
Selecting Choice Points in

An Intelligent Backtracking Schema

Ilyas Cicekli

Dept� of Comp� Eng� and Info� Sc�

Bilkent University

����� Bilkent� Ankara� Turkey

e�mail� ilyas�bilkent�edu�tr

Abstract

We present a runtime intelligent backtracking method for prolog programs

to avoid redundant failures� The method presented in this paper selects the
best choice point as a backtracking point during the failure of a procedure call to

avoid the same failure� The chosen backtracking is the best choice point that can
be determined in runtime during execution of a goal without a further analysis�

The modi�cation of the Warren Abstract Machine �War��� is kept in minimum
to implement our schema�

� Introduction

The backtracking method used in a standard Prolog implementation is naive back�
tracking� In the naive backtracking� when a goal fails the backtracking is done to the
most recent choice point �last alternative� although this choice point may be nothing
to do with that failure� In this approach� a lot of unnecessary backtrackings will be
done while the same failure occurs many times� An intelligent backtracking method
analyze failures of a procedure call to choose the proper choice point to avoid redundant
backtrackings� The chosen choice point may not be the most recent choice point� In
other words� alternatives of choice points between the most recent one and the chosen
one are discarded without retrying them� If they were retried� the system would have
reencountered with the same failure�

Many intelligent backtracking schemes �Bru��� Cha��� Cod��� Cod	
� Cox�
� Lin���
Lin��� Per�� are presented to avoid unnecessary backtracking steps� Early works in
intelligent backtracking �Bru��� Cox�
� Per�� are implemented as prolog interpreters�
Implementations of later works �Lin��� Lin��� Cod��� Cod	
 are WAM based systems�
Direct comparisons of early works with later works may not give fruitful results because
the machinery used in early works are much slower than the WAM based implementa�
tions in later works� An implementation of an intelligent backtracking mechanism in a
prolog interpreter may get much speed�up in terms of cpu time than an implementation
of the same mechanism in a WAM based system� The reason is that the overhead of






the intelligent backtracking may be more costly in a WAM based system because a
WAM based system is a very e�cient implementation of Prolog�

An intelligent backtracking method can be only useful if our gains from it are much
greater than its overheads� So� the chosen intelligent backtracking method should
have small overheads� The overhead can be only minimum with small and localized
extensions to the original system� For this reason� most of the intelligent backtracking
methods mostly concentrate on uni�cation algorithm which is the place of a failure and
failure routine that performs backtracking operation�

All intelligent backtracking methods for Prolog assume that skipped alternatives
are procedures without any side e�ects� For example� skipped alternatives wouldn�t
have done any assert or retract operations� or any input or output� If this is the case�
a prolog system with an intelligent backtracking method may behave di�erently than
a normal prolog system�

The intelligent backtracking schema presented in this paper is implemented as an
extension of the WAM same as systems in �Lin��� Cod��� Our mechanism is similar
to mechanisms used in those systems except that how we keep reasons of a failure
and how we �nd them� In the following sections� details of our system are given�
In Section �� a general discussion about failure and intelligent backtracking is given�
After the implementation of our schema is given in Section �� its performance results
are discussed in Section ��

� Analysis of Failure

A failure normally occurs in a prolog system when the uni�cation algorithm fails to
match two terms� Since a failure occurs� the system should backtrack and try another
alternative� The question is that how far the system should backtrack to �nd a new
alternative� A normal prolog system naively tries the most recent choice point� But
this most recent alternative may not �x the cause of the last failure and the same
failure may occur again� We want to choose a proper choice point in an intelligent
backtracking mechanism so that we will not encounter with the same failure�

When a procedure call fails� the system should backtrack a choice point between the
most recent one and the shallow backtracking point� The shallow backtracking point
is the choice point of the procedure being called or the choice point of its �rst ancestor
which has a choice point� The shallow backtracking point indicates the furthest choice
point to which the system can backtrack during a failure� If the shallow backtracking
point is the most recent choice point� this is known as shallow backtracking� In that
case� we have to try the most recent one� If the shallow backtracking point is not the
most recent choice point� in that case the point that the system will backtrack depends
on reasons of the failure of that procedure call� But� if reasons of the failure of that
procedure call points to a choice point which is older than the shallow backtracking
point� we can only again backtrack upto the shallow backtracking point� If they indicate
a younger choice point� the system should backtrack to that choice point�

The procedure call s�X� fails when the goal p�X� is executed with respect to the
prolog program in Figure 
�a� The reason of that failure is that the variable X was
bound to 
 by the procedure q�
� In the time of that failure� we have three choice
points� These choice points are choice points of procedures p�
� q�
 and r�
 in the
creation order� The most recent choice point is the choice point of r�
� The shallow



p�X� �� q�X�� r�X�� s�X�� q�
�� r�
�� s����
p�X�� q���� r�Z��

a� Program �� Procedure Failure With Single Reason

p�X�Y� �� q�X�� r�Y�� t�Z�� s�X�Y�� q�
�� r�a�� t�
�� s�
�b��
p�X�Y�� q���� r�b�� t���� s���a��

b� Program �� Procedure Failure With Two Reasons

Figure 
� Sample Prolog Programs For Failure

backtracking point is the choice point of p�
 since the procedure s�
 doesn�t have a
choice point and the procedure p�
 is the �rst ancestor of the procedure s�
 which has
a choice point� So� when the procedure call s�X� fails we can backtrack upto the choice
point of the procedure p�
 in the best case� The reason of the failure of the procedure
call indicates the choice point of the procedure q�
 since that choice point was the
most recent choice point when the variable X was bound to a value created by the �rst
clause of q�
� Since the choice point of q�
 is younger than the choice point of p�
�
we have to backtrack the the choice point of q�
� We don�t have to retry alternatives
of r�
 because they cannot �x the reason of that failure since a variable is bound to a
value once in Prolog� If we submit another goal p�
� with respect to the same program
in Figure 
�a� we will have a similar situation� The di�erence will be that the variable
X is bound to a value created before the choice point of p�
� On other words� the
reason of the failure points a choice point which is older than the choice point of p�
�
The system should backtrack to the choice point of p�
 because that is the furthest
choice point we can backtrack in that case�

In the previous example� the procedure call s�X� has just a single reason for the
failure because the procedure s�
 has a single alternative� In general� a failure of a
procedure call can have more than one reason� In this case� each reason will point a
choice point and we choose the reason which points the youngest choice point as the
reason of the failure of that procedure call� If we submit the goal p�X�Y� with respect
to the program in Figure 
�b� the procedure call s�X�Y� will fail after two alternatives
of the procedure s�� are tried� In this case� we will have two reasons for the failure of
that procedure call� The �rst one is that the second argument of the procedure call
cannot unify with constant b and the second reason is that the �rst argument of the
procedure call cannot unify with constant �� The �rst reason points to the choice point
of q�
 since the variable X is bound to a value created by the �rst clause of q�
� The
second one points to the choice point of r�
 since Y is bound by the �rst clause of
r�
� Since the choice point of r�
 is younger� it is chosen as a reason of the failure of
that procedure call� In that time� the shallow backtracking point is the choice point
of p�� since s�� doesn�t have any choice point and p�� is its �rst ancestor having a
choice point� Since the choice point of p�� is older� the choice point of r�� is chosen as
backtracking point for that failure�



� Implementation of Intelligent Backtracking

To implement our intelligent backtracking method� we updated the Warren Abstract
Machine �WAM� to incorporate our schema� In the rest of the discussion� a familiarity
with the WAM is assumed� The full discussion of the WAM can be found in �War��
and �A��t	
�

From the discussion in Section �� our version of WAM has to have two main capa�
bilities�

� It should be able to handle shallow backtracking points� At a certain time during
the execution� the system should be able to access the current shallow backtrack�
ing point� It also should be able to maintain a shallow backtracking point link
among choice points�

� It should be able to maintain reasons of the failure of a procedure call� It also
should be able to �nd the choice point which was the shallow backtracking point
during binding of the variable causing a failure�

In the following two subsections� we will discuss these two subjects� To get these
capabilities� certain WAM instructions� the structure of choice points and the failure
routine are changed in our implementation�

��� Shallow Backtracking Points

The shallow backtracking point at a certain time points to the choice point of the
procedure that we are in or the choice point of one of its ancestors� If the procedure
that we are in has a choice point� the shallow backtracking point will be its choice point�
If it doesn�t� the shallow backtracking point will be the choice point of its youngest
ancestor of that procedure such that it has a choice point� An ancestor of a procedure
is the procedure calling that procedure or ancestor of the calling procedure�

We will introduce a new register SB �Shallow Backtracking Point� to hold the
shallow backtracking point� This register will point to a choice point in the local stack
at a certain time� The register SB will be updated with a new choice point when that
choice point created by a try instruction� The old value of the register SB will be saved
in the new choice point by that try instruction� During a backtracking� the register will
be set to point to the backtracked choice point� In fact� that choice point will be the
most recent choice point at that time� Also� trust instructions will restore the register
SB from the value stored in the choice point being discarded by that trust instruction�

This SB register is saved in environments by allocate instructions same as saving
the environment register E except that the register SB is not updated by allocate

instruction� The reason saving it in environments is that it can be restored by the value
stored in the current environment by proceed instructions� When a proceed instruction is
executed� we get out from a context of a procedure and return back to the context of one
of its ancestors� Since that ancestor has an environment and its shallow backtracking
point is saved in its environment� the register SB can be restored from that value�

In Figure �� a sample prolog program and its local stack are given when the �rst
clause of procedure t is entered� As seen in that �gure� shallow backtracking points in
choice points of procedures r and s point to the choice point of q� Since the register



Local Stack

chpt of p

env of p

chpt of q

env of q

chpt of r

chpt of s

chpt of t

��z

�

�z

�

�z

��z

�

�z

�

�z

SB
Links

�

p �� q� t�
p�

q �� r� s�
q�

r�

r�

s�

s�

t�

t�

Figure �� Shallow Backtracking Links

SB points to the choice point of procedure p when the �rst clause of p is entered� that
value is saved in the environment of the �rst clause of p�

��� Finding Reasons of A Failure

A procedure call fails during uni�cation of head arguments� Uni�cation instructions
used in head matching can be seen in two groups� Instructions in the �rst group �eg�
get constant and unify constant � try to unify a variable with a speci�c ground term�
A failure occurs when that variable is bound to a ground term which is di�erent than
that speci�c ground term� The second group instructions �eg� get val and unify val�
are complete uni�cation instructions which take two variables to be uni�ed� In this
case� a failure occurs when those variables are bound to two di�erent ground terms� In
the �rst case� the binding time of that variable determines the reason of that failure�
In the second case� the youngest one of binding times of two variables plays role in the
determination of the reason of that failure� In both cases� the reason of the failure will
point to the choice point which was the shallow backtracking point during the binding
causing that failure�

Since a failure of a procedure call can have more than one reason� our implemen�
tation should be able to handle these reasons� But we only need the youngest one
of reasons of a procedure call failure because we choose the youngest one as a back�
tracking point� To store the youngest reason of a failure� we will reserve a space in
choice points� After this point� we will call that �eld in choice points as RB �Reason
Backtracking Point�� This �eld will be initialized by a special value during the creation
of that choice point by try instructions� During a failure� the RB �eld of the choice
point indicated by the register SB may be updated with the reason of that failure� It
is only updated with the reason of the failure� if that reason is younger than the value
stored in RB �eld and older than the value in SB register� So� RB �eld will always
held the youngest reason of a procedure failure� The RB �eld of a choice point may be
copied into the RB �eld of its parent when that choice point is discarded� A parent of



a choice point is pointed by SB value saved in that choice point�
In this mechanism� we have to be able to �nd ages of variables� Since we are only

interested in ages of variables causing failure� we have to only be able to �gure out
ages of variables bound to ground terms� The age of a variable depends on ages of
trailed bindings in its dereference chain and age of the ground term at the end of its
dereference chain� The age of a trailed binding is the choice point indicated by SB
register during that binding� If there is no trailed bindings in the dereference chain of
a variable� the age of that variable is same as the age of the ground term at the end of
the dereference chain�

The age of a ground term can be found from its location in the heap� The age of
a ground term is the choice point indicated by SB register during the creation of heap
locations for that ground term� Because structures and lists are saved in the heap�
their heap addresses help to �nd ages of variables bound to them� But variables bound
to constants introduce some complications because constants may be copied directly
into variables during bindings of those variables� So� we are not able to �nd ages of
those kinds of variables in the original WAM� For this reason� constants are also put
into the heap same as structures and lists� and variables are bound to these constants
in the heap� On other words� constants are treated same as structures and lists in our
mechanism�

The age of a trailed variable can be �gured out from trailed bindings in the deref�
erence chain of that variable� To �nd the age of a trailed binding easily� we use two
new extra entries for each trailing operation� During the binding of a variable to a
value� that variable is bound to the �rst extra trail entry and that trail entry is bound
to that value� The value of SB register is stored in the second extra trail entry during
that binding� From the stored SB value for a trailing operation� we �nd out the age of
that trailed binding� The age of a trailed variable is equal to the age of the youngest
trailed binding in its dereference chain�

� Performance Results

We extended the byte emulator of the WAM based system of ALS �Applied Logic
Systems� Prolog to implement our mechanism� To see gains and overheads of our
system� we tested it with programs in three categories in addition to standard test
programs for intelligent backtracking�

The �rst category includes programs which do a lot of unnecessary backtrackings
in a regular prolog system� Of course� our system will give a good performance in these
programs� because it will avoid a lot of redundant failures� A map coloring program
given in Figure � can be a good example for this category� In a regular prolog system�
there will be 
�� failures before it gets a solution� In our mechanism there will be only

� failures� There will be � times speed�up in our system in terms of cpu time for that
example� In that program� the last subgoal fails for �rst values of variables B and C�
In a regular prolog system� all alternatives of third and fourth subgoal will be tried
before the second goal is retried to get another value for variable C although they are
not responsible from the binding of variables B and C� In our schema� when the last
subgoal is completely failed� the system will backtrack to the next alternative of the
second subgoal without retrying third and fourth subgoals�

The second category contains prolog programs that do a lot of backtrackings but



mapcolor�A�B�C�D�E� ��
next�A�B�� next�A�C�� next�A�D�� next�A�E�� next�B�C��

next�X�Y� �� next
�X�Y��
next�X�Y� �� next
�Y�X��

next
�green�red��
next
�green�yellow��
next
�green�blue��
next
�red�yellow��
next
�red�blue��
next
�yellow�blue��

Figure �� Map Coloring

a few of them are redundant� This kind of programs will use all machinery in our
schema without gaining anything� In fact� this kind of programs is the worst case for
our schema� For example� if we put subgoal next�B�C� as third subgoal in the clause
in Figure � instead of the last subgoal� there won�t be any redundant failures� In that
case� our system and a regular prolog system will do same backtrackings� Slow�down
in our system will be �� percent compared with the regular system�

Deterministic programs will be in the last category� Since most of overheads of
our schema occurs during failure analysis� we want to see its e�ects on deterministic
programs� We tested our system with a completely deterministic program� the slow�
down in our system is only 
 percent� This result is a real encouragement because the
overhead of our schema is minimum when there are a few failures� If there are a lot of
failures� gains by avoiding redundant backtrackings will be more than overheads due
to more complex failure routine�

� Conclusion

An intelligent backtracking schema implemented as an extension of the WAM is pre�
sented in this paper� Extensions to the WAM are tried to be kept in minimum so that
the overhead of the intelligent backtracking mechanism will be less� In the worst case�
the overhead of our schema doesn�t exceed �� percent and it provides a good speed�up
for non�deterministic programs� Our schema can be easily incorporated with a WAM
based prolog compiler with a little bit of e�ort� This is thought as a future work�

Our mechanism chooses the best choice point for backtracking which can be deter�
mined in runtime without doing a further global analysis about the program� When
we are designing our intelligent backtracking schema� we want to make sure that it can
choose the best backtracking point which can be determined by a normal execution of
a goal� Maybe more redundant choice points can be eliminated with a further global
analysis� but this will bring more extra overhead�



References

�A��t	
 A��t�Kaci� H�� Warren�s Abstract Machine� A Tutorial Reconstruction� MIT
Press� Cambridge� 
		
�

�Bru�� Bruynooghe M� and Pereiara L� M�� Deduction Revision by Intelligent Back�

tracking� in Implementations of Prolog� ed� Cambell J� A�� Ellis Horwood�

	���

�Cha�� Chang J��H� and Despain A� M�� Semi�Intelligent Backtracking of Prolog

Based on a Static Data Dependency Analysis� Proc� of �nd Int� Symp� on
Logic Programming� Boston� 
	���

�Cod�� Codognet P�� Codognet C� and Fil�e G�� Yet Another Intelligent Backtracking
Method� Proc� of �th Int� Conf� and Symp� on Logic Programming� Seattle�

	���

�Cod	
 Codognet P� and Sola T�� Extending the WAM for Intelligent Backtracking�
Proc� of �th Int� Conf� on Logic Programming� Paris� 
		
�

�Cox�
 Cox P� and Pietrzylowski T�� Deduction Plans� A Basis for Intelligent Back�

tracking� IEEE PAMI� Vol �� 
	�
�

�Lin�� Lin Y�J� and Kumar V�� An Intelligent Backtracking Schema for Prolog�
Proc� of �th Int� Symp� on Logic Programming� San Francisco� 
	���

�Lin�� Lin Y�J� and Kumar V�� A Data�Dependency Based Intelligent Backtracking

Schema for Prolog� J� Logic Programming� Vol �� 
	���

�Per�� Pereiara L� M� and Porto A�� Selective Backtracking� in Logic Programming�
ed� Clark K� L� and Tarnlund S��A�� Academic Press� 
	���

�War�� Warren� D�H�D�� An Abstract Prolog Instruction Set� SRI Technical Report
��	� 
	���


