ~ O(NMW) => Expensive since M = 2d !!!

TID Items 

1 Bread, Milk 

2 Bread, Diaper, Beer, Eggs 

3 Milk, Diaper, Beer, Coke 

4 Bread, Milk, Diaper, Beer 

5 Bread, Milk, Diaper, Coke 
 

N

Transactions List of

Candidates

M

w



Computational Complexity

Data Mining 16

• Given d unique items:

– Total number of itemsets = 2d

– Total number of possible association rules: 

Data Mining 16

123 1

1

1 1


















 




















 

dd

d

k

kd

j j

kd

k

d
R

If d=6,  R = 602 rules



Frequent Itemset Generation Strategies

• Reduce the number of candidates (M)

– Complete search: M=2d

– Use pruning techniques to reduce M

– The Apriori principle is an effective way to eliminate some of the candidate 

itemsets without counting their support values.

• Reduce the number of comparisons (NM)

– Use efficient data structures to store the candidates or transactions

– No need to match every candidate against every transaction

• Reduce the number of transactions (N)

– Reduce size of N as the size of itemset increases

Data Mining 17



Data Mining 18

• Frequent Itemsets, Association Rules

• Apriori Algorithm

• Compact Representation of Frequent Itemsets

• FP-Growth Algorithm: An Alternative Frequent 

Itemset Generation Algorithm

• Evaluation of Association Patterns



Reducing Number of Candidates

Apriori Principle

• Apriori Principle: If an itemset is frequent, then all of its subsets 

must also be frequent.

• Apriori principle holds due to the following property of the support measure:

– Support of an itemset never exceeds the support of its subsets

– This is known as the anti-monotone property of support

Data Mining 19

)()()(:, YsXsYXYX 



Illustrating Apriori Principle

Data Mining 20

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

Found to be 

Infrequent

Pruned 

supersets



Illustrating Apriori Principle

Data Mining 21

Minimum Support = 3

TID Items 

1 Bread, Milk 

2 Beer, Bread, Diaper, Eggs 

3 Beer, Coke, Diaper, Milk  

4 Beer, Bread, Diaper, Milk 

5 Bread, Coke, Diaper, Milk  

 

Items (1-itemsets)

If every subset is considered, 
6C1 + 6C2 + 6C3

6 + 15 + 20 = 41
With support-based pruning,

6 + 6 + 4 = 16

Item Count 

Bread 4 
Coke 2 

Milk 4 
Beer 3 

Diaper 4 
Eggs 1 

 
Generate 1-itemset candidates



Illustrating Apriori Principle

Data Mining 22

Minimum Support = 3

If every subset is considered, 
6C1 + 6C2 + 6C3

6 + 15 + 20 = 41
With support-based pruning,

6 + 6 + 4 = 16

TID Items 

1 Bread, Milk 

2 Beer, Bread, Diaper, Eggs 

3 Beer, Coke, Diaper, Milk  

4 Beer, Bread, Diaper, Milk 

5 Bread, Coke, Diaper, Milk  

 

Items (1-itemsets)

Item Count 

Bread 4 
Coke 2 

Milk 4 
Beer 3 

Diaper 4 
Eggs 1 

 

Eliminate infrequent 1-itemset candidates



Illustrating Apriori Principle

Data Mining 23

Item Count 

Bread 4 
Coke 2 

Milk 4 
Beer 3 

Diaper 4 
Eggs 1 

 

Itemset 

{Bread,Milk}  
{Bread, Beer } 

{Bread,Diaper} 
{Beer, Milk} 

{Diaper, Milk} 
{Beer,Diaper} 

 

Items (1-itemsets)

Pairs (2-itemsets)

(No need to generate candidates 
involving Coke or Eggs)

Minimum Support = 3

If every subset is considered, 
6C1 + 6C2 + 6C3

6 + 15 + 20 = 41
With support-based pruning,

6 + 6 + 4 = 16

Generate 2-itemset candidates



Illustrating Apriori Principle

Data Mining 24

Item Count 

Bread 4 
Coke 2 

Milk 4 
Beer 3 

Diaper 4 
Eggs 1 

 

Itemset Count 

{Bread,Milk} 3 
{Beer, Bread} 2 

{Bread,Diaper} 3 
{Beer,Milk} 2 

{Diaper,Milk} 3 
{Beer,Diaper} 3 

 

Items (1-itemsets)

Pairs (2-itemsets)

