Selecting Choice Points in
An Intelligent Backtracking Schema

Ilyas Cicekli
Dept. of Comp. Eng. and Info. Sc.
Bilkent University
06533 Bilkent, Ankara, Turkey
e-mail: ilyas@bilkent.edu.tr

Abstract

We present a runtime intelligent backtracking method for prolog programs
to avoid redundant failures. The method presented in this paper selects the
best choice point as a backtracking point during the failure of a procedure call to
avoid the same failure. The chosen backtracking is the best choice point that can
be determined in runtime during execution of a goal without a further analysis.
The modification of the Warren Abstract Machine [War83] is kept in minimum
to implement our schema.

1 Introduction

The backtracking method used in a standard Prolog implementation is naive back-
tracking. In the naive backtracking, when a goal fails the backtracking is done to the
most recent choice point (last alternative) although this choice point may be nothing
to do with that failure. In this approach, a lot of unnecessary backtrackings will be
done while the same failure occurs many times. An intelligent backtracking method
analyze failures of a procedure call to choose the proper choice point to avoid redundant
backtrackings. The chosen choice point may not be the most recent choice point. In
other words, alternatives of choice points between the most recent one and the chosen
one are discarded without retrying them. If they were retried, the system would have
reencountered with the same failure.

Many intelligent backtracking schemes [Bru84, Cha85, Cod88, Cod91, Cox81, Lin&7,
Lin88, Per82] are presented to avoid unnecessary backtracking steps. Early works in
intelligent backtracking [Bru84, Cox81, Per82] are implemented as prolog interpreters.
Implementations of later works [Lin87, Lin88, Cod88, Cod91] are WAM based systems.
Direct comparisons of early works with later works may not give fruitful results because
the machinery used in early works are much slower than the WAM based implementa-
tions in later works. An implementation of an intelligent backtracking mechanism in a
prolog interpreter may get much speed-up in terms of cpu time than an implementation
of the same mechanism in a WAM based system. The reason is that the overhead of



the intelligent backtracking may be more costly in a WAM based system because a
WAM based system is a very efficient implementation of Prolog.

An intelligent backtracking method can be only useful if our gains from it are much
greater than its overheads. So, the chosen intelligent backtracking method should
have small overheads. The overhead can be only minimum with small and localized
extensions to the original system. For this reason, most of the intelligent backtracking
methods mostly concentrate on unification algorithm which is the place of a failure and
failure routine that performs backtracking operation.

All intelligent backtracking methods for Prolog assume that skipped alternatives
are procedures without any side effects. For example, skipped alternatives wouldn’t
have done any assert or retract operations, or any input or output. If this is the case,
a prolog system with an intelligent backtracking method may behave differently than
a normal prolog system.

The intelligent backtracking schema presented in this paper is implemented as an
extension of the WAM same as systems in [Lin87, Cod88]. Our mechanism is similar
to mechanisms used in those systems except that how we keep reasons of a failure
and how we find them. In the following sections, details of our system are given.
In Section 2, a general discussion about failure and intelligent backtracking is given.
After the implementation of our schema is given in Section 3, its performance results
are discussed in Section 4.

2 Analysis of Failure

A failure normally occurs in a prolog system when the unification algorithm fails to
match two terms. Since a failure occurs, the system should backtrack and try another
alternative. The question is that how far the system should backtrack to find a new
alternative. A normal prolog system naively tries the most recent choice point. But
this most recent alternative may not fix the cause of the last failure and the same
failure may occur again. We want to choose a proper choice point in an intelligent
backtracking mechanism so that we will not encounter with the same failure.

When a procedure call fails, the system should backtrack a choice point between the
most recent one and the shallow backtracking point. The shallow backtracking point
is the choice point of the procedure being called or the choice point of its first ancestor
which has a choice point. The shallow backtracking point indicates the furthest choice
point to which the system can backtrack during a failure. If the shallow backtracking
point is the most recent choice point, this is known as shallow backtracking. In that
case, we have to try the most recent one. If the shallow backtracking point is not the
most recent choice point, in that case the point that the system will backtrack depends
on reasons of the failure of that procedure call. But, if reasons of the failure of that
procedure call points to a choice point which is older than the shallow backtracking
point, we can only again backtrack upto the shallow backtracking point. If they indicate
a younger choice point, the system should backtrack to that choice point.

The procedure call s(X) fails when the goal p(X) is executed with respect to the
prolog program in Figure l.a. The reason of that failure is that the variable X was
bound to 1 by the procedure /1. In the time of that failure, we have three choice
points. These choice points are choice points of procedures p/1, ¢/1 and r/1 in the
creation order. The most recent choice point is the choice point of r/1. The shallow



b. Program 2: Procedure Failure With Two Reasons

Figure 1: Sample Prolog Programs For Failure

backtracking point is the choice point of p/1 since the procedure s/1 doesn’t have a
choice point and the procedure p/1 is the first ancestor of the procedure s/1 which has
a choice point. So, when the procedure call s(X) fails we can backtrack upto the choice
point of the procedure p/1 in the best case. The reason of the failure of the procedure
call indicates the choice point of the procedure ¢/1 since that choice point was the
most recent choice point when the variable X was bound to a value created by the first
clause of q/1. Since the choice point of /1 is younger than the choice point of p/1,
we have to backtrack the the choice point of q/1. We don’t have to retry alternatives
of r/1 because they cannot fix the reason of that failure since a variable is bound to a
value once in Prolog. If we submit another goal p(1) with respect to the same program
in Figure 1.a, we will have a similar situation. The difference will be that the variable
X is bound to a value created before the choice point of p/1. On other words, the
reason of the failure points a choice point which is older than the choice point of p/1.
The system should backtrack to the choice point of p/1 because that is the furthest
choice point we can backtrack in that case.

In the previous example, the procedure call s(X) has just a single reason for the
failure because the procedure s/1 has a single alternative. In general, a failure of a
procedure call can have more than one reason. In this case, each reason will point a
choice point and we choose the reason which points the youngest choice point as the
reason of the failure of that procedure call. If we submit the goal p(X,Y) with respect
to the program in Figure 1.b, the procedure call s(X,Y) will fail after two alternatives
of the procedure s/2 are tried. In this case, we will have two reasons for the failure of
that procedure call. The first one is that the second argument of the procedure call
cannot unify with constant b and the second reason is that the first argument of the
procedure call cannot unify with constant 2. The first reason points to the choice point
of q/1 since the variable X is bound to a value created by the first clause of q/1. The
second one points to the choice point of r/1 since Y is bound by the first clause of
r/1. Since the choice point of r/1 is younger, it is chosen as a reason of the failure of
that procedure call. In that time, the shallow backtracking point is the choice point
of p/2 since s/2 doesn’t have any choice point and p/2 is its first ancestor having a
choice point. Since the choice point of p/2 is older, the choice point of r/2 is chosen as
backtracking point for that failure.



3 Implementation of Intelligent Backtracking

To implement our intelligent backtracking method, we updated the Warren Abstract
Machine (WAM) to incorporate our schema. In the rest of the discussion, a familiarity
with the WAM is assumed. The full discussion of the WAM can be found in [War83]
and [ATt91].

From the discussion in Section 2, our version of WAM has to have two main capa-
bilities.

o [t should be able to handle shallow backtracking points. At a certain time during
the execution, the system should be able to access the current shallow backtrack-
ing point. It also should be able to maintain a shallow backtracking point link
among choice points.

o It should be able to maintain reasons of the failure of a procedure call. It also
should be able to find the choice point which was the shallow backtracking point
during binding of the variable causing a failure.

In the following two subsections, we will discuss these two subjects. To get these
capabilities, certain WAM instructions, the structure of choice points and the failure
routine are changed in our implementation.

3.1 Shallow Backtracking Points

The shallow backtracking point at a certain time points to the choice point of the
procedure that we are in or the choice point of one of its ancestors. If the procedure
that we are in has a choice point, the shallow backtracking point will be its choice point.
It it doesn’t, the shallow backtracking point will be the choice point of its youngest
ancestor of that procedure such that it has a choice point. An ancestor of a procedure
is the procedure calling that procedure or ancestor of the calling procedure.

We will introduce a new register SB (Shallow Backtracking Point) to hold the
shallow backtracking point. This register will point to a choice point in the local stack
at a certain time. The register SB will be updated with a new choice point when that
choice point created by a try instruction. The old value of the register SB will be saved
in the new choice point by that ¢ryinstruction. During a backtracking, the register will
be set to point to the backtracked choice point. In fact, that choice point will be the
most recent choice point at that time. Also, trust instructions will restore the register
SB from the value stored in the choice point being discarded by that trust instruction.

