
Variable Ages In A WAM Based System

Ilyas Cicekli
Dept� of Comp� Eng� and Info� Sc��Bilkent University� ����� Bilkent�Ankara�Turkey

Abstract

We present a new method to represent variable bindings in the Warren Abstract
Machine �WAM�� so that ages of variable bindings can be easily found using this new
representation� The age of a variable bound to a ground term will be the youngest
choice point such that backtracking to that choice point can make that variable an
unbound variable again� In other words� the age of a variable bound to a ground term
will be the age of the youngest one of bindings causing that variable to be bound to that
ground term� Variable ages are used in the process of �guring out backtracking points
in an intelligent backtracking schema� We also introduce an algorithm to compute
variable ages and justi�cations why it works�

� Introduction

The Warren Abstract Machine �WAM� is an abstract machine for Prolog execution
which consists an instruction set and several data areas on which instructions operate�
The WAM is recognized as a breakthrough in the design of Prolog systems and other
computational logic systems by the logic programming community� Many commercial
	
� �
� and noncommercial Prolog systems based on the WAM are implemented during
last decade� During discussions in this paper� we will assume that the reader has a
familiarity with the WAM� Details of the WAM can be found in Warren�s original
paper 	��� and Kaci�s tutorial book on the WAM 	���

The backtracking method used in a standard Prolog implementation is known as
naive backtracking� In naive backtracking� when a goal fails backtracking is done to
the most recent choice point during that failure �last alternative� although this choice
point may be nothing to do with that failure� In this approach� a lot of unnecessary
backtrackings will be done while the same failure occurs many times� An intelligent
backtracking method analyzes reasons of failures to choose proper choice points to
avoid redundant backtrackings� The chosen choice point may not be the most recent
choice point during that failure� In other words� alternatives of choice points between
the most recent one and the chosen one are discarded without retrying them� If
they were retried� the system would have reencountered with that same failure� Many
intelligent backtracking schemes 	�� �� �� �� �� �� �� ��� ��� ��� ��� are presented to avoid
unnecessary backtracking steps� Early works in intelligent backtracking 	�� �� ��� are
implemented as Prolog interpreters� Implementations of later works 	�� �� �� �� are
WAM based systems�

Our intelligent backtracking schema whose some parts are presented in this paper
is implemented as an extension of the WAM same as systems in 	�� ��� Our mechanism
is similar to mechanisms used in those systems except that how we keep uni�cation
information for variable bindings and how we �nd reasons of failures� The mechanism
we proposed is naturally integrated with the WAM architecture� and our performance



results are comparable with results with systems in 	�� �� even though we do not
present our performance results here� We concentrate on a new representation for
variable bindings in the WAM� so that ages of variables can be easily found using this
new representation� The mechanism to �nd ages of variables causing failures is the
central part of any intelligent backtracking schema�

In the following section� we will give a set of observations about WAM variables
and their bindings� The correctness of the new representation for variable bindings
in Section � depends on some of those observations� After procedure backtracking
points which play important roles in the determination of variable ages are introduced
in Section �� we present uni�cation graphs to make a concrete de�nition for variable
ages for Prolog variables in Section �� In Section �� we give a new representation for
bindings of WAM variables and present an algorithm to �nd ages of WAM variables
bound to ground terms�

� WAM Variables

A variable in the WAM is a chain of locations ending with an unbound location or a
location holding a ground term� An unbound location holds a reference to itself� and
a ground term can be a structure� a list or a constant�

A binding is an operation of putting a reference to a location into an unbound
location� Locations can live on the heap or on the stack� If one of locations involved
in a binding holds a ground term� a reference to that location is put into the other
unbound location except when that ground term is a constant� In that case� that
constant is directly copied into that unbound location� In a real implementation�
references to structures and lists are tagged pointers� During binding of two unbound
locations� following rules � are applied in the WAM�

Binding Rule � A heap location is never bound to a stack location� If an unbound
heap location and an unbound stack location are going to be bound� the stack
location must point to the heap location�

Binding Rule � If both of unbound locations live on the same data area �the stack
or the heap�� a younger �most recently created� location must point to an older
�less recently created� location�

These rules not only avoid dangling references in memory areas but also improve
e�ciency by shrinking lengths of reference chains and avoiding unnecessary trailing
operations� During binding of an unbound location� if that location is created be
fore the most recent choice point� a trailing operation is performed for that location�
Trailing in the WAM means that saving the address of a bound location which was
older than the most recent choice point during the binding of that location� During a
backtracking� a bound location can be unbound again if that location was bound after
that backtracked choice point�

If we throughly analyze e�ects of binding rules above� we can deduct the following
observations about variables in the WAM� Some of these observations will be referred

�These rules are satis�ed by always binding a location of higher address to a location of lower

address in the following WAM memory layout� The stack is allocated at higher addresses than the

heap in the same global address space� The heap and the stack grows from lower addresses to higher

addresses�



when the correctness of our new representation for variables is demonstrated in Sec
tion ��

Observation ��� Stack locations can only occur as a subchain pre�x in the reference
chain of a variable�

This observation says that stack locations in a variable are grouped as a subchain
and occur before heap locations in that variable� In other words� stack locations will
appear contiguously and early in the reference chain of a variable and will not mix
with heap locations in that chain� This observation is an immediate consequence of
the �rst binding rule�

Observation ��� Stack and heap locations in a variable are ordered from younger
locations to older locations in terms of their creation time� This may only be violated
by last two heap locations in the reference chain of a variable if the last heap location
contains a ground term�

This observation states that stack locations in a subchain pre�x of a variable are
ordered among themselves and heap locations are ordered among themselves� But it
does not say that all stack locations are younger than heap locations in that variable�
The reason that this condition may be violated by last two heap locations is that an
unbound heap location is directly bound to another heap location containing a ground
term during their binding operation� In fact� this is only true for locations containing
lists and structures in the original WAM because constants themselves are copied into
unbound locations�

From Observations 
�� and 
�
� we can get the following observation about creation
times of locations of variables in the WAM� If location L� is younger than location L��
and ctL�

and ctL�
are creation times of L� and L�� we will say that ctL�

� ctL�
�

Observation ��� Let S�� � � � � Sn be stack locations and H�� � � � �Hm be heap locations
in the reference chain of a variable where n � �� m � � and n � m � �� Let
ctS�� � � � � ctSn and ctH�

� � � � � ctHm be their creation times� respectively� Following condi�
tions hold for this variable�

�� The order of locations in the reference chain is S�� � � � � Sn�H�� � � � �Hm�

�� If this variable ends with an unbound location� ctS� � � � �� ctSn and ctH�
� � � ��

ctHm hold for this variable�

�� If this variable has two heap locations in its reference chain and its last location
Hm contains a ground term� ctS��� � ��ctSn and ctH�

� � � ��ctHm�� hold for this
variable� The relation ctHm���ctHm may or may not hold�

When an unbound location L� is bound to another location L�� if the creation time
of L� is older than the most recent choice point� a trail entry for L� is created during
binding of L� to L�� So� L� can be unbound when a backtracking occurs to the choice
point in question� If the creation time of L� is younger than the most recent choice
point� no trail entry is created for that location� Thus� we will have two kinds of
bindings� trailed and untrailed bindings� We will use notation ctL�L�

for the creation
time of binding of L� to L��



Observation ��� Let L�� � � � � Ln be locations of a variable� ctL�L�
� � � � � ctLn��Ln

holds for bindings in that variable� The only exception is that ctL�L�
� ctL�L�

may not
hold if binding of L� to L� is untrailed� and L� is a stack location�

This observation guarantees that bindings in a variable will be sorted from older bind
ings to younger bindings� The reason that this observation holds is that variables are
dereferenced by WAM uni�cation instructions before binding operations� This means
that an unbound location at the end of the reference chain of a variable is actually
bound to another unbound location or a location containing a ground term� Of course�
this binding will be younger than other bindings in that variable� Because variables are
not dereferenced by instructions get variable and unify variable� we have the excep
tion for the �rst binding� These instructions bind a new unbound location to the �rst
location of a variable� Of course� this binding won�t be younger than other bindings
in that chain and won�t be trailed�

Observation ��� If there are both untrailed and trailed bindings in a variable� all
untrailed stack locations precede trailed stack locations and all untrailed heap locations
precede trailed heap locations in the reference chain of that variable�

Since the correctness of this observation may not be easily seen� we will try to give
justi�cation behind this observation instead of giving a formal proof� Let assume that
we have just a single binding bindingL�L�

in the reference chain of a variable and we
are going to bind L� to L�� We will also assume that these locations live on the same
data area� From observations on creations times of locations� we will have ctL�

�ctL�
�

We can have following two cases�

�� If bindingL�L�
is untrailed� bindingL�L�

can be trailed or untrailed� In fact�
bindingL�L�

will be trailed if ctL�
is older than the most recent choice point and

it will be untrailed otherwise�


� If bindingL�L�
is trailed� bindingL�L�

will be trailed too� Since bindingL�L�
is

trailed� ctL�
must be older than the most recent choice point and ctL�

must be
older too by Observation 
��� So� bindingL�L�

will be trailed too�

Note that bindingL�L�
may be untrailed although bindingL�L�

is trailed if L� is a stack
location and L� and L� are heap locations� In general� a variable will be in the following
form if it contains both trailed stack and heap locations�

S�

u
� � � �

u
� Sl

t
� � � �

t
� Sn

t
� H�

u
� � � �

u
� Hk

t
� � � �

t
� Hm

where S�� � � � � Sn are stack locations� H�� � � � �Hm are heap locations� and
u
� and

t
�

represent untrailed and trailed bindings� respectively�

� Procedure Backtracking Points

In a regular Prolog system� a backtracking occurs to the most recent choice point
when a failure occurs due to a uni�cation failure� This failure occurs because a vari
able bound to a ground term cannot be uni�ed with a di�erent ground term or the
uni�cation algorithm cannot unify two variables bound to two di�erent ground terms�



Since a variable bound to a ground term is responsible from that failure� the reoccur
rence of that failure can only be avoided by backtracking to a choice point such that
this variable won�t be bound to that ground term when that same uni�cation occurs�
So� a backtracking to the most recent alternative in a regular Prolog system may not
�x the problem and that same failure may occur again� Thus� we should backtrack to
the youngest choice point such that the variable causing the failure can be unbound
again� This choice point will be called as the reason of that failure� We can also avoid
that failure by backtracking to �rst alternative of the clause in which that failure oc
curs� This means that we will completely skip the clause where the uni�cation causing
that failure occurs� Of course� the youngest one of these two points is going to be our
backtracking point for that failure in an intelligent backtracking schema� Now� we will
give a de�nition to formally describe one of these points�

De�nition ��� �Procedure Backtracking Point� The procedure backtracking
point at a certain time of execution is the choice point of the current procedure in
which we are or the choice point of its �rst ancestor which has a choice point�

When a failure occurs� the system should backtrack to a choice point between the
most recent one and the procedure backtracking point� The procedure backtracking
point indicates the furthest choice point to which the system can backtrack during a
failure� If the procedure backtracking point is equal to the most recent choice point�
this is known as shallow backtracking� In that case� we have to try the most recent
choice point� If the procedure backtracking point is not the most recent choice point�
in that case the point that the system will backtrack depends on the reason of that
failure� But� if the reason of that failure indicates a choice point which is older than
the procedure backtracking point� we can only again backtrack up to the procedure
backtracking point� By backtracking to the current procedure backtracking point�
we completely skip the clause where the uni�cation causing that failure occurs� In
other words� we won�t reencounter with that same failure because we are not going to
execute that uni�cation again�

We introduce a new register PB �Procedure Backtracking Point� to hold the proce
dure backtracking point in addition to registers in the original WAM architecture� The
register PB will be updated with a new choice point when that choice point created
by a try instruction� The old value of the register PB will be saved in the new choice
point by that try instruction� During a backtracking� this register will be set to point
at to the backtracked choice point� In fact� that choice point will be the most recent
choice point at that time� The register PB is also restored from the saved value in a
choice point when that choice point is discarded�

This PB register is saved in environments by allocate instructions same as saving
the environment register E except that the register PB is not updated by allocate
instruction� The reason saving it in environments is that it can be restored from
the stored value in the current environment by proceed instructions� When a proceed
instruction is executed� we get out from a context of a procedure and return back
to the context of one of its ancestors� Since that ancestor has an environment and
its procedure backtracking point is saved in its environment� the register PB can be
restored from that value�



g � �r X� �p Y� �q Z

Notation�

X� �
p

Y
Variables X and Y were uni�ed
when the choice point of proce�
dure p was the procedure back�
tracking point�

agesetXY is the set of labels of

edges on the path from X to Y �

agesetXg � frg
agesetY g � fr� pg
agesetZg � fr� p� qg

Figure �� A Uni�cation Graph

� Uni�cation Graphs

We will introduce uni�cation graphs to represent uni�cations of variables in a Prolog
program� These graphs will be used to describe age sets of variable bindings via a
single uni�cation or a set of uni�cations� In this section� the discussion about variable
ages will be given in terms of uni�cation ages� and we will give new representation for
bindings of WAM variables and discuss variable ages in binding ages of WAM variables
in the following section�

A uni�cation graph for a set of variables is a labeled undirected graph such that
vertices of that graph are variables in that set and an edge represents the uni�cation
of variables indicated by two vertices� The label on an edge indicates the age of that
uni�cation�

De�nition ��� �Age of Uni�cation� The age of a uni�cation is the procedure back�
tracking point during that uni�cation�

The age of a uni�cation indicates the choice point such that backtracking to that
choice point can avoid the reoccurrence of that uni�cation again� In other words�
backtracking to the age of a uni�cation will unbind a variable which was bound because
of that uni�cation� In fact� the alternative to which the system backtracks is the �rst
alternative of the prolog clause containing that uni�cation�

Figure � gives a uni�cation graph for three variables X� Y� Z and a ground term
g� Labels on edges are names of procedures whose choice points are procedure back
tracking points during those uni�cations� In that example� X is uni�ed with Y and g
such that procedure backtracking points during these uni�cations are choice points of
procedures p and r � respectively� During the uni�cation of Y and Z � the choice point
of procedure q is the procedure backtracking point� Note that� all variables are bound
to ground term g as a result of three uni�cations in that graph� The reader should
note that labels on edges don�t re�ect times of uni�cations� Three uni�cations given
in the graph in Figure � can be performed in any order�

De�nition ��� �Age Set of Variable Binding� The age set of a binding of vari�
able X to another variable Y �or a ground term	 in a uni�cation graph is the set of
labels of edges on the path from X to Y� Notation agesetXY will be used to describe the
age set of binding of X to Y�

The age set of binding of X to Y is the set of all choice points such that backtracking
to one of them will break the path from X to Y� In other words� X and Y won�t be
bound to each other after that backtracking� Figure � gives age sets of bindings of



variables in that graph to the ground term g� For example� backtracking to one of
choice points of procedure p� q� and r will break the link between Z and g�

Although we are able to �nd age sets of bindings of any two variables� our main
goal is to �nd age sets of bindings of variables to ground terms because those variables
cause failures� The algorithm to �nd age set of two vertices in a uni�cation graph is
trivial� We �nd the path between these vertices and labels of edges in that path make
the age set of those vertices�

De�nition ��� �Age of Variable Binding� The age of binding of variable X to
variable Y is the youngest age in agesetXY � Notation ageXY will be used to describe
the age of binding of X to Y� We will also use the notation ageX to describe the age
of binding of X to a ground term�

The age of a variable bound to a ground term indicates the youngest choice point to
which we should backtrack to unbind that variable from that ground term� So� if a
failure occurs due to a variable bound to a ground term� the youngest age in the age
set of their bindings gives the intelligent backtracking point for that failure�

� Ages of WAM Variables

In this section� we will introduce required changes to the original WAM so that we
can �nd ages of variables causing failures during uni�cations� The age of a variable
is the �rst choice point which can avoid a failure occuring because of that variable�
A variable in the WAM is a chain of locations ending with an unbound location or a
ground term� Since ground terms cause failures during uni�cations� we will concentrate
on reference chains ending with ground terms�

The age of a ground term is the procedure backtracking point at the time of the
creation of locations for that ground term� We will use the age of a ground term
when a failure occurs directly due to the location of a ground term� To �nd out
ages of ground terms we put constants onto the heap same as structures and lists�
Thus all ground terms in our system live on the heap� Each constant is put onto the
heap during its �rst occurrence� and other variables are bound to the location of that
constant without copying it into those variables� Putting constants onto the heap and
not copying them into other locations help to �nd ages of constants� Since a same
constant may end up at di�erent locations during bindings in the original WAM� there
is no way to calculate the age of a constant in that formalism� In our representation�
there will be one value cell on the heap for a constant� and reference chains of variables
bound to that constant will end with this value cell�

If an unbound location is bound to another location� this operation is called as
binding� If a variable having a binding in its reference chain causes a failure because
of that binding� we have to backtrack to the procedure backtracking point at the time
of that binding� Note that the age of a binding may not be the most recent choice
point at the time of that binding� Ages of bindings similar to bindings of variables X
and Y in the following trivial example must be equal�

p � X��� q� Y�
� s�X�Y�� Ages of bindings of X to � and Y to �
p� are equal� namely the choice point of p�
q� Note that most recent choice points are
q� di
erent during these bindings�



Ages of both of those bindings must be the choice point of procedure p which is the
procedure backtracking point during both of those bindings� Thus� if procedure s fails
due to binding of Y to 
� we should backtrack to the choice point of p instead of the
choice point of q�

When we talk about a new representation for variable bindings in the WAM� and
the algorithm to �nd their ages� we will give new versions of de�nitions given in
Section �� These new de�nitions will be given in terms of ages of bindings of WAM
locations�

De�nition ��� �Age of Binding� The age of a binding is the procedure backtracking
point in the register PB at the time of that binding�

This de�nition corresponds to the de�nition of age of a uni�cation in uni�cation graphs�
In fact� it de�nes the age of a binding which is a result of a uni�cation� Of course� the
age of that binding must be equal to the age of the uni�cation causing that binding�

In the original WAM� when an unbound location which is protected by a choice
point is bound to another location� the address of that unbound location is pushed
onto the trail during that binding operation� This operation is known as trailing�
Since we need ages of all bindings� we will use trail entries to store information about
bindings in our representation� In our method� we will push �ve value cells onto
the trail during binding of an unbound location to another location for each binding
�trailed or untrailed�� The unbound location is bound to the �rst value cell on the
trail� and that value cell is bound to the location to which the unbound location would
have been bound in the original WAM� The second position holds the address of the
unbound location for untrailing purposes� The procedure backtracking point during
that binding is saved in the third position� That saved value is the age of that binding
and it may be di�erent than the most recent choice point during that binding� The
fourth and �fth positions hold �rst locations of variables whose uni�cations causing
this binding�

In our new representation for variable bindings� we keep pointers to �rst locations
of variables whose uni�cations causing those bindings� The question is how it can
be guaranteed that pointers in a binding won�t be dangling references after a certain
time� This question is answered by Observation 
�� in Section 
� That observation
guarantees that a binding will be discarded before locations involved in the uni�cation
causing that binding are discarded�

A uni�cation graph can map to di�erent structures of WAM variables depending
on times of uni�cations and creation times of locations for variables in that graph� Let
assume that locations for X�Y�Z and g n Figure � are created in the reverse order
�ie� creation order is g� Z� Y and X� in the same data area� We will have six di�erent
structures for reference chains of variables depending on times of three uni�cations in
that graph� Figure 
 gives reference chains for these six cases� In that �gure� an arrow
represents a binding� and a label on each arrow represents the age of that binding and
�rst locations of variables causing that binding� For example� the arrow from Z to g

with labels q� Y� Z represents the binding of Z to g� The age of that binding is q and
�rst locations of variables causing that binding are Y and Z� Note that q is also the age
of uni�cation of Y with Z in the corresponding uni�cation graph in Figure �� Although
a uni�cation graph can map di�erent structures of reference chains of WAM variables�
we have to calculate same ages for locations in those di�erent representations�



Case �� timeXY � timeY Z � timeXg

X �p�X�Y
Y �q�Y�Z

Z �r�X�g
g

Case �� timeXY � timeXg � timeY Z

X �p�X�Y
Y �r�X�g

g �
q�Y�Z

Z

Case �� timeY Z � timeXY � timeXg

Y �q�Y�Z
Z �

p�X�Y
X

�
r�X�g

g

Case �� timeXg � timeXY � timeY Z

X �r�X�g
g �

p�X�Y
Y

�q�Y�Z

Z

Case �� timeY Z � timeXg � timeXY

Y �q�Y�Z
Z �p�X�Y

g �
r�X�g

X

Case �� timeXg � timeY Z � timeXY

X �r�X�g
g �

p�X�Y
Z �

q�Y�Z
Y

Notation�

L� �p�X�Y
L� Location L� is bound to location L� because of a uni�cation such that the age

of that uni�cation is p and variables involved in that uni�cation are X and Y�

timeXY �
Time of the uni�cation of X to Y� Relations � and � will be used to indicate
younger and older relations among times�

Assumption � Creation order for variables is g� Z� Y� and X and all of them live on the same
data area �the heap��

Figure 
� Corresponding Reference Chains For A Uni�cation Graph

De�nition ��� �Age Set of Binding of Two Locations� Let X and Y be two
WAM locations and their reference chains join at some location� The age set of binding
of X to Y �or Y to X	 is a set of ages of bindings causing that junction� We will use
the notation agesetXY to represent the age set of the binding of X and Y�

De�nition ��� �Age of WAM Variable� Assume that X is a WAM variable whose
reference chain ends with location G holding a ground term� The age of X is the
youngest age in agesetXG� We will use the notation ageX to represent the age of X�

These de�nitions are counter parts of De�nitions ��
 and ��� in Section � in terms
of ages of bindings of WAM locations� If two locations whose reference chains end with
a same location� they will have a junction location� At the worst case� this junction
location will be the last location in their reference chains� For example� X and Y

in Case � of Figure 
 has the location of g as a junction location� but the junction
location for Y and Z is also Z�

De�nition ��� �Junction Set� If X and Y have a junction location Z� their junction
set is the set of all bindings from X to Z and from Y to Z� We will use the notation
junctionsetXY for the junction set of X and Y�

Each item in a junction set is a pair representing a binding� The �rst element in
that pair is also a pair of �rst locations of variables whose uni�cation causing that
binding� The second element in the binding pair is a singleton set of the age of
that binding� For example� the junction set of X and Y in Case � of Figure 
 is
equal to f��Y�Z�� fqg�� ��X�Y �� fpg�� ��X� g�� frg�g� but the junction set of Y and Z

is f��Y�Z�� fqg�g� In fact� a junction set is a special form of sets of bindings with
age sets� A set of bindings with age sets is same as a junction set except that the



