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Abstract

We present a new method to represent variable bindings in the Warren Abstract Machine �WAM�� so that the ages of
variable bindings can be easily found using this new representation in our intelligent backtracking schema� The age of a
variable bound to a non�variable term is the youngest choice point such that backtracking to that choice point can make
that variable an unbound variable again� The procedure backtracking point is the choice point of the procedure currently
being executed or the choice point of its �rst ancestor having a choice point� Variable ages and procedure backtracking
points are used in the process of �guring out backtracking points in our intelligent backtracking schema� Our intelligent
backtracking schema performs much better than the results of other intelligent backtracking methods in the literature
for deterministic programs� and its performance for non�deterministic programs are comparable with their results�
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� Introduction
The backtracking method used in a standard Prolog implementation is known as naive backtracking� In naive backtracking
when a goal fails� backtracking is done to the most recent choice point during that failure 	last alternative
� although this
choice point may be nothing to do with that failure� In this approach� a lot of unnecessary backtrackings will be done even
though the same failure occurs many times� An intelligent backtracking method analyzes the reasons of failures to choose
proper choice points to avoid redundant backtrackings� The chosen choice point may not be the most recent choice point
during that failure� In other words� the alternatives of choice points between the most recent one and the chosen one are
discarded without retrying them� If they are retried� the system will reencounter with that same failure�

The Warren Abstract Machine 	WAM
 is an abstract machine for Prolog execution which consists an instruction set and
several data areas on which instructions operate� The WAM is recognized as a breakthrough in the design of Prolog systems
and other computational logic systems by the logic programming community� Many commercial ��� 
�� and non�commercial
��� Prolog systems based on the WAM are implemented during the last decade� In this paper� we will assume that the
reader is familiar with the WAM� The details of the WAM can be found in Warren�s original paper �
�� and Kaci�s tutorial
book on the WAM �
��

Many intelligent backtracking schemes ��� �� �� �� �� 

� 
�� 
�� 
�� 
�� 
�� are presented to avoid unnecessary backtracking
steps� Early works in intelligent backtracking ��� �� 
�� are implemented as Prolog interpreters� Implementations of later
works ��� �� 

� 
�� are WAM based systems�

Our intelligent backtracking schema whose some parts are presented in this paper is implemented as an extension of the
WAM� like the systems in ��� 

�� Our mechanism is similar to the mechanisms used in those systems except in the way how
we keep uni�cation information for variable bindings and how we �nd reasons of failures� The mechanism to �nd the ages
of variables causing failures is the central part of any intelligent backtracking schema� In this paper we concentrate on a
new representation for variable bindings in the WAM� so that the ages of variables can easily be found� The mechanism we
propose is naturally integrated into the WAM architecture� and our performance results are better than the performance
results of other systems in ��� �� 

��

The rest of this paper is organized as follows� Section � summarizes the related research about intelligent backtracking�
Section � introduces procedure backtracking points which play an important role in the determination of variable ages� In
Section �� we present uni�cation graphs to give a concrete de�nition for variable ages of Prolog variables� In Section ��
we present a new representation for bindings of WAM variables and an algorithm to �nd ages of WAM variables bound to
non�variable terms� The mechanism used in �guring out the intelligent backtracking point for a procedure call failure is
described in Section �� Finally� we present some of the performance results in Section ��

� Related Research
The research on intelligent backtracking started in the late ���s� The initial proposals were made by Bruynooghe and Pereira
���� and Cox and Pitrzykowski ���� These two systems are implemented by extending Prolog interpreters� These methods
collect information about bindings during uni�cation and analyze it to determine the intelligent backtracking point when
failure occurs� They also retain information from a failure to ensure that a failure is not repeated for the same reason� These
methods are known as intelligent backtracking methods based on uni�cation failure analysis� Our backtracking schema has
similarities with Bruynogghe�s work in the sense that we also collect information about bindings by tagging bindings and



determine the intelligent backtracking points by analyzing these tagged bindings during failure� However our schema is
implemented as a WAM�based system� theirs is a Prolog interpreter�

Lin� Kumar and Leung�s schema �
�� 

� 
�� chooses intelligent backtracking points by doing an analysis of literals
instead of the analysis of uni�cation failures� In their early work �
��� they used the data dependency technique at the
clause level for parallel execution of logic programs� A similar mechanism is used by Woo and Choe �
�� for AND�OR
parallel process models� Lin and Kumar �

� 
�� extend their method for sequential execution of Prolog by using the data
dependency technique for the whole proof tree instead of the data dependency technique at the clause level� Later they
integrated their technique into the WAM� In their WAM�based implementation they maintain a list of goals for each goal�
called B�list� to represent goals such that backtracking to that goal may cure failures of goals in that list� They also tag all
variables to represent the data dependency graph� These tags are used to �gure out bindings causing the failure of a goal�

To reduce the overhead for constructing the data dependency graph� Chang and Despain ��� construct a worst�case data
dependency graph at compile time for each clause� Since backtrack literals are chosen at compile time� their schema has
a little bit overhead at run time� However� this method is not capable of handling better situations at run time� because
it tries to meet the requirements of the worst case� This method also needs information about possible activations of
goals before the compile time analysis� This information must be given by the user� Without this information� this static
data�dependency analysis may degenerate into the naive backtracking� So� the main responsibility is on the user and the
e�ciency of this method depends on how well the possible activations of goals are marked�

Codognet and his colleagues propose a depth��rst intelligent backtracking schema in ��� and they give its WAM�based
implementation in ���� In their schema� uni�cation instructions record the source of bindings and failure routines choose the
intelligent backtracking point and update sets of intelligent backtracking points� During uni�cations� they create a simpli�ed
version of the uni�cation graph which records the time of bindings� They also attach a set of intelligent backtracking points
to each literal� These sets are created at �rst entrances to literals� and they are maintained during the backtracking process�
To minimize the maintenance overhead of these sets� bit�vectors are used to implement them� They claim that the forward
overhead of their schema which occurs during uni�cations is 
��
�� compared with the WAM� and the backward overhead
which occurs during failures is ��� They accept that the total overhead for deterministic programs is ����

Toh and Ramamohanrao �
�� propose an intelligent backtracking schema that does not require a data�dependency
analysis or information to be collected during uni�cation� According to their method� the failed atom is itself used to �gure
out the intelligent backtracking point� Since a failure�directed mechanism is less accurate than a uni�cation�based schema�
their schema gives less accurate results compared to other uni�cation based schemes including our schema�

Most of the intelligent backtracking methods in the literature associate some kind of sets with literals to store intelligent
backtracking points� These sets are called alternative backtracking points in ��� ��� B�lists in �
��� rejected procedures in ����
witness sets in �
�� and candidate sets in ���� These sets have to be updated either during uni�cation or during failure� The
main di�erence of our method is that we do not have to maintain this kind of sets� In our method� we tag bindings during
uni�cations and use the information in tagged bindings to �gure out intelligent backtracking points during failures� The
most of the overhead in our method occurs when we try to �nd the intelligent backtracking point during a failure� In other
methods� the big percentage of the overhead of the intelligent backtracking mechanism occurs when they maintain these
sets� Since some of these methods create these sets during the uni�cation� they pay a heavy penalty even in deterministic
programs� In our mechanism� however� we pay the penalty during failures� and therefore our gain from the intelligent
backtracking mechanism in nondeterministic programs can compensate these overheads� Since our mechanism has a little
overhead during uni�cation� these overheads do not cause big penalties in deterministic programs� In fact� the forward
overhead of our schema which occurs during uni�cations is only �� ���

� Procedure Backtracking Points
In a regular Prolog system� a backtracking is made to the most recent choice point when a failure occurs due to a uni�cation�
This failure occurs because a variable bound to a non�variable term cannot be uni�ed with a di�erent non�variable term
or the uni�cation algorithm cannot unify two variables bound to two di�erent non�variable terms� Since a variable bound
to a non�variable term is responsible of that failure� the reoccurrence of that failure can only be avoided by backtracking
to a choice point such that this variable will not be bound to that non�variable term when that same uni�cation occurs�
So� a backtracking to the most recent alternative in a regular Prolog system may not �x the problem and that same failure
may occur again� Thus� we should backtrack to the youngest choice point such that the variable causing the failure can be
unbound again� This choice point will be called as the reason of that failure� We can also avoid that failure by backtracking
to the �rst alternative of the clause in which that failure occurs� This means that we will completely skip the clause where
the uni�cation causing that failure occurs� Of course� the youngest one of these two points is going to be the backtracking
point for that failure in our intelligent backtracking schema� Now� we give a de�nition to formally describe the procedure
backtracking point�

De�nition ��� �Procedure Backtracking Point� Let p be the current procedure being executed� The procedure back�
tracking point at a certain time of execution is�

� the choice point of p if p has a choice point
� the choice point of p�s �rst ancestor which has a choice point otherwise
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X
p

Y Variables X and Y were uni�ed when the choice point
of procedure p was the procedure backtracking point�

Figure 
� Uni�cation Graphs

The procedure backtracking point indicates the furthest choice point to which the system can backtrack during a failure�
When a failure occurs� the system should backtrack to a choice point between the most recent one and the procedure
backtracking point� If the procedure backtracking point is equal to the most recent choice point� this is known as shallow
backtracking� In that case� the most recent choice point is tried� If the procedure backtracking point is older than the
most recent choice point� in that case the point that the system will backtrack depends on the reason of the failure� If the
reason of that failure indicates a choice point which is older than the procedure backtracking point� we can only backtrack
up to the procedure backtracking point� By backtracking to the current procedure backtracking point� we completely skip
the clause where the uni�cation causing that failure occurs� In other words� we will not reencounter with that same failure
because we are not going to execute that uni�cation again�

In the WAM based implementation of our intelligent backtracking schema we introduce a new register PB 	Procedure
Backtracking Point
 to hold the procedure backtracking point in addition to the registers in the original WAM architecture�
The register PB is updated with a new choice point which is created by a try instruction� The previous value of the register
PB is saved in the new choice point by that try instruction� During a backtracking� this register is changed to point to the
backtracked choice point� In fact� that choice point is the most recent choice point at that time� The register PB is also
restored with the saved value in a choice point when that choice point is discarded�

The PB register is saved in the environments by the allocate instruction in the same way as saving the environment
register E� except that the register PB is not updated by the allocate instruction� The reason of saving it in environments
is that it can be restored with the stored value in the current environment by the proceed instruction� When a proceed
instruction is executed� we get out from a context of a procedure and return to the context of one of its ancestors� Since
that ancestor has an environment and its procedure backtracking point is saved in its environment� the register PB can be
restored with that value�

� Uni�cation Graphs
In this section� we introduce uni�cation graphs to represent the uni�cations of variables in a Prolog program� The aim of
this section is to de�ne the concept of the age of a variable in a Prolog environment� The age of a Prolog variable 	bound
to a non�variable term
 which causes a failure plays an important role to �gure out the intelligent backtracking point for
that failure�

A uni�cation graph for a set of variables is a labeled acyclic undirected graph such that vertices of that graph are
variables in that set and an edge represents the uni�cation of variables indicated by two vertices� The label on an edge
indicates the age of that uni�cation�

The age of a uni�cation is the procedure backtracking point during that uni�cation� The backtracking to the choice
point indicated by the age of a uni�cation can avoid the reoccurrence of that uni�cation� In other words� the backtracking
to the age of a uni�cation will completely skip the clause where that uni�cation occurs�

Figure 
�a gives a uni�cation graph for three variables X� Y� Z and a non�variable term g � Labels on edges are the
names of procedures whose choice points are the procedure backtracking points during those uni�cations� In the example�
X is uni�ed with Y and g such that the procedure backtracking points during these uni�cations are the choice points of
procedures p and r � respectively� During the uni�cation of Y and Z � the choice point of procedure q is the procedure
backtracking point� Note that� all variables are bound to non�variable term g as the result of three uni�cations in that
graph� The labels on edges do not re�ect the times of uni�cations� That is the three uni�cations given in the graph of
Figure 
�a can be performed in any order�

The age of a Prolog variable which is bound to a non�variable term is the youngest one among the choice points indicated
by the labels on the path from that variable to that non�variable term in a uni�cation graph� If a failure occurs because of
a variable which is bound to a non�variable term� the backtracking to any one of the choice points indicated by the labels
on the path from that variable to that non�variable will avoid the reoccurrence of that failure� In Figure 
�a� Z is bound to
the constant g as a result of three uni�cations with the ages p� q� and r� The age of Z is the youngest one of p� q� and r�

If a variable is bound to a complex non�varible term 	not a constant
� the age of that variable is determined depending
on which part of that term causes a failure� In Figure 
�b� X is uni�ed with the term f	Y
 and Y is uni�ed with the
non�variable term g� If X causes a failure when it is tried to be uni�ed with a non�variable term� the functor f or the
constant g can cause that failure� In the �rst case� we use the youngest one of uni�cation ages on the path from X to the



Case �� timeXY � timeY Z � timeXg

X �p�X�Y
Y �q�Y�Z

Z �r�X�g
g

Case �� timeXY � timeXg � timeY Z

X �p�X�Y
Y �r�X�g

g �
q�Y�Z

Z

Case 	� timeY Z � timeXg � timeXY

Y �q�Y�Z
Z �p�X�Y

g �
r�X�g

X

Case 
� timeY Z � timeXY � timeXg

Y �q�Y�Z
Z �

p�X�Y
X

�
r�X�g

g

Case �� timeXg � timeXY � timeY Z

X �r�X�g
g �

p�X�Y
Y

�q�Y�Z

Z

Case �� timeXg � timeY Z � timeXY

X �r�X�g
g �

p�X�Y
Z �

q�Y�Z
Y

Notation�

L� �p�X�Y
L�

Location L� is bound to location L� because of a uni�cation such that the age of that uni�cation is p and variables involved
in that uni�cation are X and Y�

timeXY � Time of the uni�cation of X to Y� Relations � and � will be used to indicate younger and older relations among times�

Assumption � Creation order for variables is g� Z� Y� and X and all of them live on the same data area �the heap��

Figure �� Corresponding Reference Chains For A Uni�cation Graph

term f	Y
 to �gure out the intelligent backtracking point� In the second case� we use the youngest one of the uni�cation
ages on paths from X to f	Y
 and from Y to g�

� Ages of WAM Variables
In this section� we present a new representation technique for bindings of WAM locations� and discuss variable ages in
terms of binding ages of WAM locations� We do not use uni�cation graphs directly in our WAM based implementation� A
uni�cation graph can be mapped into di�erent structures of WAM locations� We can calculate the age of a WAM location
corresponding to a Prolog variable in each of these di�erent structures of WAM locations�

A variable in the WAM is a chain of locations ending with an unbound location or a non�variable term� Since non�
variable terms cause failures during uni�cations� we will concentrate on reference chains ending with non�variable terms�
If an unbound location is bound to another location� this operation is called binding� If a variable having a binding in its
reference chain causes a failure because of that binding� we have to backtrack to the procedure backtracking point at the
time of that binding� Note that the age of a binding may not be the most recent choice point at the time of that binding�
In the following example� the ages of the bindings similar to the bindings of variables X and Y must be equal�

p �� X�
� q� Y��� s	X�Y
� q� Ages of bindings of X to � and Y to � are equal� namely the choice point of p�
p� q� Note that the most recent choice points are di�erent during these bindings�

The age of both of those bindings is the choice point of procedure p which is the procedure backtracking point during both
of those bindings� Thus� if procedure s fails due to binding of Y to �� we should backtrack to the choice point of p instead
of the choice point of q�

De�nition ��� �Age of Binding� The age of a binding is the procedure backtracking point in the register PB at the time
of that binding�

This de�nition corresponds to the de�nition of the age of a uni�cation in uni�cation graphs� It is obvious that the age of
a binding must be equal to the age of the uni�cation causing that binding in Prolog�

Since we need the ages of all bindings� we use extra entries to store information about bindings in our representation�
In our method� we use four value cells for each bound WAM location� The �rst value cell holds the actual value which
is stored there as a result of the binding operation� It will be a pointer to another WAM location or a constant� The
procedure backtracking point during that binding is saved in the second position� This is the age of the binding and it may
be di�erent than the most recent choice point during that binding� The third and fourth positions hold the �rst locations
of variables whose uni�cation causes this binding�

A uni�cation graph can be mapped into di�erent structures of WAM locations depending on the times of uni�cations
and creation times of locations for variables in that graph� Let us assume that the locations for X�Y� Z and g in Figure 
�a
are created in reverse order 	i�e� the creation order is g� Z� Y and X
 in the same data area� We can have six di�erent
structures for the reference chains of variables depending on the times of three uni�cations in that graph� Figure � gives the
reference chains for these six cases� In the �gure� an arrow represents a binding� and a label on each arrow represents the
age of that binding and the �rst locations of variables whose uni�cation causes that binding� For example� in Case � the



function age	V �location
 � age� f
g � location of the non�variable term at the end of the reference chain of V �
if g � V then ageV � ageg
else f notvisited � junctionsetV g �

visited � empty�
done� false �
while 	not done 
 do f

delete �rst node 		x� y
� agesetxy
 from notvisited�
if 	x�y
 � 	V�g
 then f agesetV g � agesetxy � done� true� g
else f for each 		w� z
� agesetwz
 in junctionsetxy do

if 	w� z
 �� 	x� y
 and 	w� z
 �� visited and 	w� z
 �� notvisited then
add 		w� z
� agesetwz
 to notvisited as last node�

for each 		w� z
� agesetwz
 in visited do
if 	x� y
 and 	w� z
 share a common location then f
let 	b� c
 be new pair where b� c are other locations in 	x� y
 and 	w� z
�
if 	b� c
 �� 	x� y
 and 	b� c
 �� visited and 	b� c
 �� notvisited then
add 		b� c
� agesetxy � agesetwz
 to notvisited as last node� g

add 		x� y
� agesetxy
 to visited as last node� g g
ageV � youngest in agesetV g� g

return ageV g

Figure �� Algorithm to Find Age of Variable Bound To Ground Term

arrow from Z to g with labels q� Y� Z represents the binding of Z to g� The age of that binding is q and the �rst locations
of variables causing that binding are Y and Z� Note that q is also the age of uni�cation of Y with Z in the corresponding
uni�cation graph in Figure 
�a�

De�nition ��� �Age Set of Binding of Two Locations� Let X and Y be two WAM locations and their reference chains
join at some location� The age set of binding of X and Y is the set of ages of bindings causing that junction� We will use
the notation agesetXY to represent the age set of the binding of X and Y�

De�nition ��� �Age of WAM Location� Assume that X is a WAM location whose reference chain ends with location
G holding a non�variable term� The age of X is the youngest age in agesetXG � We will use the notation ageX to represent
the age of X�

If the reference chains of two locations end in the same location� they must have a junction location� At the worst case�
this junction location is the last location in their reference chains� For example� X and Y in Case � of Figure � has the
location of g as a junction location� but the junction location for Y and Z is Z�

De�nition ��� �Junction Set� If X and Y have a junction location Z� their junction set is the set of all bindings from
X to Z and from Y to Z� We will use the notation junctionsetXY for the junction set of X and Y�

Each item in a junction set is a pair representing a binding� The �rst element in that pair is also a pair of the �rst locations
of variables whose uni�cation causes that binding� The second element in the binding pair is a singleton set of the age of that
binding� For example� the junction set ofX and Y in Case � of Figure � is equal to f		Y� Z
� fqg
� 		X�Y 
� fpg
� 		X� g
� frg
g�
but the junction set of Y and Z is f		Y� Z
� fqg
g� In fact� a junction set is a special form of sets of bindings with age
sets� A set of bindings with age sets is the same as a junction set except that the second element in a binding pair can
be any non�empty set of ages� A binding age pair 		Y� Z
� fqg
 means that Y and Z are bound to each other because of
a uni�cation whose age is q� In general� the age set in a binding age pair represents the ages of uni�cations causing the
binding of two locations in that pair�

Figure � gives an algorithm written in pseudo�code to �nd the ages of variables bound to non�variable terms� In that
algorithm� we �rst �nd the location g of a non�variable term at the end of a reference chain of a given variable V � If V is
equal to g� then the age of the location of the non�variable term is the age of V � Otherwise� we have to construct agesetV g
which is the set of ages of uni�cations causing the binding of V to g to �nd the age of V � We start from the junction set
junctionsetV g of V and g to accomplish this task because the age of at least one of the bindings in junctionsetV g will
be in agesetV g � We continue to enlarge our set of bindings with age sets by adding junction sets of variables of bindings
currently in our set and new bindings are constructed by joining two bindings in our set� Two bindings can be joined to
get a new binding if they share a common variable� In other words� if there are bindings 	x� y
 and 	y� z
� we create a
new binding 	x� z
� The age set of this new binding will be the union of the age sets of those bindings involved in that
join operation� Bindings which have been considered are put into the set visited and the rest of bindings stay in the set



notvisited� New bindings are added to notvisited if they have not been produced earlier� During the enlargement of the
set� we check whether we �nd the binding of V and g� or not� The enlargement stops when we �nd it� This algorithm is
a breath �rst search in the search space of all possible bindings� Since the age of a variable is the youngest age in its age
set� we compute the youngest age in its age set instead of computing the whole set in the actual implementation of this
algorithm�

Example �
This example shows the enlargement steps while the algorithm tries to �nd the age of Z in Case � of Figure �� At each

step� we give the sets visited and notvisited to indicate the current search space of bindings�

� Calculate junctionsetZg and assign it to notvisited�
notvisited � f		X�Y 
� fpg
g visited � fg

� Visit 	X�Y 
 by adding junctionsetXY and the results of join operations of
		X�Y 
� fpg
 with all bindings in visited to notvisited�
notvisited � f		Y� Z
� fqg
� 		X� g
� frg
g visited � f		X�Y 
� fpg
g

� Visit 	Y� Z
 by adding junctionsetY Z and the results of join operations of
		Y� Z
� fqg
 with all bindings in visited to notvisited�
notvisited � f		X� g
� frg
� 		X�Z
� fp� qg
g visited � f		X�Y 
� fpg
� 		Y� Z
� fqg
g

� Visit 	X� g
 by adding junctionsetXg and the results of join operations of
		X� g
� frg
 with all bindings in visited to notvisited�
notvisited � f		X�Z
� fp� qg
� 		Y� g
� fp� rg
g visited � f		X�Y 
� fpg
� 		Y� Z
� fqg
� 		X� g
� frg
g

� Visit 	X�Z
 by adding junctionsetXZ and the results of join operations of
		X�Z
� fp� qg
 with all bindings in visited to notvisited�
notvisited � f		Y� g
� fp� rg
� 		Z� g
� fp� q� rg
g visited � f		X�Y 
� fpg
� 		Y� Z
� fqg
� 		X� g
� frg
� 		X�Z
� fp� qg
g

� Visit 	Y� g
 by adding junctionsetY g and the results of join operations of
		Y� g
� fp� rg
 with all bindings in visited to notvisited�
notvisited � f		Z� g
� fp� q� rg
g visited � f		X�Y 
� fpg
� 		Y� Z
� fqg
� 		X� g
� frg
� 		X�Z
� fp� qg
� 		Y� g
� fp� rg
g

� Visit 	Z� g
� We found agesetZg �
agesetZg � fp� q� rg

� Choose the youngest age in agesetZg as ageZ �

To optimize our algorithm� we can stop the search immediately after the binding 		Z� g
� fp� q� rg
 is found during the
visit to the binding 		X�Z
� fp� qg
�

� Finding the Reasons of a Procedure Failure
A failure normally occurs during the uni�cation of head arguments� Uni�cation instructions used in head matching can
be divided into two groups� Instructions in the �rst group 	e�g� get constant and unify constant 
 try to unify a variable
with a speci�c non�variable term� A failure occurs when that variable is bound to a non�variable term which is di�erent
than that speci�c non�variable term� The second group instructions 	e�g� get val and unify val
 are complete uni�cation
instructions which take two variables to be uni�ed� In this case� a failure occurs when those variables are bound to two
di�erent non�variable terms� In the �rst case� the age of that variable determines the reason of that failure� In the second
case� the youngest one of the ages of two variables plays role in the determination of the reason of that failure� In both
cases� the reason of the failure will point to the choice point which is actually the procedure backtracking point during the
binding causing that failure�

A procedure call fails if all clauses of that procedure fail� The reason of the failure of that procedure call is the youngest
one of failure reasons of its clauses� To store the youngest reason of a procedure failure� we reserve a space in choice
points� After this point� we call that �eld in choice points as RB 	Reason Backtracking Point
� This �eld is initialized by a
special value during the creation of that choice point by try instructions� During a failure� the RB �eld of the choice point
indicated by the procedure backtracking point register PB may be updated with the reason of that failure� It is updated
with the reason of that failure� only if that reason is younger than the value stored in RB �eld� So� RB �eld always holds
the youngest one of failure reasons of the clauses of the procedure in question�

When a failure occurs with a failure reason R which points to a choice point� the failure routine compares R with the
value stored in register PB� If R is younger than PB� R is chosen as the backtracking point� This means that we stay in
the context of the current clause of the procedure owning the choice point indicated by PB� In other words� that clause
has not failed yet� If R is equal to PB� the clause of the procedure owning the choice point indicated by PB fails� but this
failure does not depend on any outside reason� In this case� R is again chosen as the backtracking point� If R is older than
PB� the clause fails due to an outside reason� Since the procedure has other alternatives� backtracking point is the next
alternative in the choice point indicated by PB register� Since a clause of the procedure in question fails� the reason of that
clause failure may be needed to be recorded in RB �eld of its choice point� Of course� that reason is only recorded if it is
younger than the failure reasons of previous clauses of that procedure�
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� Speedups of Intelligent Backtracking Methods w�r�t� Prolog

Since we need to choose the youngest reason among the failure reasons of the clauses of a procedure as the failure reason
of the procedure call to that procedure� we also need the failure reason of its last clause to make this decision� This means
that the choice point of a procedure should not be discarded before its last clause fails� For this reason� trust instructions
in our implementation do not discard choice points� They behave the same way as retry instructions except that they put
the address of a new WAM instruction discardfail instead of the address of the next clause in choice points� When the last
clause of a procedure fails� this new instruction discardfail is executed to discard the most recent choice point and to invoke
a failure with the reason stored in RB �eld of that choice point� This means that the procedure call is going to fail with
the youngest one of the failure reasons of its clauses� Note that we do not need to create a choice point for procedures with
a single alternative� The failure reason of the procedure call to such a procedure is the failure reason of its single clause�

� Performance Results
We have extended the byte emulator of the WAM based system of ALS 	Applied Logic Systems
 Prolog to implement
our mechanism� To observe the gains and the overheads of our system� we tested it with programs in three categories in
addition to the standard test programs for intelligent backtracking systems�

The �rst category includes programs which do a lot of unnecessary backtrackings in a regular Prolog system� Our system
gives a good performance in these programs� because it avoids a lot of redundant failures� A map coloring program given
in Figure � is a good example for this category� In a regular Prolog system� there are 
�� failures before it �nds a solution�
In our system� there are only 
� failures� In terms of cpu time� our system is � times faster than the Prolog system for
that example� In the program� the last subgoal fails for the �rst values of variables B and C� In a regular Prolog system�
all alternatives of the third and the fourth subgoals are tried before the second subgoal is retried to get another value for
variable C although they are not responsible for the binding of variables B and C� In our schema� when the last subgoal is
completely failed� the system backtracks to the next alternative of the second subgoal without retrying the third and the
fourth subgoals�

The second category contains Prolog programs that do a lot of backtrackings but only a few of them are redundant�
This kind of programs use all machinery in our schema without any gain� In fact� this kind of programs represent the worst
case for our schema� For example� if we put the subgoal next	B�C
 as the third subgoal in the clause in Figure �� there
will not be any redundant failures� In that case� our system and a regular Prolog system do the same backtrackings� The
slow�down in our system is 
� percent compared with the regular Prolog system�

Deterministic programs are in the last category� Since most of the overheads in our schema occur during the failure
analysis� we want to see its e�ects on deterministic programs� We tested our system with a completely deterministic
program� and the slow�down in our system was only ��� percent� This result is a real encouragement because the overhead
in our schema is minimum when there are few failures� In fact� this re�ects the overhead of keeping extra information for
binding operations� maintaining PB register� and storing that register in choice points and environments� If there are a
lot of failures� the gains by avoiding redundant backtrackings are more than the overheads due to a more complex failure
routine�

We also tested our implementation with certain benchmarks to compare our results to other intelligent backtracking
methods presented in ��� �� 
��� Table 
 shows speed ups and slow downs of the intelligent backtracking methods with
respect to di�erent Prolog systems� Our �gures in the table give a comparison of our intelligent backtracking scheme to
the byte�emulator of ALS Prolog� Positive numbers re�ect speed ups in intelligent backtracking schemes� and negative



numbers re�ect slow downs� Table 
 shows that speed ups of our scheme are not worse than the results of other methods
for nondeterministic programs such as naive versions of N�queens problem� circuit design problem and bad version of map
coloring problem� The good version of map coloring problem re�ects the worst case of our scheme because there are a lot of
failures in that program and we do not gain much from the intelligent backtracking scheme for that problem� This means
that our worst case is still as good as other methods� The best part of our scheme is its low overhead on deterministic
programs� Slow downs of our scheme for deterministic programs such as clever version of N�queens problem and tree
problem are much better than the results of other methods for the same problems�

� Conclusion
Our intelligent backtracking mechanism whose some parts are presented here chooses the youngest choice point for back�
tracking during a failure such that backtracking to that choice point can avoid the reoccurrence of that same failure� It
is guaranteed that the chosen backtracking point is the youngest choice point such that backtracking to any choice point
younger than the chosen choice point cannot avoid the recoccurence of that same failure� This means that our mechanism
chooses exactly the right position for backtracking�

The new method for the representation of bindings of WAM variables plays an important role in the process of �nding
the ages of variables bound to non�variable terms� The age of a variable and the procedure backtracking point introduced
here determine the backtracking point during a failure due to that variable� This new representation is smoothly integrated
into the original WAM architecture with small overheads� Since most of the overheads of our system occur during a failure
	not during a uni�cation process
� it is more suitable for an intelligent backtracking schema because the overheads during
uni�cation will occur in every type of program�
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