This SB register is saved in environments by allocate instructions same as saving
the environment register E except that the register SB is not updated by allocate
instruction. The reason saving it in environments is that it can be restored by the value
stored in the current environment by proceed instructions. When a proceed instruction is
executed, we get out from a context of a procedure and return back to the context of one
of its ancestors. Since that ancestor has an environment and its shallow backtracking
point is saved in its environment, the register SB can be restored from that value.

In Figure 2, a sample prolog program and its local stack are given when the first
clause of procedure t is entered. As seen in that figure, shallow backtracking points in
choice points of procedures r and s point to the choice point of q. Since the register



p:-q,t. chpt of t
p.
chpt of s
q:-1,8
q. chpt of r
e
r.
5B env of ¢
L Links (
s. 3 chpt of ¢
< e
env of p
(
\3 chpt of p

Local Stack
Figure 2: Shallow Backtracking Links

SB points to the choice point of procedure p when the first clause of p is entered, that
value is saved in the environment of the first clause of p.

3.2 Finding Reasons of A Failure

A procedure call fails during unification of head arguments. Unification instructions
used in head matching can be seen in two groups. Instructions in the first group (eg.
get_constant and unify_constant ) try to unify a variable with a specific ground term.
A failure occurs when that variable is bound to a ground term which is different than
that specific ground term. The second group instructions (eg. get_val and unify_val)
are complete unification instructions which take two variables to be unified. In this
case, a failure occurs when those variables are bound to two different ground terms. In
the first case, the binding time of that variable determines the reason of that failure.
In the second case, the youngest one of binding times of two variables plays role in the
determination of the reason of that failure. In both cases, the reason of the failure will
point to the choice point which was the shallow backtracking point during the binding
causing that failure.

Since a failure of a procedure call can have more than one reason, our implemen-
tation should be able to handle these reasons. But we only need the youngest one
of reasons of a procedure call failure because we choose the youngest one as a back-
tracking point. To store the youngest reason of a failure, we will reserve a space in
choice points. After this point, we will call that field in choice points as RB (Reason
Backtracking Point). This field will be initialized by a special value during the creation
of that choice point by try instructions. During a failure, the RB field of the choice
point indicated by the register SB may be updated with the reason of that failure. It
is only updated with the reason of the failure, if that reason is younger than the value
stored in RB field and older than the value in SB register. So, RB field will always
held the youngest reason of a procedure failure. The RB field of a choice point may be
copied into the RB field of its parent when that choice point is discarded. A parent of



a choice point is pointed by SB value saved in that choice point.

In this mechanism, we have to be able to find ages of variables. Since we are only
interested in ages of variables causing failure, we have to only be able to figure out
ages of variables bound to ground terms. The age of a variable depends on ages of
trailed bindings in its dereference chain and age of the ground term at the end of its
dereference chain. The age of a trailed binding is the choice point indicated by SB
register during that binding. If there is no trailed bindings in the dereference chain of
a variable, the age of that variable is same as the age of the ground term at the end of
the dereference chain.

The age of a ground term can be found from its location in the heap. The age of
a ground term is the choice point indicated by SB register during the creation of heap
locations for that ground term. Because structures and lists are saved in the heap,
their heap addresses help to find ages of variables bound to them. But variables bound
to constants introduce some complications because constants may be copied directly
into variables during bindings of those variables. So, we are not able to find ages of
those kinds of variables in the original WAM. For this reason, constants are also put
into the heap same as structures and lists, and variables are bound to these constants
in the heap. On other words, constants are treated same as structures and lists in our
mechanism.

The age of a trailed variable can be figured out from trailed bindings in the deref-
erence chain of that variable. To find the age of a trailed binding easily, we use two
new extra entries for each trailing operation. During the binding of a variable to a
value, that variable is bound to the first extra trail entry and that trail entry is bound
to that value. The value of SB register is stored in the second extra trail entry during
that binding. From the stored SB value for a trailing operation, we find out the age of
that trailed binding. The age of a trailed variable is equal to the age of the youngest
trailed binding in its dereference chain.

4 Performance Results

We extended the byte emulator of the WAM based system of ALS (Applied Logic
Systems) Prolog to implement our mechanism. To see gains and overheads of our
system, we tested it with programs in three categories in addition to standard test
programs for intelligent backtracking.

The first category includes programs which do a lot of unnecessary backtrackings
in a regular prolog system. Of course, our system will give a good performance in these
programs, because it will avoid a lot of redundant failures. A map coloring program
given in Figure 3 can be a good example for this category. In a regular prolog system,
there will be 147 failures before it gets a solution. In our mechanism there will be only
15 failures. There will be 5 times speed-up in our system in terms of cpu time for that
example. In that program, the last subgoal fails for first values of variables B and C.
In a regular prolog system, all alternatives of third and fourth subgoal will be tried
before the second goal is retried to get another value for variable C although they are
not responsible from the binding of variables B and C. In our schema, when the last
subgoal is completely failed, the system will backtrack to the next alternative of the
second subgoal without retrying third and fourth subgoals.

The second category contains prolog programs that do a lot of backtrackings but



mapcolor(A,B,C,D.E) :-
next(A,B), next(A,C), next(A,D), next(A,E), next(B,C).

next(X,Y) :- next1(X,Y).
next(X,Y) :- next1(Y,X).

nextl(green,red).
nextl(green,yellow).
nextl(green,blue).
nextl(red,yellow).
nextl(red,blue).
next1(yellow,blue).

Figure 3: Map Coloring

a few of them are redundant. This kind of programs will use all machinery in our
schema without gaining anything. In fact, this kind of programs is the worst case for
our schema. For example, if we put subgoal next(B,C) as third subgoal in the clause
in Figure 3 instead of the last subgoal, there won’t be any redundant failures. In that
case, our system and a regular prolog system will do same backtrackings. Slow-down
in our system will be 20 percent compared with the regular system.

Deterministic programs will be in the last category. Since most of overheads of
our schema occurs during failure analysis, we want to see its effects on deterministic
programs. We tested our system with a completely deterministic program, the slow-
down in our system is only 1 percent. This result is a real encouragement because the
overhead of our schema is minimum when there are a few failures. If there are a lot of
failures, gains by avoiding redundant backtrackings will be more than overheads due
to more complex failure routine.

5 Conclusion

An intelligent backtracking schema implemented as an extension of the WAM is pre-
sented in this paper. Extensions to the WAM are tried to be kept in minimum so that
the overhead of the intelligent backtracking mechanism will be less. In the worst case,
the overhead of our schema doesn’t exceed 20 percent and it provides a good speed-up
for non-deterministic programs. OQur schema can be easily incorporated with a WAM
based prolog compiler with a little bit of effort. This is thought as a future work.

Our mechanism chooses the best choice point for backtracking which can be deter-
mined in runtime without doing a further global analysis about the program. When
we are designing our intelligent backtracking schema, we want to make sure that it can
choose the best backtracking point which can be determined by a normal execution of
a goal. Maybe more redundant choice points can be eliminated with a further global
analysis, but this will bring more extra overhead.



References

[ATt91]

[Brug4]

[Cha85]

[Cod88]

[Cod91]

[Cox81]

[Lin87]

[Lin88]

[Per82]

[War83]

Ait-Kaci, H., Warren’s Abstract Machine: A Tutorial Reconstruction, MIT
Press, Cambridge, 1991.

Bruynooghe M. and Pereiara .. M., Deduction Revision by Intelligent Back-
tracking, in Implementations of Prolog, ed. Cambell J. A., Ellis Horwood,
1984.

Chang J.-H. and Despain A. M., Semi-Intelligent Backtracking of Prolog
Based on a Static Data Dependency Analysis, Proc. of 2% Int. Symp. on
Logic Programming, Boston, 1985.

Codognet P., Codognet C. and File G., Yet Another Intelligent Backtracking
Method, Proc. of 5" Int. Conf. and Symp. on Logic Programming, Seattle,
1988.

Codognet P. and Sola T., Extending the WAM for Intelligent Backtracking,
Proc. of 8t Int. Conf. on Logic Programming, Paris, 1991.

Cox P. and Pietrzylowski T., Deduction Plans: A Basis for Intelligent Back-
tracking, IEEF, PAMI, Vol 3, 1981.

Lin Y-J. and Kumar V., An Intelligent Backtracking Schema for Prolog,
Proc. of 4" Int. Symp. on Logic Programming, San Francisco, 1987.

Lin Y-J. and Kumar V., A Data-Dependency Based Intelligent Backtracking
Schema for Prolog, J. Logic Programming, Vol 4, 1988.

Pereiara L.. M. and Porto A., Selective Backtracking, in Logic Programming,
ed. Clark K. L. and Tarnlund S.-A., Academic Press, 1982.

Warren, D.H.D., An Abstract Prolog Instruction Set, SRI Technical Report
309, 1983.