(No need to generate candidates 
involving Coke or Eggs)

Minimum Support = 3

If every subset is considered, 
6C1 + 6C2 + 6C3

6 + 15 + 20 = 41
With support-based pruning,

6 + 6 + 4 = 16

Eliminate infrequent 2-itemset candidates



Illustrating Apriori Principle

Data Mining 25

Item Count 

Bread 4 
Coke 2 

Milk 4 
Beer 3 

Diaper 4 
Eggs 1 

 

Itemset Count 

{Bread,Milk} 3 
{Bread,Beer} 2 

{Bread,Diaper} 3 
{Milk,Beer} 2 

{Milk,Diaper} 3 
{Beer,Diaper} 3 

 

Itemset 

{ Beer, Diaper, Milk} 
{ Beer,Bread,Diaper} 

{Bread, Diaper, Milk} 
{ Beer, Bread, Milk} 

 

Items (1-itemsets)

Pairs (2-itemsets)

(No need to generate candidates 
involving Coke or Eggs)

Triplets (3-itemsets)
Minimum Support = 3

If every subset is considered, 
6C1 + 6C2 + 6C3

6 + 15 + 20 = 41
With support-based pruning,

6 + 6 + 4 = 16

Generate 3-itemset candidates



Illustrating Apriori Principle

Data Mining 26

Item Count 

Bread 4 
Coke 2 

Milk 4 
Beer 3 

Diaper 4 
Eggs 1 

 

Itemset Count 

{Bread,Milk} 3 
{Bread,Beer} 2 

{Bread,Diaper} 3 
{Milk,Beer} 2 

{Milk,Diaper} 3 
{Beer,Diaper} 3 

 

Itemset Count 

{ Beer, Diaper, Milk} 
{ Beer,Bread, Diaper} 

{Bread, Diaper, Milk} 
{Beer, Bread, Milk} 

2 
2 

2 
1 

 

Items (1-itemsets)

Pairs (2-itemsets)

(No need to generate candidates 
involving Coke or Eggs)

Triplets (3-itemsets)
Minimum Support = 3

If every subset is considered, 
6C1 + 6C2 + 6C3

6 + 15 + 20 = 41
With support-based pruning,

6 + 6 + 4 = 16
6 + 6 + 1 = 13 Prune 3-itemset candidates with infrequent 2-itemsets

Eliminate infrequent 3-itemset candidates



Apriori Algorithm: 
Finding Frequent Itemsets Using Candidate Generation

• Apriori pruning principle: If there is any itemset which is infrequent, its superset 

should not be generated/tested! 

Apriori Algorithm: Fk: frequent k-itemsets Lk: candidate k-itemsets

• Let k=1

• Generate F1 = {frequent 1-itemsets}

• Repeat until Fk is empty

– Candidate Generation: Generate Lk+1 from Fk

– Candidate Pruning: Prune candidate itemsets in Lk+1 containing subsets of length k that 

are infrequent 

– Support Counting: Count the support of each candidate in Lk+1 by scanning the DB

– Candidate Elimination: Eliminate candidates in Lk+1 that are infrequent, leaving only 

those that are frequent => Fk+1

Data Mining 27



Apriori Algorithm: 
Candidate Generation: Fk-1 x Fk-1 Method

• Merge two frequent (k-1)-itemsets if their first (k-2) items are identical

• F3 = {ABC,ABD,ABE,ACD,BCD,BDE,CDE}

– Merge(ABC, ABD) = ABCD

– Merge(ABC, ABE) = ABCE

– Merge(ABD, ABE) = ABDE

– Do not merge(ABD,ACD) because they share only prefix of length 1 instead of 

length 2

• L4 = {ABCD,ABCE,ABDE} is the set of candidate 4-itemsets generated

Data Mining 28



Apriori Algorithm: 
Candidate Pruning

• Let F3 = {ABC,ABD,ABE,ACD,BCD,BDE,CDE} be the set of frequent 3-itemsets

• L4 = {ABCD,ABCE,ABDE} is the set of candidate 4-itemsets generated 

• Candidate pruning

– Prune ABCE because ACE and BCE are infrequent

– Prune ABDE because ADE is infrequent

• After candidate pruning: L4 = {ABCD} 

Data Mining 29



Apriori Algorithm: 
Support Counting of Candidate Itemsets

• Scan the database of transactions to determine the support of each candidate itemset

– Must match every candidate itemset against every transaction, which is an 
expensive operation

• To reduce the number of comparisons, store the candidates in a hash structure

– Instead of matching each transaction against every candidate, match it against 
candidates contained in the hashed buckets

Data Mining 30

TID Items 

1 Bread, Milk 

2 Bread, Diaper, Beer, Eggs 

3 Milk, Diaper, Beer, Coke 

4 Bread, Milk, Diaper, Beer 

5 Bread, Milk, Diaper, Coke 
 

N

Transactions Hash Structure

k

Buckets



Apriori Algorithm

Data Mining 31



Apriori Algorithm

Data Mining 32



Apriori Algorithm - An Example 

Data Mining 33



Support Counting Using Hash Tree

• Why counting supports of candidates a problem?

– The total number of candidates can be very huge

– One transaction may contain many candidates

– Must match every candidate itemset against every transaction, which is an 

expensive operation

• Method:

– Candidate itemsets are stored in a hash-tree

– Leaf node of hash-tree contains a list of itemsets and counts

– Interior node contains a hash table

– Subset function: finds all the candidates contained in a transaction

Data Mining 34



Support Counting Using Hash Tree
Subset Operation

• Enumerating subsets of three items from a transaction t

Data Mining 35



Support Counting Using Hash Tree
Generate Candidate Hash Tree

• Suppose you have 15 candidate itemsets of length 3: 

{1 4 5}, {1 2 4}, {4 5 7}, {1 2 5}, {4 5 8}, {1 5 9}, {1 3 6}, {2 3 4}, {5 6 7}, 

{3 4 5}, {3 5 6}, {3 5 7}, {6 8 9}, {3 6 7}, {3 6 8}

• We need: Hash function 

– HashFunc:  mod 3

Data Mining 36

1,4,7

2,5,8

3,6,9

Hash function 2 3 4

5 6 7

1 4 5
1 3 6

1 2 4

4 5 7 1 2 5

4 5 8

1 5 9

3 4 5 3 5 6

3 5 7

6 8 9

3 6 7

3 6 8



Support Counting Using Hash Tree
Generate Candidate Hash Tree

Data Mining 37

1 5 9

1 4 5 1 3 6

3 4 5 3 6 7

3 6 8

3 5 6

3 5 7

6 8 9

2 3 4

5 6 7

1 2 4

4 5 7

1 2 5

4 5 8

1,4,7

2,5,8

3,6,9

Hash Function Candidate Hash Tree



Support Counting Using Hash Tree
Traverse Candidate Hash Tree to Update Support Counts

Data Mining 38

1 5 9

1 4 5 1 3 6

3 4 5 3 6 7

3 6 8

3 5 6

3 5 7

6 8 9

2 3 4

5 6 7

1 2 4

4 5 7

1 2 5

4 5 8

1 2 3 5 6

1 + 2 3 5 6
3 5 62 +

5 63 +

1,4,7

2,5,8

3,6,9

Hash Functiontransaction



Support Counting Using Hash Tree
Traverse Candidate Hash Tree to Update Support Counts

Data Mining 39

1 5 9

1 4 5 1 3 6

3 4 5 3 6 7

3 6 8

3 5 6

3 5 7

6 8 9

2 3 4

5 6 7

1 2 4

4 5 7

1 2 5

4 5 8

1,4,7

2,5,8

3,6,9

Hash Function1 2 3 5 6

3 5 61 2 +

5 61 3 +

61 5 +

3 5 62 +

5 63 +

1 + 2 3 5 6

transaction



Support Counting Using Hash Tree
Traverse Candidate Hash Tree to Update Support Counts

Data Mining 40

1 5 9

1 4 5 1 3 6

3 4 5 3 6 7

3 6 8

3 5 6

3 5 7

6 8 9

2 3 4

5 6 7

1 2 4

4 5 7

1 2 5

4 5 8

1,4,7

2,5,8

3,6,9

Hash Function
1 2 3 5 6

3 5 61 2 +

5 61 3 +

61 5 +

3 5 62 +

5 63 +

1 + 2 3 5 6

transaction

Match transaction against 9 out of 15 candidates



Factors Affecting Complexity of Apriori Algorithm

• Choice of minimum support threshold

– lowering support threshold results in more frequent itemsets

– this may increase number of candidates and max length of frequent itemsets

• Dimensionality (number of items) of the data set

– more space is needed to store support count of each item

– if number of frequent items also increases, both computation and I/O costs may also 
increase

• Size of database

– since Apriori makes multiple passes, run time of algorithm may increase with number of 
transactions

• Average transaction width

– transaction width increases with denser data sets

– This may increase max length of frequent itemsets and number of subsets in a transaction 
increases with its width

Data Mining 41



Effect of Support Threshold

• Effect of support threshold on the number of candidate and frequent itemsets

Data Mining 42

Number of frequent itemsetsNumber of candidate itemsets



Effect of Average Transaction Width

• Effect of average transaction width on the number of candidate and frequent itemsets

Data Mining 43

Number of candidate itemsets Number of frequent itemsets



Effect of Support Distribution

• How to set the appropriate minsup threshold?

– If minsup is set too high, we could miss itemsets involving interesting rare items 

(e.g., expensive products)

– If minsup is set too low, it is computationally expensive and the number of 

itemsets is very large

• Using a single minimum support threshold may not be effective

Data Mining 44



Multiple Minimum Support

• How to apply multiple minimum supports?

– MS(i): minimum support for item i

– e.g.:     MS(Milk)=5%,   MS(Coke) = 3%,

MS(Broccoli)=0.1%, MS(Salmon)=0.5%

– MS({Milk, Broccoli}) = min (MS(Milk), MS(Broccoli))

= 0.1%

– Challenge: Support is no longer anti-monotone

• Suppose: Support(Milk, Coke) = 1.5% and

Support(Milk, Coke, Broccoli) = 0.5%

• {Milk,Coke} is infrequent but {Milk,Coke,Broccoli} is frequent

Data Mining 45



Multiple Minimum Support 

• Order the items according to their minimum support (in ascending order)

– e.g.:     MS(Milk)=5%,   MS(Coke) = 3%,
MS(Broccoli)=0.1%,     MS(Salmon)=0.5%

– Ordering:  Broccoli, Salmon, Coke, Milk

• Need to modify Apriori such that:

– L1 : set of frequent items

– F1 : set of items whose support is  MS(1)
where MS(1) is mini( MS(i) )

– C2 : candidate itemsets of size 2 is generated from F1

instead of L1

Data Mining 46



Multiple Minimum Support 

• Modifications to Apriori:

– In traditional Apriori, 

• A candidate (k+1)-itemset is generated by merging two
frequent itemsets of size k

• The candidate is pruned if it contains any infrequent subsets of size k

– Pruning step has to be modified:

• Prune only if subset contains the first item

• e.g.:  Candidate={Broccoli, Coke, Milk}   (ordered according to
minimum support)

• {Broccoli, Coke} and {Broccoli, Milk} are frequent but 
{Coke, Milk} is infrequent

– Candidate is not pruned because {Coke,Milk} does not contain
the first item, i.e., Broccoli.

Data Mining 47



Rule Generation in Apriori Algorithm

• Given a frequent itemset L, find all non-empty subsets f  L such that candidate 

rule f  L – f  satisfies the minimum confidence requirement

– If {A,B,C,D} is a frequent itemset, candidate rules:

ABC  D ABD  C ACD  B BCD  A 

D  ABC C  ABD B  ACD A  BCD , 

AB  CD AC  BD AD  BC 

CD  AB BD  AC BC  AD

• If |L| = k, then there are 2k – 2 candidate association rules 

– (ignoring L  and  L)

Data Mining 48



Rule Generation in Apriori Algorithm

• How to efficiently generate rules from frequent itemsets?

• In general, confidence does not have an anti-monotone property

c(ABCD) can be larger or smaller than c(ABD)

• But confidence of rules generated from the same itemset has an anti-monotone 

property

– E.g., Suppose {A,B,C,D} is a frequent 4-itemset:

c(ABCD)  c(ABCD)  c(ABCD)

– Confidence is anti-monotone w.r.t. number of items on the RHS of the rule

Data Mining 49



Rule Generation in Apriori Algorithm

Data Mining 50

ABCD=>{ }

BCD=>A ACD=>B ABD=>C ABC=>D

BC=>ADBD=>ACCD=>AB AD=>BC AC=>BD AB=>CD

D=>ABC C=>ABD B=>ACD A=>BCD

Lattice of rules
ABCD=>{ }

BCD=>A ACD=>B ABD=>C ABC=>D

BC=>ADBD=>ACCD=>AB AD=>BC AC=>BD AB=>CD

D=>ABC C=>ABD B=>ACD A=>BCD

Pruned 

Rules

Low 

Confidence 

Rule



Data Mining 51

• Frequent Itemsets, Association Rules

• Apriori Algorithm

• Compact Representation of Frequent Itemsets

• FP-Growth Algorithm: An Alternative Frequent 

Itemset Generation Algorithm

• Evaluation of Association Patterns



Compact Representation of Frequent Itemsets

• The number of frequent itemsets produced from a transaction data set can be very 

large. 

• Some produced itemsets can be redundant because they have identical support as their 

supersets

• It is useful to identify a small representative set of itemsets from which all other 

frequent itemsets can be derived.  Need a compact representation

– Maximal Frequent Itemsets and 

– Closed Frequent Itemsets

Data Mining 52



Maximal Frequent Itemsets

Maximal Frequent Itemset: A maximal frequent itemset is defined as a frequent 

itemset for which none of its immediate supersets are frequent.

• Maximal frequent itemsets effectively provide a compact representation of frequent 

itemsets. 

• Maximal frequent itemsets form the smallest set of itemsets from which all frequent 

itemsets can be derived.

Data Mining 53



Maximal Frequent Itemsets

Data Mining 54

All frequent itemsets can be derived from 

maximal frequent itemsets ad, ace, bcde.

Any frequent itemset 

a maximal frequent itemset



Maximal Frequent Itemsets

• Despite providing a compact representation, maximal frequent itemsets do not contain 

the support information of their subsets. 

• For example, the support of the maximal frequent itemsets {a, c, e}, {a, d}, and 

{b,c,d,e} do not provide any hint about the support of their subsets. 

• An additional pass over the data set is therefore needed to determine the support 

counts of the non-maximal frequent itemsets. 

• It might be desirable to have a minimal representation of frequent itemsets that 

preserves the support information.   Closed Frequent Itemsets

Data Mining 55



Closed Frequent Itemsets

Closed Itemset: An itemset X is closed if none of its immediate supersets has exactly 

the same support count as X.

• Closed itemsets provide a minimal representation of itemsets without losing their 

support information.

• Put another way, X is not closed if at least one of its immediate supersets has the same 

support count as X.

Closed Frequent Itemset: An itemset is a closed frequent itemset if it is closed and 

its support is greater than or equal to minsup.

Data Mining 56



Closed Frequent Itemsets

All subsets of a closed frequent

itemset are frequent and their

supports is greater than or equal to

the support of that closed frequent

itemset.

For example, all subsets of a closed

frequent itemset abc are frequent

and their supports  support of abc.

Data Mining 57



Maximal vs Closed Itemsets

Data Mining 58

# Closed = 9

# Maximal = 4

Closed and maximal

frequent itemsets

Closed but not maximal

frequent itemsets



Maximal vs Closed Itemsets

Data Mining 59

Frequent

Itemsets

Closed

Frequent

Itemsets

Maximal

Frequent

Itemsets



Data Mining 60

• Frequent Itemsets, Association Rules

• Apriori Algorithm

• Compact Representation of Frequent Itemsets

• FP-Growth Algorithm: An Alternative Frequent 

Itemset Generation Algorithm

• Evaluation of Association Patterns



FP-Growth (Frequent Pattern Growth) Algorithm

• FP-growth algorithm that takes a radically different approach to discovering 

frequent itemsets. 

– The algorithm does not subscribe to the generate-and-test paradigm of Apriori

• FP-growth algorithm encodes the data set using a compact data structure called an 

FP-tree and extracts frequent itemsets directly from this structure.

– Use a compressed representation of the database using an FP-tree

– Once an FP-tree has been constructed, it uses a recursive divide-and-conquer 

approach to mine the frequent itemsets

Data Mining 61



FP-Tree Construction

• An FP-tree is a compressed representation of the input data.

• It is constructed by reading the data set one transaction at a time and mapping each 

transaction onto a path in the FP-tree.

– Different transactions can have several items in common, their paths may overlap. 

– The more the paths overlap with one another, the more compression we can 

achieve using the FP-tree structure.

Data Mining 62



FP-Tree Construction

• Each node in the tree contains the label of an item along with a counter that shows the 

number of transactions mapped onto the given path. 

– Initially, the FP-tree contains only the root node represented by the null symbol.

– Every transaction maps onto one of the paths in the FP-tree.

• The size of an FP-tree is typically smaller than the size of the uncompressed data 

because many transactions in market basket data often share a few items in common.

– best-case scenario, all transactions have same set of items

 FP-tree contains only a single branch. 

– worst-case scenario happens when every transaction has a unique set of items

 FP-tree is effectively the same as the size of the original data. 

– physical storage requirement for FP-tree is higher because it requires additional

space to store pointers between nodes and counters for each item.

Data Mining 63



FP-Tree Construction

Data Mining 64

TID Items

1 {A,B}

2 {B,C,D}

3 {A,C,D,E}

4 {A,D,E}

5 {A,B,C}

6 {A,B,C,D}

7 {B,C}

8 {A,B,C}

9 {A,B,D}

10 {B,C,E}

After reading TID=2:

null

A:1

B:1

B:1

C:1

D:1

After reading TID=1:

A:1

B:1

null

After reading TID=3:

null

A:2

B:1

B:1

C:1

D:1

C:1

D:1

E:1



FP-Tree Construction

Data Mining 65

TID Items

1 {A,B}

2 {B,C,D}

3 {A,C,D,E}

4 {A,D,E}

5 {A,B,C}

6 {A,B,C,D}

7 {B,C}

8 {A,B,C}

9 {A,B,D}

10 {B,C,E}

null

A:7

B:5

B:3

C:3

D:1

C:1

D:1
C:3

D:1

D:1

E:1

Pointers are used to assist frequent 

itemset generation

D:1

E:1

Transaction 

Database

Item Pointer

A

B

C

D

E

Header table

E:1

sorted

After reading all transactions:



Frequent Itemset Generation 

in FP-Growth Algorithm

• FP-growth is an algorithm that generates frequent itemsets from an FP-tree by 

exploring the tree in a bottom-up fashion.

– This bottom-up strategy for finding frequent itemsets ending with a particular item is equivalent to the 

suffix-based approach

– Since every transaction is mapped onto a path in the FP-tree, we can derive the frequent itemsets

ending with a particular item, say e, by examining only the paths containing node e.

– The algorithm looks for frequent itemsets ending in e first, followed by d, c, b, and finally, a. 

• FP-growth finds all the frequent itemsets ending with a particular suffix by employing 

a divide-and-conquer strategy to split the problem into smaller subproblems.

– To find all frequent itemsets ending in e, we must first check whether the itemset {e} itself is frequent.

– If it is frequent, we consider the subproblem of finding frequent itemsets ending in de, followed by ce, 

be, and ae. 

– In turn, each of these subproblems are further decomposed into smaller subproblems. 

– By merging the solutions obtained from the subproblems, all the frequent itemsets ending in e can be 

found.

Data Mining 66



Finding Frequent Itemsets Ending with e

1. The first step is to gather all the paths containing node e. These initial paths are called prefix 

paths

2. From the prefix paths, the support count for e is obtained by adding the support counts 

associated with node e. Assuming that the minimum support count is 2, {e} is declared a 

frequent itemset because its support count is 3.

3. Because {e} is frequent, the algorithm has to solve the subproblems of finding frequent 

itemsets ending in de, ce, be, and ae. Before solving these subproblems, it must first convert 

the prefix paths into a conditional FP-tree, which is structurally similar to an FP-tree, except

it is used to find frequent itemsets ending with a particular suffix.

– First, the support counts along the prefix paths must be updated because some of the counts include 

transactions that do not contain item e.

– The prefix paths are truncated by removing the nodes for e.

– After updating the support counts along the prefix paths, some of the items may no longer be frequent

• the node b appears only once and has a support count equal to 1, which means that there is only one transaction 

that contains both b and e. Item b can be safely ignored from subsequent analysis because all itemsets ending in 

be must be infrequent.

4. FP-growth uses the conditional FP-tree for e to solve the subproblems of finding frequent 

itemsets ending in de, ce, and ae.

Data Mining 67



Prefix Paths Ending with e

Data Mining 68

TID Items

1 {A,B}

2 {B,C,D}

3 {A,C,D,E}

4 {A,D,E}

5 {A,B,C}

6 {A,B,C,D}

7 {B,C}

8 {A,B,C}

9 {A,B,D}

10 {B,C,E}

null

A:7

B:5

B:3

C:3

D:1

C:1

D:1
C:3

D:1

D:1

E:1
D:1

E:1

Item Pointer

A

B

C

D

E

Header table
E:1

FP Tree

null

A:7 B:3

C:3
C:1

D:1

D:1

E:1

E:1

E:1

Prefix Paths Ending with e



Conditional FP-Tree for e

Data Mining 69

TID Items

1 {A,B}

2 {B,C,D}

3 {A,C,D,E}

4 {A,D,E}

5 {A,B,C}

6 {A,B,C,D}

7 {B,C}

8 {A,B,C}

9 {A,B,D}

10 {B,C,E}

null

A:7 B:3

C:3
C:1

D:1

D:1

E:1

E:1

E:1

Prefix Paths Ending with e

null

A:2 C:1

C:1

D:1

D:1

Conditional FP-Tree for e

To create Conditional FP-Tree for e

• Update support counts because paths without e are removed

• e is frequent (support=3),  Remove e nodes from prefix paths

• Remove infrequent nodes

minsup=2



Conditional FP-Tree for de

Data Mining 70

TID Items

1 {A,B}

2 {B,C,D}

3 {A,C,D,E}

4 {A,D,E}

5 {A,B,C}

6 {A,B,C,D}

7 {B,C}

8 {A,B,C}

9 {A,B,D}

10 {B,C,E}

null

A:2 C:1

C:1

D:1

D:1

Conditional FP-Tree for de

minsup=2

null

A:2

C:1

D:1

D:1

Prefix Paths Ending with de

null

A:2

Conditional FP-Tree for e

de is frequent (support=2)



Conditional FP-Tree for ce

Data Mining 71

TID Items

1 {A,B}

2 {B,C,D}

3 {A,C,D,E}

4 {A,D,E}

5 {A,B,C}

6 {A,B,C,D}

7 {B,C}

8 {A,B,C}

9 {A,B,D}

10 {B,C,E}

null

A:2 C:1

C:1

D:1

D:1

Conditional FP-Tree for ce

minsup=2

Prefix Paths Ending with ce

null

A:1

Conditional FP-Tree for e

ce is frequent (support=2)

null

A:2 C:1

C:1



Conditional FP-Tree for ae

Data Mining 72

TID Items

1 {A,B}

2 {B,C,D}

3 {A,C,D,E}

4 {A,D,E}

5 {A,B,C}

6 {A,B,C,D}

7 {B,C}

8 {A,B,C}

9 {A,B,D}

10 {B,C,E}

null

A:2 C:1

C:1

D:1

D:1

Conditional FP-Tree for ae

minsup=2

Prefix Paths Ending with ae

null

Conditional FP-Tree for e

ae is frequent (support=2)

null

A:2



Frequent Itemsets Ordered by Suffixes

Data Mining 73

TID Items

1 {A,B}

2 {B,C,D}

3 {A,C,D,E}

4 {A,D,E}

5 {A,B,C}

6 {A,B,C,D}

7 {B,C}

8 {A,B,C}

9 {A,B,D}

10 {B,C,E} null

A:7

B:5

B:3

C:3

D:1

C:1

D:1
C:3

D:1

D:1

E:1
D:1

E:1

Item Pointer

A

B

C

D

E

Header table
E:1

FP Tree

minsup=2

Suffix Frequent Itemsets

E {E}, {D,E}, {A,D,E}, {C,E}, {A, E},

D {D}, {C,D}, {B,C,D}, {A,C,D}, {B,D}, {A,B,D}, {A,D}

C {C}, {B,C}, {A,B,C}, {A,C}

B {B}, {A,B}

A {A}



Data Mining 74

• Frequent Itemsets, Association Rules

• Apriori Algorithm

• Compact Representation of Frequent Itemsets

• FP-Growth Algorithm: An Alternative Frequent 

Itemset Generation Algorithm

• Evaluation of Association Patterns



Evaluation of Association Patterns

• Association rule algorithms tend to produce too many rules 

– many of them are uninteresting or redundant

– {A,B}  {D} is Redundant if {A,B,C}  {D} and {A,B}  {D}   

have same support & confidence

– An association rule X −→ Y is redundant if there exists another rule X’→ Y’, 

where X is a subset of X’ and Y is a subset of Y’, such that the support and 

confidence for both rules are identical.

• Interestingness measure can be used to prune/rank the derived patterns

• In the original formulation of association rules, support & confidence are the only 

measures used

Data Mining 75



Computing Interestingness Measure

• Given a rule X  Y, information needed to compute rule interestingness can be 

obtained from a contingency table

Data Mining 76

Contingency table for X  Y



Drawback of Confidence

Association Rule: Tea  Coffee

Confidence= P(Coffee|Tea) = 0.75 = support({Tea,Coffee}) / support({Tea})

but  P(Coffee) = 0.9

 Although confidence is high, rule is misleading

 P(Coffee|Tea) = 0.9375

Data Mining 77

Coffee Coffee

Tea 15 5 20

Tea 75 5 80

90 10 100



Measure for Association Rules

• So, what kind of rules do we really want?

– Confidence(X  Y) should be sufficiently high 

• To ensure that people who buy X will more likely buy Y than not buy Y

– Confidence(X  Y) > support(Y) 

• Otherwise, rule will be misleading because having item X actually reduces the 

chance of having item Y in the same transaction

• Is there any measure that capture this constraint?

– Answer: Yes. There are many of them. 

Data Mining 78



Statistical Independence

• Population of 1000 students

– 600 students know how to swim (S)

– 700 students know how to bike (B)

– 420 students know how to swim and bike (S,B)

– P(SB) = 420/1000 = 0.42

– P(S)  P(B) = 0.6  0.7 = 0.42

– P(SB) = P(S)  P(B) => Statistical independence

– P(SB) > P(S)  P(B) => Positively correlated

– P(SB) < P(S)  P(B) => Negatively correlated

Data Mining 79



Statistical-Based Measures for Interestingness 

• Statistical-Based Measures use statistical dependence information.

• Two of them are Lift and Interest (they are equal).

Lift = P(Y|X) / P(Y)

Interest = P(X,Y) / P(X) P(Y)

Lift(A,B) = conf(A→B) / support(B) 

= support(A ∪ B) / support(A) support(B)

Interest(A,B) = support(A ∪ B) / support(A) support(B)

Interest(A,B)  ቐ

= 1 𝑖𝑓 𝐴 𝑎𝑛𝑑 𝐵 𝑎𝑟𝑒 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡
> 1 𝑖𝑓 𝐴 𝑎𝑛𝑑 𝐵 𝑎𝑟𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑙𝑦 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑒𝑑
< 1 𝑖𝑓 𝐴 𝑎𝑛𝑑 𝐵 𝑎𝑟𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑙𝑦 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑒𝑑

Data Mining 80



Example: Lift/Interest

Association Rule: Tea  Coffee

Confidence= P(Coffee|Tea) = 0.75 = support({Tea,Coffee}) / support({Tea})

but P(Coffee) = 0.9

 Lift = 0.75/0.9 = 0.8333    (< 1, therefore is negatively correlated)

Data Mining 81

Coffee Coffee

Tea 15 5 20

Tea 75 5 80

90 10 100



Example: Lift/Interest

Data Mining 82

• play basketball  eat cereal [40%, 66.7%]  is misleading

– The overall % of students eating cereal is 75% > 66.7%.

• play basketball  not eat cereal [20%, 33.3%] is more accurate, although 

with lower support and confidence

89.0
5000/3750*5000/3000

5000/2000
),( CBlift

Basketball Not basketball Sum (row)

Cereal 2000 1750 3750

Not cereal 1000 250 1250

Sum(col.) 3000 2000 5000

33.1
5000/1250*5000/3000

5000/1000
),( CBlift



Limitations of Interest Factor

• We expect the words data and mining to appear together more frequently than the 

words compiler and mining in a collection of computer science articles.

Contingency tables for word pairs { p,q} and { r,s}.

• The interest factor for {p,q} is 1.02 and for {r, s} is 4.08.

– Although p and q appear together in 88% of the documents, their interest factor is close to 1, which is 

the value when p and q are statistically independent. 

– On the other hand, the interest factor for {r, s} is higher than {p, q} even though r and s seldom appear 

together in the same document. 

– Confidence is perhaps the better choice in this situation because it considers the association between p 

and q (94.6%) to be much stronger than that between r and s (28.6%).

Data Mining 83



Different 

Measures

• There are lots of 

measures proposed in 

the literature

• Some measures are 

good for certain 

applications, but not 

for others

• What criteria should 

we use to determine 

whether a measure is 

good or bad?

Data Mining 84



Properties of A Good Measure

3 properties a good measure M must satisfy:

– M(A,B) = 0 if A and B are statistically independent

– M(A,B) increase monotonically with P(A,B) when P(A) and P(B) remain 

unchanged

– M(A,B) decreases monotonically with P(A) [or P(B)] when P(A,B) and P(B) [or 

P(A)] remain unchanged

Data Mining 85