g � location of the ground term at the end of the reference chain of V �
if g � V then ageV � ageg
else begin
notvisited� junctionsetV g�
visited� empty�
done� false �
while �not done � do begin
delete �rst node ��x� y�� agesetxy� from notvisited�
if �x�y� � �V�g� then
begin
agesetV g � agesetxy�
done� true�

end
else begin
for each ��w� z�� agesetwz� in junctionsetxy do
if �w� z� �� �x� y� and �w� z� �� visited and �w� z� �� notvisited then
add ��w� z�� agesetwz� to notvisited as last node�

for each ��w� z�� agesetwz� in visited do
if �x� y� and �w� z� share a common location then
begin
let �b� c� be new pair where b� c are other locations in �x� y� and �w� z��
if �b� c� �� �x� y� and �b� c� �� visited and �b� c� �� notvisited then
add ��b� c�� agesetxy � agesetwz� to notvisited as last node�

end	
add ��x� y�� agesetxy� to visited as last node�

end	
end	
ageV � youngest in agesetV g�

end�

Figure �� Algorithm to Find Age of Variable Bound To Ground Term

second element in a binding pair can be any nonempty set of ages� A binding age pair
��Y�Z�� fqg� means that Y and Z are bound to each other because of a uni�cation
whose age is q� In general� age set in a binding age pair will be ages of uni�cations
causing binding of two locations in that pair�

Figure � gives an algorithm written in a pseudo code to �nd ages of variables bound
to ground terms� In that algorithm� �rst we �nd the location g of ground term at the
end of reference chain of the given variable V � If V is equal to g� then the age of the
location of the ground term is the age of our location� Otherwise� we have to construct
agesetV g which is the set of ages of uni�cations causing the binding of V to g to �nd the
age of V � We start from the junction set junctionsetV g of V and g to accomplish this
task because at least� age of one of the bindings in junctionsetV g will be in agesetV g�
We continue to enlarge our set of bindings with age sets by adding junction sets of
variables of bindings currently in our set and new bindings constructed with joining
two bindings in our set� Two bindings can be joined to get a new binding if they share



a common variable� In other words� if there are bindings �x� y� and �y� z�� we create a
new binding �x� z�� The age set of this new binding will be the union of the age sets
of those bindings involved in that join operation� Bindings which has been considered
are put into the set visited and the rest of bindings stay in the set notvisited� New
bindings are added to notvisited if they have not been produced earlier� During the
enlargement of the set� we check whether we �nd the binding of V and g� or not� The
enlargement stops when we �nd it� This algorithm is a breath �rst search in the search
space of all possible bindings� Since the age of a variable is the youngest age in its age
set� we compute the youngest age in its age set instead of computing the whole set in
the actual implementation of this algorithm�

Example �
In this example� we will give enlargement steps while the algorithm tries to �nd the

age of Z in Case � of Figure 
� In each step� we will give sets visited and notvisited

to indicate the current search space of bindings�

� Calculate junctionsetZg and assign it to notvisited�
notvisited � f��X�Y �� fpg�g visited � fg

� Visit �X�Y � by adding junctionsetXY and results of join operations of
��X�Y �� fpg� with all bindings in visited to notvisited�
notvisited � f��Y�Z�� fqg�� ��X� g�� frg�g visited � f��X�Y �� fpg�g

� Visit �Y�Z� by adding junctionsetY Z and results of join operations of
��Y�Z�� fqg� with all bindings in visited to notvisited�
notvisited � f��X� g�� frg�� ��X�Z�� fp� qg�g
visited � f��X�Y �� fpg�� ��Y�Z�� fqg�g

� Visit �X� g� by adding junctionsetXg and results of join operations of
��X� g�� frg� with all bindings in visited to notvisited�
notvisited � f��X�Z�� fp� qg�� ��Y� g�� fp� rg�g
visited � f��X�Y �� fpg�� ��Y�Z�� fqg�� ��X� g�� frg�g

� Visit �X�Z� by adding junctionsetXZ and results of join operations of
��X�Z�� fp� qg� with all bindings in visited to notvisited�
notvisited � f��Y� g�� fp� rg�� ��Z� g�� fp� q� rg�g
visited � f��X�Y �� fpg�� ��Y�Z�� fqg�� ��X� g�� frg�� ��X�Z�� fp� qg�g

� Visit �Y� g� by adding junctionsetY g and results of join operations of
��Y� g�� fp� rg� with all bindings in visited to notvisited�
notvisited � f��Z� g�� fp� q� rg�g
visited � f��X�Y �� fpg�� ��Y�Z�� fqg�� ��X� g�� frg�� ��X�Z�� fp� qg��

��Y� g�� fp� rg�g

� Visit �Z� g�� We found agesetZg�
agesetZg � fp� q� rg

� Choose the youngest age in agesetZg as ageZ�

To optimize our algorithm� we can stop the search immediately after the binding
��Z� g�� fp� q� rg� is found during the visit to the binding ��X�Z�� fp� qg��



� Conclusion

The new method for representations of bindings of WAM variables plays an important
role in the process of �nding ages of variables bound to ground terms� Age of a variable
and the procedure backtracking point introduced here determine backtracking point
during a failure due that variable� This new representation presented here is smoothly
integrated with the original WAM architecture with small overheads� Since most of
overheads of our mechanism occur during a failure not during uni�cation process� it
is suitable for an intelligent backtracking schema�

In our mechanism� we keep uni�cation information for all bindings� The space
overhead resulted from this is not so ignorable� If could have accomplished this task
by just keeping information for certain bindings� it would have been much desirable
result� We are currently investigating this possibility�

References

	�� A��tKaci� H��Warren�s Abstract Machine� A Tutorial Reconstruction� MIT Press�
Cambridge� �����

	
� ALS Prolog Manual� Applied Logic Systems� Inc�� ���
�

	�� Bruynooghe M� and Pereiara L� M�� Deduction Revision by Intelligent Backtrack�
ing� in Implementations of Prolog� ed� Cambell J� A�� Ellis Horwood� �����

	�� Chang J�H� and Despain A� M�� Semi�Intelligent Backtracking of Prolog Based
on a Static Data Dependency Analysis� Proc� of 
nd Int� Symp� on Logic Program
ming� Boston� �����

	�� Codognet P�� Codognet C� and Fil�e G�� Yet Another Intelligent Backtracking
Method� Proc� of �th Int� Conf� and Symp� on Logic Programming� Seattle� �����

	�� Codognet P� and Sola T�� Extending the WAM for Intelligent Backtracking� Proc�
of �th Int� Conf� on Logic Programming� Paris� �����

	�� Cox P� and Pietrzylowski T�� Deduction Plans� A Basis for Intelligent Backtrack�
ing� IEEE PAMI� Vol �� �����

	�� Lin YJ� and Kumar V�� An Intelligent Backtracking Schema for Prolog� Proc� of
�th Int� Symp� on Logic Programming� San Francisco� �����

	�� Lin YJ� and Kumar V�� A Data�Dependency Based Intelligent Backtracking
Schema for Prolog� J� Logic Programming� Vol �� �����

	��� Matwin S� and Pietrzylowski T�� Intelligent Backtracking in Plan Based Deduc�
tion� IEEE PAMI� Vol �� �����

	��� Pereiara L� M� and Porto A�� Selective Backtracking� in Logic Programming� ed�
Clark K� L� and Tarnlund S�A�� Academic Press� ���
�

	�
� Quintus Prolog Reference Manual� Quintus Computer Systems Ltd�� �����



	��� Toh J� and Ramamohanrao K�� Failure Directed Backtracking� Tech� Report �����
CS Dept�� Univ� of Melbourne� Australia� �����

	��� Warren� D�H�D�� An Abstract Prolog Instruction Set� SRI Technical Report ����
�����

	��� Woo N� and Choe K�� Selecting The Backtrack Literal in The AND�OR Process
Model� Proc� of �rd Int� Symp� on Logic Programming� Salt Lake City� �����


