
J� LOGIC PROGRAMMING �������� �����	
� �

ABSTRACT METAPROLOG ENGINE

ILYAS CICEKLI

� A compiler�based meta�level system for MetaProlog language is presented�
Since MetaProlog is a meta�level extension of Prolog� the Warren Abstract
Machine �WAM� is extended to get an e�cient implementation of meta�
level facilities and this extension is called the Abstract MetaProlog En�
gine �AMPE�� Since theories and proofs are main meta�level objects in
MetaProlog� we discuss their representations and implementations in de�
tail� First� we describe how to e�ciently represent theories and derivability
relation� At the same time� we present the core part of the AMPE which
supports multiple theories and a fast context switching among theories in
the MetaProlog system� Then� we describe how to compute proofs� how to
shrink the search space of a goal using partially instantiated proofs� and
how to represent other control knowledge in a WAM�based system� In ad�
dition to computing proofs which are just success branches of search trees�
fail branches can also be computed and used in the reasoning process� �

�� INTRODUCTION

Meta�level facilities in logic programming languages provide explicit representation
of databases �theories�� statements �clauses�� derivability relationship between the�
ories and goals� and proofs� These facilities may also include explicit representation
of the control knowledge used by the underlying theorem prover� This explicit rep�
resentation of meta�level objects and control knowledge may improve the expressive
power of the language and help to shrink the search space of a goal by avoiding
unnecessary searches�

Many systems having some kind of meta�level facility are presented in the lit�
erature ���	� Weyhrauch
s FOL system ���� ��	 builds up contexts �theories� by

Address correspondence to Ilyas Cicekli� Dept� of Comp� Eng� and Info� Sc�� Bilkent
University� ����� Bilkent� Ankara� TURKEY� e�mail� ilyas�cs�bilkent�edu�tr

Thanks to Ken A� Bowen for valuable feedback during this research� This paper has bene	ted
from the suggestions for improvements by its anonymous reviewers�

THE JOURNAL OF LOGIC PROGRAMMING

c� Elsevier Science Inc��
���
��� Avenue of the Americas� New York� NY
��
� ����
�����������

�

declaring predicates� functions� constants and variables� and de�ning axioms� In
that system� theorems are proved with respect to the axioms of a context and
proofs are recorded� In the OMEGA system ��	� a metalanguage de�nes the syn�
tax of expressions and statements� viewpoints describe sets of assumptions� and
the consequence concept formalizes derivability relationship between statements
and viewpoints� METALOG ��	� an extension of Prolog� explicitly asserts con�
trol knowledge separate from regular clauses in the system� and uses this control
knowledge when it chooses a literal from a goal list and a clause from the clause
database� Russell
s MRS system ���	 and the system developed by Gallaire and
Lasserre ���	 also use some kind of explicitly represented control knowledge� The
system developed by Lamma et al� ���� ��� ��	 for the contextual logic program�
ming ���	 represents a set of Prolog clauses as a unit� and an ordered set of units
as a context� Nadathur et al� ���	 create a new context adding clauses in an impli�
cation goal to the current context in their system� Some other researchers in the
logic programming community have sought meta�level facilities in meta�interpreters
�� ��� ��� ��� ��� ��	 based on Prolog� Even standard Prolog ��� �� ��	 has some
meta�level facilities� The predicates assert and retract add and remove clauses
from a system�wide database by destroying the old version of that database� The
meta predicate call tries to prove an explicitly given goal with respect to the single
system�wide database� There are no notions of contexts in standard Prolog�

MetaProlog is a meta�level extension of Prolog which is evolved from the research
of Bowen and Kowalski ��� �	� In MetaProlog� theories are made explicit so that
they can be manipulated just as other data objects in the system� Once theories are
made explicit� deductions are made from these theories instead of a single system�
wide database� The basic two�argument demo predicate in MetaProlog is used
to represent the derivability relation between an explicitly represented theory and
goal� Another meta�level facility in MetaProlog is dynamically�constructed proof
trees� They are collected by the system when a goal is proved with respect to a
theory by using the three�argument version of demo predicate� A given partially
instantiated proof of a goal when the deduction of that goal is started may shrink
the search space of that goal�

The derivability relation in the system proposed by Bowen and Kowalski is rep�
resented by a two�argument predicate demo between theories and goals� The cor�
rectness and completeness of the derivability relation is expressed by the re�ection
rule� For a theory T and a goal G� the re�ection rule is as follows�

demo�T�G� i� G is derivable from T

Later� this rule provided the justi�cation for the implementation of the derivability
relation as context switches in the MetaProlog system�

The Abstract MetaProlog Engine �AMPE� ��� �	 which e�ciently implements
meta�level facilities in MetaProlog is an extension of the Warren Abstract Machine
�WAM� �� �	� This system provides mechanisms to represent and compute con�
trol knowledge and meta�level facilities such as theories� proofs� fail branches and
derivability relation� The AMPE runs in two di�erent modes� The simple mode of
the AMPE supports multiple theories and the basic two�argument demo predicate�
In the proof mode of the AMPE� proofs and fail branches can be computed and
used to control the underlying theorem prover�

There can be many applications of meta�level facilities in a logic programming

�

language� An obvious application of proofs is the explanation facility of an expert
system� Collected proofs can be used to give justi�cations about the behavior of
a rule based expert system� Sterling describes a meta�level architecture for expert
systems in ���	� In ��	� Eshghi shows how to use meta�level knowledge in a fault
�nding problem in logic circuits� Cicekli ��	 shows how to use multiple theories and
fail branches in MetaProlog to express digital circuits and a fault diagnosis algo�
rithm on them� Bowen ��	 describes how to use meta�level programming techniques
in knowledge representation�

This paper presents the design and implementation of a compiler�based system
for the MetaProlog programming language� The MetaProlog system presented here
provides e�cient implementations of meta�level facilities in MetaProlog such as the�
ories� proofs� fail branches and derivability relation� The following four sections are
reserved to explain the Abstract Meta Prolog Engine �AMPE� extended from the
WAM to get the e�cient implementation of MetaProlog� Section � describes how
multiple theories and the two�argument derivability predicate demo are represented
in the MetaProlog system� and Section � describes the core part of the AMPE which
supports multiple theories in MetaProlog� The core part is used in both modes of
the AMPE� Section � describes the representation of proofs and fail branches which
are the second most important meta�level objects after theories in the MetaProlog
system� Section � describes the proof mode of the AMPE which supports proofs
and fail branches in the system� Finally� Section � compares our system with other
WAM�based systems ���� ��� ��� ��	 dealing with contexts�

�� METAPROLOG THEORIES

Theories are the meta�level objects which are addressed �rstly in many meta�level
systems� They are made explicit in these meta�level systems so that they can
be manipulated just as other data objects� Since they are explicitly represented�
we can reason about them or we can discuss their characteristics� Since explicit
representations of theories and statements are available� the provability relation
between them can also be explicitly de�ned�

In the MetaProlog system� theories represent sets of Prolog clauses� There can
be more than one theory in the system at any given time� A theory is created from
an old theory� and it is discarded when the need for that theory disappears� In fact�
when a theory is created� a variable is bound to its internal representation� and
that theory is only accessible in contexts where that variable is accessible� They
are treated in the same way as any other data structure in the system�

The provability relation holding between a theory and a goal is represented by
a ��place demonstrate predicate demo in the MetaProlog system� The relation
demo�Theory�Goal� holds precisely when Goal is provable in Theory�

Similar facilities for dealing with theories can also be found in the OMEGA
description system ��	� In the OMEGA language� viewpoints describe sets of as�
sumptions� and the consequence concept represents the derivability relationship
holding between viewpoints and statements�

Furukawa et al� ���	 also use theories to represent logic databases� and they
implement the derivability relation between these logic databases and statements�
Worlds in Nakashima
s Prolog�KR system ���	 are also very similar to theories in
the MetaProlog system�

�

y

y y

y y

base theory

T T�

T� T�

p p p
p p p
p�

ppp
ppp

pI

p p p
p p
p p�

ppp
pp
ppI

FIGURE ���� A Theory Tree in The MetaProlog System

Lammaet al� ���� ��	 use contexts to represent multiple theories in logic program�
ming framework� They also extent the Warren Abstract Machine to the Context
Warren Abstract Machine �C�WAM� to handle multiple theories� In their system�
a context is created for the derivation of a goal and it is automatically destroyed
after the derivation if the goal is deterministic� Similarly� a context in Nadathur
et al�
s system ���	 is also created for the derivation of a goal� and it is discarded
afterwards�

In the rest of this section� we will discuss how to create theories in the MetaProlog
system� We will also introduce a mechanism to represent theories in order to
provide fast access to predicates in theories� Another representation of theories is
also suggested in ��	 and ��	�

���� Creation of Theories

In Prolog� there is only one theory� and all goals are proved with respect to this
single theory� On the other hand� there can be more than one theory in MetaProlog
at a certain time� so that a goal can be proved with respect to one or more of them�
When the predicate demo�Theory�Goal� is submitted as a goal� the MetaProlog
system tries to prove Goal with respect to Theory� The same goal can also be
proved with respect to a di�erent theory in the system�

Since there is a single implicitly represented database in Prolog� ad hoc methods
are used when there is a need to update this database� The builtin predicates assert
and retract update the Prolog database to create a new version of this database by
destroying the old version in the favor of the new version� On the other hand� we
do not need to destroy an old theory when we create a new one from that theory
in the MetaProlog system�

Theories of the MetaProlog system are organized in a tree whose root is a distin�
guished theory� the base theory� The base theory consists of all builtin predicates�
and all other theories in the system are its descendants� i�e�� all builtin predicates
in the base theory can be accessed from all other theories in the system�

In Figure ��� theories T and T� are created from the base theory� These
theories inherit all predicates of the base theory� Similarly� theories T� and T�
are descendants of the theory T�� Although the arrows in Figure �� represent
the father relation between theories� the father relation is not used in the actual

�

implementation of theories� Instead of the father relation� the default theory rela�
tion between theories is used in the representation of theories� The default theory
relation will be explained in Section ����

A new theory is created from an old theory by adding or dropping some clauses�
The new theory inherits all the procedures of the old theory except for procedures
explicitly modi�ed during its creation� The system can still access both the new
theory and the old theory� The following builtin predicates are used to create new
theories in the MetaProlog system�

addto�OldTheory� Clauses� NewTheory�

dropfrom�OldTheory� Clauses� NewTheory�

The given clauses Clauses are added to �dropped from� the given old theory OldThe�
ory to create a new theory NewTheory by the predicate addto �dropfrom�� The
variable NewTheory is bound to the internal representation of the new theory after
the execution of one of these commands� Let us assume that p be a procedure in
NewTheory� The clauses of p are exactly the same clauses of p in OldTheory � if p
does not contain any clause in Clauses� Otherwise� the clauses of p in NewTheory
consist of the clauses in OldTheory and Clauses which belongs to p if NewTheory
is created by the addto predicate� If NewTheory is created by the dropfrom pred�
icate� the clauses of p contains all clauses of p in OldTheory except the clauses
which appear in Clauses�

The �rst argument of the addto �dropfrom� predicate is a theory �a theory name
or a variable bound to the internal representation of a theory�� the second argument
is a list of clauses� and the third argument must be an unbound variable which
is going to be bound to the internal representation of the new theory after the
successful execution of the addto �dropfrom� predicate� Both predicates create a
completely new theory with a unique theory identi�er in its internal representation�
This means that any two theories with two di�erent internal representations are
not uni�able in our system even though they may contain exactly the same clauses�
In fact� this is the reason why the last argument of these predicates must be an
unbound variable� Two theories can be uni�able only if they have the same internal
representations�

���� Permanent Theories

After a new theory is created in the MetaProlog system from an old theory which
already exists in the system� normally a variable is bound to the internal repre�
sentation of the new theory� We can access the new theory by using this variable�
and this variable should be passed to places where that theory must be accessed�
Sometimes� passing this variable to many places is not very practical� For this
reason� some theories in the MetaProlog system are given global names� and they
can be referred by using their names at any place of the program� These theories
are called permanent theories�

Permanent theories are always present in the system� and they can be accessed
via their names� On the other hand� a temporary theory� a theory without any name�
is only accessible in the environments where there exists at least one variable bound
to its internal representation� A temporary variable is accessible in the MetaProlog
system as long as there is a variable bound to its internal representation� Although

�

the space occupied by a permanent theory cannot be reclaimed by the system� the
space occupied by a temporary theory may be reclaimed during backtracking� or
by the garbage collector if that theory is not accessible any more� In fact� the life
cycle of a temporary theory is similar to the life cycle of a structure in the heap�

A permanent theory can be created by using the builtin predicate consult� or a
temporary theory can be converted into a permanent theory by using the builtin
predicate nameof� For example� when the goal consult�FileName�TheoryName� is
executed� a new theory which contains all predicates in the given �le is created� and
the name TheoryName is assigned to it� The builtin nameof�Theory�TheoryName�
can convert the temporary theory designated by Theory into a permanent theory�
and the name TheoryName is assigned to it� Afterwards� this permanent theory
can be accessed via its name at any time�

���� Default and Non�Default Theories

Theories in the MetaProlog system are classi�ed into two groups� default theories�
and non�default theories� Every theory in the MetaProlog system possesses a default
theory except for the base theory� The default theory of a theory is the theory where
we search for a procedure if the given theory does not know anything about that
procedure� The search starts from a node of the theory tree and proceeds with
default theories along a certain branch until the procedure is found or the root of
the tree is reached�

A non�default theory is a theory that carries complete information about all
procedures that are modi�ed in all non�default ancestor theories between this theory
and its default theory� Access to these procedures is very fast� at the expense of
copying pointers to these procedures during the creation of a theory from a non�
default theory� Each theory T �default or non�default� has a pointer to its default
theory DT� which happens to be the �rst ancestor default theory working from
T� The descendants of a default theory D do not carry any information about the
procedures occurring in D� In other words� the default theory D stops any further
propagation of information about procedures from its ancestors to its descendants�
If only default theories are used� an access to a given procedure in a given theory
may require a search through all its ancestor theories� In this case� an access to a
procedure may be slow� but no copying of references is needed� Depending on the
problem� the system tries to use one or the other approach� or a combination of
both to achieve a balance between the speed of access and the space overhead�

When a new theory T is created from a non�default theory N� the default theory
of T will be its father
s default theory� i�e�� T
s default theory will be N
s default
theory� But if a new theory is created from a default theory� its default theory will
be its father� In the �rst case� the new theory will be at its father
s level in the tree�
In the second case� the new theory will be at one level above its father
s level� Thus
we do not need to increment the depth of the tree when a new theory is created
from a non�default theory� In Figure ����a� a theory T� is created from a default
theory DT� The father of T� and the default theory of T� are the same theory�
On the other hand� when a theory T� is created from a non�default theory NDT
�cf� Figure ����b�� the father of T� is di�erent from the default theory of T��

The naive approach is to have all the theories in the system as default theories�
In this case� the default theory relation between theories is the same as the father

�

yDT

��

y

i

DT

T�
ppp
ppp
p�

�

��

a� From A Default Theory

i� non�default theory
y� default theory
p p p� � father relation

� � default theory relation

y

i

DT

NDT

�

��

y

i

i

DT

NDT

T�

�

pp
ppp
pp�

�

��

b� From A Non�Default Theory

FIGURE ���� Creation of A Theory From Default and Non�Default Theories

relation�between them� This situation can be seen in Figure ���� In this approach�
when a new theory is created� it will be at one level above its father
s level because
all theories are default theories� Thus� the theory tree can get very deep which
explains why a search for a procedure can be expensive� For example� in order to
reach the procedure �p� from theory T�� it is �rst searched for in theory T� where
it does not exist� Then it is searched for in theory T�� and �nally it is found in
theory T� Thus� to access to the procedure �p� from theory T�� we have to search
for it in three theories�

To shorten the depth of the theory tree� we introduce non�default theories� If
there is at least one non�default theory in the system� this situation is called the
non�default theory approach� In this approach� the default theory of a given theory
can be one of its remote ancestors instead of its father� In fact� when a new theory
T� is created from a non�default theory T� the father of T� will be di�erent from
the default theory of T�� If no theory is created from any non�default theory�
the theory tree will be the same as the theory tree in the naive approach� The
advantage of the non�default theory approach is apparent when we start to create
theories from non�default theories� At that time� the depth of the tree will not grow
fast� and the search for procedures will generally be shorter�

Figure ��� shows the tree of theories of Figure ��� in the non�default theory
approach� We assume that the only default theory is the base theory and theories
T� T�� T� and T� are non�default theories� In this tree� reaching a procedure is
much faster than reaching the same procedure in the tree of the naive approach�
For example� to access the procedure �p� from theory T�� it is su�cient to search
only T� since a pointer to the procedure �p� was copied into T� and T� during
their creations� On the other hand� in the naive approach we had to search three
theories to access the same procedure�

The price we pay for fast access to procedures in the non�default theory approach
is that we have to copy references to procedures of non�default theories into their

�Internally� there is no father relation in the system� Only the default theory relation between
theories is present�

�

y

y

y y

y

ppp
ppp
ppp
ppp
p�

p p p
p p
p p p
p p p
p p
p�

pp
ppp

ppp
pp
ppp

p
I

ppp
ppp
ppp
ppp
p�

�p��

�q�a� �p���

�q�b�

base theory

T� fp��g

T�� fq�a�g T�� fp���p���g

T�� fq�a��q�b�g

�

��

� �

�

��

��

y� default theory
p p p� � father relation

� � default theory relation

FIGURE ���� A Theory Tree in The Naive Approach

descendants� However� since we copy only a reference for each procedure into the
new theory� this copying operation does not cost too much�

The system should decide which theories ought to be default theories and which
ones ought to be non�default theories� To get the best performance from this
approach� the theories with many procedures should be default theories and the
theories with few procedures should be non�default theories� The decision of the
system depends on this observation� The system assumes that a theory T is a
default theory if it contains more procedures than a threshold number of procedures�
In other cases� the system assumes that theory T is a non�default theory� Of course�
this decision can also be left to the user�

���� Context Switching

Since multiple theories are allowed in MetaProlog� we have to know at any time
which context the system is in� and how to switch to another context whenever
necessary� The MetaProlog system always runs in a certain context� also called
the current theory� and all goals are proved with respect to this current theory� To
prove a goal with respect to a certain theory T� �rst the context �current theory�
is switched to T� then the goal is proved with respect to the current theory�

In the MetaProlog system� there are two ways to switch context from one theory
to another� The �rst one� called temporary context switching� is the context switch�
ing operation done by the predicate demo� The command demo�Theory� Goal�
switches the context to Theory� and then Goal is proved with respect to the current

	

y

i

i i

i

ppp
ppp
ppp
ppp
p�

p p p
p p
p p p
p p p
p p
p�

pp
ppp

ppp
pp
ppp

p
I

ppp
ppp
ppp
ppp
p�

�p��

�q�a� �p���

�q�b�

base theory

T� fp��g

T�� fp���q�a�g T�� fp���p���g

T�� fp���q�a��q�b�g

�

��� �

�

� � ��

i� non�default theory
y� default theory
p p p� � father relation

� � default theory relation

FIGURE ���� A Theory Tree In The Non�Default Theory Approach

theory� After the execution of this command� the context is automatically switched
back to the previous context� The predicate demo can be de�ned in Prolog as
follows�

demo�Theory�Goal� ��
context�PreviousContext��
switch context�Theory��
call�Goal��
switch context�PreviousContext��

where the context predicate gets the current theory in which the system is cur�
rently running� and switch context is a low level system predicate which switches
the context to the given theory�

The second one� called permanent context switching� is the context switching op�
eration done by the setcontext predicate� The command setcontext�TheoryName��
which is normally executed at the top level to de�ne the context of the top level
of the MetaProlog system� switches the context to the theory designated by The�
oryName� After the execution of this command� the context is not switched back
to the previous context� Of course� the context can be switched to another theory
by submitting another setcontext command� The setcontext predicate can only be
used with permanent theories� theories with names�

�

�� ABSTRACT METAPROLOG ENGINE

In ���� Warren published a paper ��	 describing an abstract machine for Prolog
execution which consists of an abstract instruction set and several data areas on
which the instructions operate� The model described in that paper for Prolog exe�
cution is now known as the Warren Abstract Machine �WAM�� Many researchers in
the logic programming community recognized the fact that the WAM represented
a breakthrough in the design of Prolog systems and other computational logic sys�
tems� In fact� many commercial ��� �	 and non�commercial ��� ��	 Prolog systems
based on the WAM have been implemented after the introduction of the WAM�
A full description of the WAM can be found in �� �	� After this point� we will
assume that the reader is familiar with the WAM�

One of the main goals in our project was to get an e�cient implementation of
MetaProlog� Since MetaProlog is an extension of Prolog� the best starting point was
the WAM� For this purpose� the WAM was extended to an Abstract MetaProlog
Engine �AMPE�� Along the way� our own version of a WAM�based Prolog system
��	 was created� and then extended to the current MetaProlog system�

The AMPE can run in two di�erent modes� The �rst one is the simple mode in
which the system runs when a two argument demo predicate is encountered� The
system runs in the proof mode when a three�argument or a four�argument demo
predicate is encountered� The system not only can prove a goal with respect to a
theory� but also collect the proof when it runs in the proof mode� Since the proof
of a goal is collected when the system is in the proof mode� the system runs slower�
However� the simple mode does not carry the burden of the proof mode� When it
is needed� the system will switch from one mode to another during execution� The
core part of the AMPE described in this section is used in both modes� But there
are also extra features of the AMPE which are only used when it is in the proof
mode� Proofs and their implementation are explained in Section � and Section ��

The core part of the AMPE is responsible for supporting multiple theories in the
MetaProlog system� Since the MetaProlog system should be able to switch from
one theory to another theory during execution� a fast context switching mechanism
is needed in the MetaProlog system� This task is accomplished by a theory register
in the AMPE� This theory register is also saved in choice points� so that the context
can be restored during backtracking�

Theories can be created on the �y during execution� and discarded when the need
for them disappears� So� the storage allocated for these theories should be reclaimed
after they are discarded� In other words� their treatment should be similar to the
treatment of structures and lists in the system� This observation suggests that the
code area and the heap of the WAM should be integrated as a single data area in
the AMPE�

The AMPE performs most of the functions of the WAM� but it also has some
extra features in order to handle multiple theories of MetaProlog� These extra
features of the AMPE in the simple mode are as follows�

� A di�erent memory organization which is more suitable to handle compiled
procedures and theories as data objects of the system�

�� Extra registers to handle theories in MetaProlog�
�� The functions of the procedural instructions in the AMPE di�er from their

functions in the WAM�

��

high memory

Trail

Local
Stack

Heap
low memory

FIGURE ���� Memory Organization of the AMPE

�� The failure routine should be able to switch to the proof mode during failure
if it is necessary�

In the rest of this section� the core part of the AMPE will be discussed� In this
discussion� the AMPE is widely compared with the WAM to explain similarities
and di�erences between them�

���� Memory Organization of the AMPE

The memory of the AMPE is divided into three consecutive areas �Figure ����
The heap and the local stack grow from low memory to high memory� and the trail
grows from high memory to low memory�

The function of the local stack and the trail is the same as their function in
the WAM except that choice points carry extra information� Every choice point�
whether it is created when the system is in the simple mode or in the proof mode�
carries extra locations to store the current context �theory� and the current mode
of the system� Choice points and environments which are created when the system
is in the proof mode also carry extra information about proofs or branches� The
implementation of proofs and branches is explained in Section ��

The AMPE does not have a separate code area to store code as the WAM does�
Instead the code area and the heap are integrated as a single data area in the
AMPE� The heap holds compiled procedures and theory descriptors in addition to
structures and lists� Compiled procedures and theory descriptors are represented
by boxes which are explained in Section ����

Since the builtin predicates addto and dropfrom are backtrackable� the space
held by the code created by these builtin predicates should be reclaimed during
their failure� For example� the command addto�T���p����p���	�T�� creates theory
T� by adding two clauses� namely p��� and p���� to theory T�� So� it creates a
new theory descriptor for T�� two compiled clauses� and an indexing block for the
procedure p
� on the heap� If backtracking occurs� theory T� will be discarded�
and all the space used will be reclaimed if the space is not protected by another

��

data structure in the heap� If the space is protected� it can be recovered during
garbage collection� In other words� all unused space �held by theory descriptors�
compiled procedures or other data structures� in the heap can be reclaimed during
backtracking or garbage collection�

���� Machine Registers

The AMPE has all the registers the WAM has and it uses two extra registers to
handle theories� and two registers to indicate the current mode of the AMPE� These
are the only four new registers used when the system is in the simple mode� There
are other extra registers used in the AMPE when the system is in the proof mode�

The registers which are the same as the WAM registers perform the same func�
tions in the AMPE� For example� the program counter �P in the WAM� still points
to the instruction to be executed� and the last choice point register �B in the WAM�
still points to the last choice point in the local stack� Since the code area and the
heap in the WAM are integrated as a single data area in the AMPE� registers P and
CP �program continuation pointer� point to this single data area in the AMPE�

The �rst new register is the theory register TH which holds a pointer to the
internal representation of a theory of the system� The register TH holds the current
theory of the system in which a procedure is searched for when a call to that
procedure is encountered� The value of the TH is changed when the context of the
system is switched to another context by the predicates demo or setcontext� The
theory register TH is also saved in choice points so that it can be restored from the
value saved in the last choice point during backtracking�

The second register� the theory counter register CTH� is simply a counter which
holds the next available theory�id� which is an integer� The function of the theory
counter register CTH is to produce a unique theory�id for each theory in the system�
When a new theory is created� this register is automatically incremented to hold
the next available theory�id�

The control register CTR indicates the mode of the AMPE� and the control
information register CTRInfo holds control information� When the system is in
the simple mode� the register CTR contains �ags indicating whether the system is
in the simple mode� or it is in the proof mode and skipping the proof�of a goal�
Information in registers CTR and CTRInfo is only used to decide whether the
system has to switch to the proof mode or not during a failure when the system is
in the simple mode� The function of these registers in the proof mode� and failure
routines in both modes are explained in detail in Section �� These registers are also
saved in choice points� so that the system can switch from one mode to another
during backtracking�

���� Procedural Instructions

A MetaProlog program is directly compiled into instructions of the AMPE in the
same manner as a Prolog program is compiled into instructions of the WAM� The
instruction set of the AMPE is the same as the instruction set of the WAM except

�Before the AMPE starts to skip the proof of a goal� it switches from the proof mode to the
simple mode� and it runs in the simple mode until execution of that goal is completed� Then it
switches back to the proof mode�

��

search proc�Proc� f
�� move the current theory into a temporary register T ��
T � TH�
do f

if Proc is found in T
then f

Loc � location of Proc in T�
return�Loc�� g

else
T � default theory of T�

g while fT is not the base theoryg
�� Search is failed ��
Fail� g

FIGURE ���� Theory Search Algorithm

that the functions of the procedural instructions di�er from their functions in the
WAM� Since each procedure in the WAM can be uniquely determined by its name
and its arity� its address can be directly found when a call or an execute instruction
is executed� On the other hand� when a call or an execute instruction is executed
in the AMPE� the procedure is searched for in the current theory which lives in the
theory register TH� If the procedure is not found in the current theory� it is searched
for in the default theory of the current theory which is one of the ancestors of the
current theory� A procedure is searched for among procedures of a theory using a
hash function� This search continues recursively through default theories until the
procedure is found or backtracking occurs if it cannot be found� Figure ��� presents
the search algorithm used to �nd a location of a procedure in instructions call and
execute�

Although only the functions of the procedural instructions are di�erent from their
functions in the WAM when the system runs in the simple mode� the functions of
some other instructions are also di�erent from their functions in the WAM and in
the simple mode of the AMPE when the system runs in the proof mode� In fact�
the functions of the procedural instructions in the proof mode also di�er from their
functions in the simple mode� The functions of those instructions in the proof mode
are presented in Section ��

���� Data Types

Data types in the AMPE are similar to Warren
s data types in the WAM except
that we have one extra data structure to hold untagged data such as compiled
clauses or theory descriptors� Untagged data in the AMPE� called box� are sealed
between two tagged words�

Each object in the AMPE is represented by one or more ���bit words� The low
two� four or eight bits of a word can be used as a tag� Two�bit tags are used to
represent pointer data types such as references� structure �or box� addresses� and
list addresses� An unbound variable is represented by a reference to itself� Four�
bit tags are used to represent non�pointer one�word objects such as integers and

��

size of compiled clause compiled box

clause tag

WAM Instructions
for the clause

size of compiled clause compiled box

clause tag

FIGURE ���� A Compiled Clause Box

functors� Eight�bit tags are used to represent objects consisting of more than one
word� these are boxes� The low four bits of an eight�bit tag indicates that the object
is a box� and the next four bits of the tag indicates the type of that box�

A box consists of consecutive words of memory such that the �rst and last words
are box headers� Words between these box headers are untagged� and their formats
depend on the type of the box in question� Although the interior part of a box
normally holds untagged words� it can also hold tagged words� Those tagged words
should be located at word boundaries� and their positions in the box should be
determined by the type of the box� A box header is a word in the following format�

size of box box box

type tag

The box tag shows that the word is a box header� and the box type shows the type
of that box� The rest of the box header holds the size of that box in words� The
format of the interior part of a box depends on the type of the box�

For example� the box given in Figure ��� represents a compiled clause� The box
headers at the beginning and at the end of the box show that it is a box for a
compiled clause� The untagged part of that box contains WAM instructions for
the clause� including indexing instructions such as try me else� retry me else� or
trust me else as the �rst instruction of the clause�

Similarly� theory descriptors� index blocks� try�retry�trust blocks� and �oating
point numbers are represented by boxes� Of course� the formats of their untagged
portions are di�erent from each other� A theory descriptor contains a theory�id
which uniquely identi�es that theory� a pointer to its default theory and pointers to
compiled procedures belonging to the theory� A try�retry�trust block is a box whose
untagged portion consists of a sequence of try� retry� and trust instructions� The
untagged portion of an index block contains a switch on term instruction together
with sequences of try� retry� and trust instructions�

The box header at the end of a box may appear unnecessary to the reader� but
it plays an important role during garbage collection� It helps to identify the box
when the heap is searched from top to bottom during garbage collection�

��

�� PROOFS

In MetaProlog� goals cannot only be proved with respect to di�erent theories� but
their proofs can also be collected for future use� A proof is normally computed by an
execution of a three�argument demo predicate� A three�argument demo predicate
represents derivability relation between a theory and a goal with a certain proof�
For example� if the command demo�Theory�Goal�proof�Proof�� is executed by the
system� the variable Proof is bound to the proof of Goal in Theory�

Proofs are meta�level objects which have many applications in Arti�cial Intel�
ligence such as producing explanations in an expert system� For example� let
Carexpert be a theory which represents an expert program written in MetaPro�
log to determine troubles in a given car� To �nd the problem in a given car� the
following goal may be submitted�

demo�Carexpert � �nd trouble�Car �Problem�� ����

The variable Car is an input theory which contains information about a speci�c
car or asks questions to get information about that car� The procedure �nd trouble
of the theory Carexpert� �nds the problem in a given car and returns Problem as an
output� When the two�argument demo predicate in ���� is successfully executed�
the trouble in the given car is found� The system can �nd the trouble in the given
car by using the two�argument demo predicate� but it cannot explain how it �nds
that trouble� To get the proof describing how Carexpert �nds the trouble� the
following goal should be submitted�

demo�Carexpert � �nd trouble�Car �Problem�� proof �Proof �� �����

After the execution of this goal� the variable Proof will be bound to the proof of the
predicate �nd trouble in the theory Carexpert� The explanation for how Carexpert
�nds the trouble in the given car can be given later by examining Proof� We get
this proof without any changes to the expert program Carexpert�

In the example above� Proof is a variable which is bound to the proof of the
predicate �nd trouble after the execution of the three�argument demo predicate in
������ However Proof can be also partially instantiated to a proof before that goal
is submitted� For example� assume that the procedure �nd trouble can �nd out any
kind of trouble in a given car� But we only want to �nd out troubles in its cooling
system� To achieve this� we can instantiate Proof to a partial proof which forces
the system to look for only the troubles in the cooling system� In this case� we still
do not need to change anything in the expert program Carexpert� but we can force
the system to look for certain kind of problems by giving a partial proof�

���� Structure of Proofs

The proof of a goal G in MetaProlog is a list whose head is an instance of G�
and whose tail is a list of proofs of its subgoals� Of course� if it does not have any
subgoals� its proof will be a singleton list� In Figure ��� patterns of proofs in two
di�erent cases are shown� In the �rst case� since the goal G is uni�ed with a fact�
the head of the proof of G is an instance of G� and the tail of proof is an empty list�
In the second case� since G is uni�ed with the head of a clause with one or more
subgoals in its body� the tail of the proof of G is the list of subproofs of subgoals
in that clause�

��

Case � Case �

Goal G� p�X� Goal G� p�X��
Clause � p�a�� Clause � p�b� �� q�X�� r�X��
Proof � � p�a� 	 Proof � � p�b�� �proof of q�X��� �proof of r�X�� 	

FIGURE ���� Structure of Proofs

For example� let Carexpert be a theory containing the clauses given in Fig�
ure ����a� That theory represents a very simple expert program which �nds the
problem in a given car� and suggests a solution to repair that problem� Clauses
given in Figure ����b represent a problem in a speci�c car� In order to get a repair
suggestion for the problem given in Figure ����b together with the proof of how
that suggestion is found by the system� the following goal can be submitted�

demo�Carexpert � repair suggestion�Car � Suggestion�� proof �Proof �� �����

After the execution of the three�argument demo predicate in ������ the variable
Suggestion is bound to a term which represents a repair suggestion� and the variable
Proof is bound to the following proof which represents how the system gets that
suggestion�

� repair suggestion��theory car�� replace�radiator hose���
� �nd trouble��theory car�� water leak�radiator hose���
� check cooling system��theory car�� water leak�radiator hose���
� demo��theory car��leaking�water��� � leaking�water� 	 	
� demo��theory car��leaking from�radiator hose���
� leaking from�radiator hose� 	 	 	 	

� get suggestion�water leak�radiator hose�� replace�radiator hose���
� hose�radiator hose� 	 	 	

The head of the proof list above is an instance of our original goal in ������ and its
tail is a list of proofs of subgoals of that goal� In the proof list above� �theory car�
is a theory descriptor representing the theory Car in Figure ����b� After the proof
above is collected by the system� an explanation can be given why the system gets
that repair suggestion by analyzing the collected proof� We can also submit the
goal in ����� with a partial proof as follows�

demo�Carexpert�repair suggestion�Car�Suggestion��
proof�� repair suggestion�Car�Suggestion��

� �nd trouble�Car�Problem��
� check oil system�Car�Problem� j SubProof 	 	

j RestofProof 	 ��

In this case� the third argument of the demo predicate above is a partial proof
which forces the system to look only for the trouble in the oil system of the given
car� After a successful execution of that goal� the partial proof is completed by the
system� If there is no solution in the form given in the partial proof� the goal fails
even though there may be solutions in some di�erent form�

��

repair suggestion�Car�Suggestion� ��
�nd trouble�Car�Problem��
get suggestion�Problem� Suggestion��

get suggestion�water leak�Source�� replace�Source�� �� hose�Source��
get suggestion�water leak�clamp�� tighten�clamp���
get suggestion�oil leak�oil pan bolt�� replace�oil pan bolt���

hose�radiator hose��
hose�bypass hose��

�nd trouble�Car�Problem� �� check cooling system�Car�Problem��
�nd trouble�Car�Problem� �� check oil system�Car�Problem��

check cooling system�Car�water leak�Source�� ��
demo�Car�leaking�water���
demo�Car�leaking from�Source���

check oil system�Car�oil leak�Source�� ��
demo�Car�leaking�oil���
demo�Car�leaking from�Source���

a�Theory Carexpert

leaking�water��
leaking from�radiator hose��

b�Theory Car

FIGURE ���� Theories for A Simple Expert System

���� Skipping Proofs

When a three�argument demo predicate� demo�T�G�proof�P��� is successfully exe�
cuted� the variable P is bound to a proof of G in T� This proof contains the proofs
of all subgoals of G� Although proofs are useful in many applications� all details of
proofs may be unnecessary in some cases� We should not pay extra cost to collect
these unnecessary parts of proofs in those cases�

In the MetaProlog system� certain subproofs of a proof can be skipped by us�
ing a four�argument demo predicate instead of a three�argument demo predicate�
The fourth argument of this demo predicate contains control information about
subgoals of the goal given in that demo predicate� This control information is a
list of procedures whose proofs are skipped during the execution of the given goal�
Continuing with our Carexpert example in the previous subsection� let us assume
that we are only interested in how the system gets a repair suggestion for a trouble�
but we do not care how it �nds that trouble in a given car� In other words� we
do not care about the proof of the subgoal� �nd trouble�Car�Problem�� To skip the

��

proof of that subgoal� the following four�argument demo can be submitted�

demo�Carexpert�repair suggestion�Car�Suggestion��
proof�Proof��skip���nd trouble
�	��

During the computation of the goal above� the proof of the procedure �nd trouble
is skipped �i�e� its proof is not collected�� and the proof of the goal is bound to the
following term�

�repair suggestion��theory car��replace�radiator hose���
� �nd trouble��theory car��water leak�radiator hose�� j �skipped proof� 	�
� get suggestion�water leak�radiator hose�� replace�radiator hose���
� hose�radiator hose� 	 	 	

In the proof term above� �skipped proof� is a constant which represents a
skipped proof�

���� Fail Branches

In the previous sections� only proofs which are just success branches in a search
tree are discussed� In this section� fail branches of a search tree and how to collect
them in the MetaProlog system are discussed�

When the following three�argument demo predicate is executed in the MetaPro�
log system� Branch is bound to the leftmost branch of the search tree of Goal
relative to Theory�

demo�Theory�Goal�branch�Branch��

Backtracking into this demo predicate will cause Branch to be bound to the suc�
cessive branches of the search tree� This branch can be a success branch �proof� or
a fail branch of the search tree�

In Figure ���� a trivial theory T and a search tree of the goal p�X�Y� relative
to theory T are given� In the search tree� there are three success branches and
three fail branches� After the execution of demo�T�p�X�Y��branch�Branch��� the
variable Branch is bound to the leftmost branch of the search tree� The branches
in Figure ��� are represented in the MetaProlog system as follows�

st Branch � �p�a�b���q�a�b�		
�ndBranch � �p�b�c���q�b�c�		
�rd Branch � �p�a�Y���q�a�b�	��q�b�Y��fail		
�th Branch � �p�a�c���q�a�b�	��q�b�c�		
�th Branch � �p�b�Y���q�b�c�	��q�c�Y��fail		
�th Branch � �p�b�Y���q�b�c�	��q�c�Y��fail		

Each fail branch has exactly one atomic fail subbranch� An atomic subbranch is a
list whose head is a subgoal and its tail is the list �fail	� For example� the atomic
fail branch of �rd Branch above is the following term�

� q�b�Y��fail	

An atomic fail branch separates a fail branch into two parts� The �rst part is the
collected part of the fail branch� and the second part is the uncollected part of the
fail branch� Even though fail branches are not completely collected� their collected
parts are enough to give the reason of that failure� The collected part will re�ect all

�	

� p�X�Y� �� q�X�Y��

�� p�X�Y� �� q�X�Z�� q�Z�Y��

�� q�a�b��

�� q�b�c�� � p�X�Y�

� q�X�Y�

success

fX�a�Y�bg

success

fX�b�Y�cg

� q�X�Z��q�Z�Y�

� q�b�Y�

failure success

fX�a�Y�cg

� q�c�Y�

failure failure

��
��

��
��

XXX
XXX

XXX
XXX

�
�
�
�

�
�

�

��
��

��

b
b

b
b

b

�
�
�

J
J
JJ

�
�
�

J
J
JJ

 �

� � � �

� � � �

FIGURE ���� A Trivial Theory and Its Search Tree

uni�cations occurred before the failure� and the atomic fail subbranch will re�ect
the exact location of that failure�

�� PROOF MACHINE

The system normally switches from the simple mode to the proof mode when it
encounters a three�argument or four�argument demo predicate when it is running
in the simple mode� Of course� if the system encounters those predicates in the
proof mode it stays in the proof mode� In the proof mode� a success or fail branch
of a goal is also collected as it is developed by the underlying theorem prover�
The system can also be forced to collect certain speci�ed branches of the search
tree of a goal by giving a partially instantiated branch in the three�argument or
four�argument demo predicate�

In the proof mode of the AMPE� extra mechanisms are used to support proofs
in MetaProlog in addition to the mechanisms used in the simple mode for the
implementation of multiple theories and context switching among these theories�
The simple mode of the AMPE may be called as the simple machine� and the
proof mode of the AMPE as the proof machine after this point� The proof machine
assigns di�erent meanings to the procedural instructions� and it uses extra registers
to handle proofs in addition to the basic mechanism used in the simple mode of the
AMPE� In the rest of this section� properties of the proof machine are discussed�

�

���� Registers in the Proof Mode

The proof machine uses extra two new registers to collect proofs� The �rst one� the
proof register Pr� points to the part of the proof which is currently being collected
by the system� The second one� the continuation proof register CPr� points to the
part of the proof which will be collected by the system after the part of the proof
indicated by the proof register Pr is collected� There is a very close analogy between
the proof register Pr and the program pointer register P� as well as between the
proof continuation register CPr and the continuation program pointer register CP�

These two new registers are initialized with parts of a proof template for oncom�
ing proof computation when a three�argument or four�argument demo predicate is
executed� The values pointed to by these registers are uni�ed with parts of proofs
when the procedural instructions are executed in the proof mode� Section ��� ex�
plains how they are exactly handled by procedural instructions�

The continuation proof register CPr is also saved in environments by allocate
instruction� and restored by deallocate instruction in the proof mode� Environments
created in the proof mode are marked by a bit to show that they were created in
the proof mode� The existence of this mark bit does not lead to any overhead in
the simple mode because this mark bit is only used in the proof mode or during
garbage collection ��	�

Choice points created in the proof mode di�er from choice points created in the
simple mode� Choice points created in the proof mode hold values of the registers
Pr and CPr in addition to other values which are saved in choice points created in
the simple mode� The type of a choice point can be determined by the saved value
of the control register CTR in that choice point�

The control register CTR is a �ag register that holds certain �ags to determine
di�erent situations in the AMPE� Two groups of �ags can be used in the register
CTR when the system is in the proof mode� There are two �ags in the �rst group�
and they are set when a three�argument or four�argument demo predicate is ex�
ecuted� Values of these �ags are not changed during the execution of that demo
predicate unless another demo predicate is executed as a subgoal� The �rst �ag is
the mode �ag used to determine the mode of the system� In this case� that �ag
will be set to a value to indicate that the system is in the proof mode� The second
�ag is the branch �ag� The branch �ag is � when the system collects only success
branches �proofs� of a goal� and it is when the system collects all branches of a
goal including fail branches� The second group contains skip �ags which are used
when proofs of certain procedures are skipped�

The content of the control information register CTRInfo can be either the con�
stant �nil� or a pointer to a control information box which holds certain control
information in the proof mode� It will point to a control information box when
proofs of some procedures are skipped� or all branches of the search tree of a goal
are collected�

A control information box has three slots� The �rst slot is a pointer to a list
of procedures whose proofs will be skipped� The second and third slots hold an
environment pointer and a program pointer� respectively� If a failure occurs when
the system collects all branches� the environment pointer register E and the pro�
gram pointer register P are restored from values stored in those slots� and execution
continues from the location stored in the third slot� Of course� before control is
transferred to that location� a fail branch is collected�

��

���� Machine Instructions in the Proof Mode

The functions of some indexing instructions and all procedural instructions in the
proof mode are di�erent from their functions in the simplemode� These instructions
have to do extra work to collect proofs or to save extra information in choice points�
The indexing instructions try me and try instructions save two new registers Pr
and CPr in choice points in addition to values saved in choice points created in the
simple mode when they are executed in the proof mode� Procedural instructions
are also responsible for collecting proofs of procedures in addition to transferring
control to those procedures�

When a call instruction for a procedure p
n is executed� the content of the proof
register Pr is uni�ed with a list in the following form�

��p�A� � ����An� j SubProofs	 j RestofProof 	 ����

The term above represents a part of the proof of the calling procedure� The head
of the list above represents a proof of the procedure p
n� and the tail of that list�
RestofProof� represents proofs of later subgoals in the procedure which is calling the
procedure p
n� The head of the proof list� p�A�� ���� An�� is the term whose functor
is p� and whose ith argument is a value uni�ed with the ith argument register�
The tail of the proof list� SubProofs� represents proofs of subgoals in the body of a
clause of the procedure p
n� The algorithm of call instruction in the proof mode
is given in Figure ���a� If any uni�cation in the algorithm given in Figure ���a
fails� backtracking occurs� This can only happen if a partial �or complete� proof
is passed in a demo predicate in order to choose only certain branches in a search
tree� Before control is transferred to the procedure p
n� the proof register Pr is
set to point to the tail of the proof of the procedure p
n� SubProofs in ����� to
compute the proof of the procedure p
n� Since the procedure p
n is not the last
subgoal in the calling procedure� we have to continue to collect the rest of this
calling procedure after the proof of the procedure p
n is collected� For that reason�
the register CPr is set to point to that part of the proof� RestofProof in ����� of
the calling procedure�

On the other hand� when an execute instruction for the procedure p
n is exe�
cuted� the content of the proof register Pr is uni�ed with a singleton list whose
only element is the proof list of that procedure� The term uni�ed with the content
of the register Pr is as follows�

��p�A� � ����An� j SubProofs		 �����

Since the procedure p
n is the last subgoal in the calling procedure� the execute
instruction is responsible for completing the proof of the calling procedure with the
term above� The full algorithm of the execute instruction is given in Figure ���b�
If all uni�cations in the algorithm given in Figure ���b are successful� the register
Pr is set to point to the tail of the proof of the procedure p
n� SubProofs in ������
for the oncoming proof computation of that procedure� Since the procedure p
n
is the last subgoal in the calling procedure� we do not need to update the register
CPr�

When a proceed instruction is executed in the proof mode� the content of the
proof register Pr is uni�ed with an empty list� and the content of the continuation
proof register CPr is moved to the register Pr� The algorithm of proceed instruction
is given in Figure ���c�

��

proofpart � createlist� � Create a list structure on the heap
unify�Pr�proofpart�� � Unify it with the content of Pr
proo�ist � createlist� � Create a list structure on the heap
unify�head�proofpart��proo�ist�� � Unify it with the head of �proofpart�
proofhead � createterm�p�n�� � Create term p�n
unify�head�proo�ist��proofhead�� � Unify it with the head of �proo�ist�
for�i � � i � n� i� i � � � Unify its ith argument with Ai

unify�Ai�argument�proofhead�i���
Pr � tail�proo�ist�� � Set Pr to point to the tail of �proo�ist�
CPr � tail�proofpart�� � Set CPr to point to the tail of �proofpart�
CP � nextlocation�P�� � Set CP to point to the next instruction
P � location�p�n�� � Jump to procedure p�n in current theory

a� Call Instruction

proofpart � createlist� � Create a list structure on the heap
unify�Pr�proofpart�� � Unify it with the content of Pr
unify�tail�proofpart��� 	�� � Unify its tail with the symbol �nil�
proo�ist � createlist� � Create a list structure on the heap
unify�head�proofpart��proo�ist�� � Unify it with the head of �proofpart�
proofhead � createterm�p�n�� � Create term p�n
unify�head�proo�ist��proofhead�� � Unify it with the head of �proo�ist�
for�i � � i � n� i� i � � � Unify its ith argument with Ai

unify�Ai�argument�proofhead�i���
Pr � tail�proo�ist�� � Set Pr to point to the tail of �proo�ist�
P � location�p�n�� � Jump to procedure p�n in current theory

b� Execute Instruction

unify�Pr�� 	�� � Unify the content of Pr with an empty list
Pr � CPr� � Move the content of CPr into Pr
P � CP� � Move the content of CP into P

c� Proceed Instruction

FIGURE ���� Algorithms of Procedural Instructions in Proof Mode

Example ��� In this example� we will use a trivial program to represent a theory T�
and we will trace the proof computation of a goal in that theory� In this trace� we
show how registers Pr and CPr are changed by procedural instructions� and which
part of the proof is collected at each step� Now� let us assume that the trivial pro�
gram in Figure ��� represents the theory T� The �rst clause of that trivial program
has two subgoals� and the second and third clauses are unit clauses� Figure ��� also
gives WAM instructions of that trivial program after its compilation� The com�
piled clauses of the procedures q
� and r
� have a proceed instruction since they

��

p�X�Y� �� p��� q��
q�X�� r�Y�� allocate get args of q�

get args of p�� proceed
q�a�� put args of q�

call q��
r�b�� put args of r� r��

deallocate get args of r�
execute r� proceed

FIGURE ���� A Trivial Program And Its WAM Instructions

At the beginning Proof� � p�X�Y� j 	

of procedure p�� �Pr

After the execution Proof� � p�X�Y�� � q�X� j 	 j 	

of call q� in p�� �Pr �CPr

After the execution Proof� � p�a�Y�� � q�a� 	 j 	

of proceed in q� �Pr

After the execution Proof� � p�a�Y�� � q�a� 	� � r�Y� j 	 	

of execute r� in p�� �Pr

After the execution Proof� � p�a�b�� � q�a� 	� � r�b� 	 	
of proceed in r�

FIGURE ���� Trace of Execution of A Trivial Program

are unit clauses� The compiled clause of the procedure p
� has a call instruction
and an execute instruction� When the predicate demo�T�p�X�Y��proof�Proof�� is
executed� the contents of registers Pr and CPr� and the proof being collected are
changed as shown in the trace given in Figure ���� Before control is transferred
to the procedure p
�� a proof template list whose head is the goal in the demo
predicate and whose tail is an unbound variable is created� and the register Pr is
set to point to the tail of this list� Later� each procedural instruction adds new
proofs to this list and updates registers Pr and CPr properly depending on that
procedural instruction�

���� Implementation of Demo Predicate

A branch of a search tree of a goal can be collected by a three�argument or four�
argument demo predicate� A branch collected by a demo predicate can be a fail

��

branch or a success branch �proof� depending on the arguments of that demo pred�
icate� If the third argument of a demo predicate is proof�P�� only success branches
will be collected� On the other hand� if it is branch�B�� all branches including fail
branches of the search tree of the given goal are collected by the system�

The fourth argument of a demo predicate gives control information to be used
while proving that goal� The control information is a list of procedures whose
proofs will be skipped during execution of a goal in that demo predicate� The
third argument of a demo predicate also carries a kind of control information� It
determines whether only success branches� or all branches are going to be collected�

A three�argument demo predicate is the same as a four�argument demo without
a skip list� In the MetaProlog system� a four�argument demo predicate is de�ned
as follows�

demo�Theory�Goal�Branch�SkipPreds� ��
context�CurrTheory��
proof context�CurrCTR�CurrCTRInfo�CurrPr�CurrCPr��
switch context�Theory��
switch proof mode�Branch�SkipPreds��
call�Goal��
reset proof mode�CurrCTR�CurrCTRInfo�CurrPr�CurrCPr��
switch context�CurrTheory��

The predicates context and proof context get the current values of the registers
TH� CTR� CTRInfo� Pr� and CPr to be restored after the execution of Goal is
completed� The predicate switch context sets the current theory register TH to
the given theory in the demo predicate� The predicate switch proof mode prepares
the registers CTR� CTRInfo� Pr� and CPr for oncoming proof computation� These
registers are set as follows depending on values of the third and fourth arguments of
the demo predicate� After these registers are set� execution continues in the proof
mode�

CTR

� Mark the register CTR to indicate that the AMPE will be in the proof
mode�

� Mark the register CTR to indicate that all branches of the search tree
will be collected if the third argument is in the form of branch�B��

CTRInfo

� Create a new control information box with three slots if there is any
procedure whose proof will be skipped or if all branches will be collected�
If a control information box is created� we continue to �ll this control
information box� otherwise the register CTRInfo is set to constant �nil��

� Set the �rst slot of the control information box to the list of procedures
whose proofs will be skipped if there is any� otherwise set it to constant
�nil��

� If all branches are to be collected� save environment pointer E in the
second slot� and a pointer to the body of the demo predicate in the third
slot� This code pointer points to the location of subgoal reset proof mode
in the body of the demo predicate� and the saved environment pointer
points to the environment of the four�argument demo predicate �cf� Fig�

��

Box Header

Skip List

Box Header

Environment of demo��

demo���
���

put args of switch proof mode��

call switch proof mode���N

put args of call�

call call��N�

put args of reset proof mode��

call reset proof mode���N�
���

�
�
�
�
�
�
���

HHHHHHHHHj

FIGURE ���� A Control Information Box and Demo Predicate

ure ����� These values are used to transfer control to the four�argument
demo during a failure�

Pr and CPr

� Create a proof template on the heap for oncoming proof computation�
set register Pr to the head of that proof template� and register CPr to
the tail of that template� This proof template is as follows�

� � call�Goal�� Branch 	 j Rest 	

This template represents a part of the proof of the four�argument demo
predicate� The head of this template represents a proof of goal call�Goal��
The proof of call�Goal� is a singleton list whose element is the proof of
Goal�

After the execution of call�Goal� is completed� Branch is bound to the leftmost
branch of the search tree ofGoal relative toTheory� The predicates reset proof mode
and switch context restore old values of the registers CTR� CTRInfo� Pr� CPr and
TH� and execution continues in the simple mode or in the proof mode depending
on the restored value of the register CTR�

���� Implementation of Skipping of Branches

When a call or execute instruction is executed for a procedure whose proof should
be skipped� the system switches from the proof mode to the simple mode to skip its
proof� The algorithms for call and execute instructions in Section ��� should check
whether the proof of the procedure will be skipped or not� If it will be skipped�
they have to switch the mode of the AMPE from the proof mode to the simple
mode before they transfer control to that procedure�

��

Box Header for Compiled Clause
load CTR �CTR value�
load CP �CP value�
switch to proof mode
proceed
Box Header for Compiled Clause

FIGURE ���� A Skip Break Point

Before control is transferred to a procedure whose proof will be skipped� the
proof register Pr points to the tail of the proof of that procedure� Since a singleton
list is chosen to represent a skipped proof in the MetaProlog system� the content
of the proof register Pr should be uni�ed with an empty list after the execution
of the procedure is completed in the simple mode� In other words� the proof of
that procedure will be a singleton list whose only element is an instance of that
procedure call�

After the execution of that procedure is completed in the simple mode� the mode
of the AMPE has to be switched back to the proof mode in order to continue to
collect the proof of the calling procedure� But the system cannot know when the
execution of that procedure is completed in the simple mode� This problem is
solved by creating a skip break point which will be executed after the procedure
is completed in the simple mode� Normally� when the execution of a procedure is
completed� the execution continues from the location pointed at by the continua�
tion program pointer register CP� This is the location at which execution must be
interrupted at the end of the procedure whose proof is skipped in the simple mode�
Before control is transferred to that procedure� a skip break point �cf� Figure ����
is created on the heap� The register CP is set to point to the beginning of instruc�
tions of this skip break point� and the register CTR is marked to indicate that the
system will be skipping a branch of the search tree�

A skip break point is a compiled clause which contains four AMPE instructions�
Three of these four instructions are new AMPE instructions� and they are executed
in the simple mode� The last one is a proceed instruction� When a skip break point
is created� the current values of registers CTR and CP are saved in the �rst two
instructions of this skip break point� These �rst two instructions load CTR and
load CP restore the original values of these registers� When the third instruction�
switch to proof mode� is executed� the system switches back to the proof mode�
When the last instruction� proceed� in the skip break point is executed in the proof
mode� the content of the proof register is bound to an empty list� and execution
continues from the location indicated by the register CP�

���� Failure Routines

When a failure occurs� an earlier state of the computation should be restored from
the values stored in the last choice point� Since the mode of the system is a part of
a state of computation in the AMPE� failure routines should be able to switch from
one mode to the other� They should also be able to collect a fail branch� when the
system collects all branches in a search tree�

��

First� failure routines in both modes check whether the system is collecting all
branches of a search tree or not� If the system is collecting all branches� a fail
branch of that search tree is collected by failure routines� Since we collect a failure
branch of a subgoal whose proof is skipped when there is no success branch in
the search tree of that subgoal� the failure routine in the simple mode checks this
condition before it collects that fail branch� The following actions are taken when
the conditions above are satis�ed in either mode�

� The content of the proof register Pr is uni�ed with the term �fail	 which
represents a part of a fail branch�

� Since the execution should continue in the last demo predicate which caused
the collection of all branches in a search tree� the environment of this demo
predicate is restored from the control informationbox in the register CTRInfo�
Then� control is transferred to the location stored in that control information
box after the mode of the system is switched back to the proof mode�

If all branches of the search tree are not being collected� failure routines in both
modes perform similar functions as the failure routine in the WAM� First� trailed
entries are untrailed� and registers are restored from values stored in the last choice
point� The registers Pr and CPr are restored if that choice point is created in the
proof mode� otherwise they are not restored� The system switches to the mode
determined by the restored register CTR�

�� RELATED WORK

Many proposals to extent logic programming with theories �modules or contexts��
and proofs are presented ��� �� ��� ��� ��� ��� ��� ��� ��	 in the literature� Some
of them are just interested in the expressive power� �exibility and declarative se�
mantics of meta�level facilities without emphasizing implementation techniques for
these meta�level facilities� Since our paper is mainly about the implementation
of the meta�level facilities in MetaProlog� and since the work done by Lamma et
al� ���� ��	 and the work done by Nadathur et al� ���	 are the only ones that are
concentrated on the implementation of contexts� we will compare our work with
their work� There are two main di�erences between our system and the other two
systems mentioned above�

� In those systems� contexts are implicitly created to be used only in the
derivation of a single goal� whereas we have explicit handles �MetaProlog
variables bound to theory descriptors� to contexts so that they can be used
in derivations of more than one goal� This di�erence can explain the reason
for the usage of a stack for the implementation of contexts in those systems�
and the usage of the heap to keep theories in our system�

� To locate a procedure in a context may be faster in the MetaProlog system
than in those systems� because of the non�default theory approach in our
system�

In the rest of this section� these di�erences are discussed in detail and justi�cations
for some of our design decisions are given�

The system developed by Lamma et al� ���� ��� ��	 for the contextual logic
programming ���	 has units which are sets of clauses identi�ed by Prolog constants�
and contexts which are ordered lists of units� The contexts in their system are

��

closely related to the theories in our system� In their system when an extended
goal u �� G is executed� a new context is created from the current context by
adding clauses of the unit u to the current context before starting the derivation
of the goal G� This new context is only used in the derivation of the goal G� and
it is only implicitly accessible during its derivation� If the goal G is deterministic�
the new context is automatically discarded after the completion of its derivation�
If it is non�deterministic� the new context is not discarded so that a backtracking
to that goal can be possible� Since there is no explicit handle for a context in
their system� a variable cannot be bound to it and it cannot be returned as a
value� At the implementation level� the unit u is pushed into a stack to create
a new context when the extended goal u �� G is encountered� If the goal G is
deterministic� the pushed unit is popped from the stack to discard that new context
after the derivation of G� The new stack which is used to implement contexts in
their system is called the context stack�

In the system developed by Nadathur et al� ���	� a context is also created for the
derivation of a goal and discarded afterwards� The addition of clauses takes place as
a result of an implication goal� The clauses in an implication goal are added to the
program before solving the goal in that implication goal� If the goal is deterministic�
the need for the context created for this goal disappears� and the space occupied
by that context can be reclaimed in their system� Again� a stack�based mechanism
is appropriate for the implementation of contexts in their system like in the system
developed by Lamma et al� They push a special environment called implication
record into the local stack to create a new context and pop this implication record
to discard this context� The main di�erence between these two systems is that the
local stack is used to keep contexts in Nadathur et al�
s system instead of a separate
context stack which is used in the system developed by Lamma et al�

On the other hand� a theory is explicitly created by the predicates addto and
dropfrom in the MetaProlog system and an explicit handle to that theory is returned
as a value� After the creation of a theory� the variable given in the third argument
position is bound to the internal structure of this new theory� A theory is accessible
as long as the variable bound to its internal representation is accessible� A theory
can be used in derivations of more than one goal once it is created� The life cycle
of a theory depends on the life cycle of the variable bound to that theory in the
MetaProlog system� The life cycle of a theory is similar to the life cycle of a
structure in the heap� In fact� this is the reason why we keep theories in the heap
by removing the code area in our WAM�based system� We cannot put theories
into a stack� because their life cycles are not restricted with the life cycle of the
derivation of a single goal� For example� the following MetaProlog goal

addto�OldTheory� Clauses� NewTheory�� demo�NewTheory�Goal�

can be simulated by

unit �� Goal

in the contextual logic programming �CxLP� if the unit unit� contains the same
clauses in Clauses� and the current context contains the same clauses in OldTheory�
In the system developed by Lamma et al�� a new context� which will be equal to
NewTheory� is created by adding clauses in the unit unit� to the current context�
and it is only used during the derivation of Goal� On the other hand� in the
MetaProlog system� the new theory� to which NewTheory is bound� will not be

�	

automatically discarded after the execution of the demo predicate� and the same
theory can be returned as a value to be used in another demo predicates to prove
di�erent goals with respect to that theory� or in theory creation predicates such as
addto to create another new theory from that theory�

In the system developed by Lamma et al�� they adopt an explicit representation
of the context as a set of units� The code of each unit is composed of procedures
explicitly de�ned in that unit� To access a procedure in the current context� that
context is searched in the units of the current context� For example� if the current
context is the ordered set of units �Un� Un��� � � � � U�	� and we want to access the
procedure p
n in the current context� that procedure is searched in the unit Un�
If it is not found in Un� then it is searched in Un��� This search continues until
the procedure p
n is found or no more unit is left to be searched� In their system�
the cost of accessing a procedure will depend on the number of units in the current
context� The search can be expensive if there are a lot of recursive extended goal
invocations� In this discussion� we assumed that the call to the procedure p
n is a
lazy goal of their system� In their system� the right code for local and eager goals
is found at compile or extension time� respectively�

In the system developed by Nadathur et al�� the time needed to locate the code
of a predicate in a context is proportional to the number of the nesting levels of
implication goal invocations in that context� They have to search the right code for
a predicate in implication records created on the local stack for each implication
goal� The search starts from the most current implication record on the top of
the stack� and continues until the predicate is found or the bottom of the stack
is reached� This can be expensive if there are a lot of recursive implication goal
invocations�

In our system� to access a procedure in a theory T� that procedure is searched
in T� If it is not found there� it is searched in the default theory of T� This search
proceeds with default theories along the branch from T to the base theory� The
procedure is searched in each theory using a hash function� The maximum number
of theories which may be searched is the number of default theories on the branch
from T to the base theory� In fact� this is the reason why the non�default theory
approach is used in the representation of theories instead of the parent relation
among theories� In our system� most theories will be non�default theories� and a
few of them will be default theories� Thus� the number of default theories which will
be searched to access a procedure will be small and the search for that procedure
will not be expensive� If we make all theories in our system default theories� a search
for a predicate will be similar to the search in the system developed by Lamma et
al�

Since we are not aware of any WAM�based system which collects proofs and uses
them to shrink search spaces of goals in the literature� we are not able to compare
our implementation with any other system� There are meta�interpreters which
collect proofs ���� ��� ��� ��� ��	� but they do not e�ciently implement proofs
because of the extra layer of interpretation� To the best of our knowledge� our
system is the only system in the literature which deals with proofs at WAM�level�
To handle proofs� we use extra registers and assign di�erent meanings to procedural
instructions� These extensions are smoothly integrated with the original WAM�

�

�� CONCLUSION

To implementmeta�level facilities such as theories� proofs� fail branches and control
knowledge in a WAM�based system� we have to extend the WAM by rede�ning
meanings of indexing and procedural instructions� introducing new registers to be
used in proof computations� and loading extra tasks to failure routine� To be able
to explicitly represent meta�level objects and control knowledge� some guidelines
for changes to the WAM can be summarized as follows�

� New registers may be needed to get e�cient implementation of these meta�
level objects� We had to introduce the theory register TH to handle multiple
theories� and the proof register Pr and the proof continuation register CPr
to handle proofs�

�� Explicit representation of control knowledge may be handled by storing this
control knowledge in some data structure pointed at by some new registers�
This task is handled by CTR and CTRInfo registers in the MetaProlog sys�
tem� To achieve more e�ciency� some portions of control knowledge may
be implemented by using separate mechanisms� but they may increase com�
plexity of the architecture�

�� Environments and choice points may need to keep extra information about
meta�level objects and control knowledge�

�� Most of the mechanisms introduced to handle meta�level objects and control
knowledge are used by procedural instructions and failure routines�

If the guidelines above are followed� new control knowledge may easily be added
to a WAM�based system� For example� to control the depth of a proof tree� extra
information can be included in control information boxes� and that extra informa�
tion can be used by procedural instructions� To do this� control information should
keep a new value indicating the maximum depth of a proof tree� and a new global
counter should hold the current depth� Procedural instructions may check whether
the maximum depth is reached or not by comparing those two values�

REFERENCES

�� A�t�Kaci� H�� Warren�s Abstract Machine� A Tutorial Reconstruction� The MIT
Press� Cambridge� �		��

�� ALS Prolog Reference Manual� Applied Logic Systems� Inc�� �	���
�� Attardi� G�� and Simi� M�� Metalanguage and Reasoning Across Viewpoints� in�

Proc� of the �th ECAI� Pisa� Italy� �	���
�� Bacha� H�� Meta�Level Programming� A Compiled Approach� in� Proc� of the �th

Int� Conf� on Logic Programming� The MIT Press� Cambridge� �	��� pp� �	����
�
�� Bacha� H�� MetaProlog Design and Implementation� in� Proc� of the �th Int� Conf�

and Symp� on Logic Programming� The MIT Press� Cambridge� �	��� pp� �����
�����

�� Bowen� K�A�� and Kowalski� R�A�� Amalgamating Language and Metalanguage in
Logic Programming� in� Logic Programming� Clark� K�� and Tarnlund� S��A� �eds���
Academic Press� London� �	��� pp� ��������

�� Bowen� K�A�� and Weinberg� W�� A Meta�Level Extension of Prolog� in� Proc� of
the ���� Symp� on Logic Programming� IEEE Computer Society Press� �	��� pp�
������

��

�� Bowen� K�A�� A Meta�Level Programming and Knowledge Representation� New
Generation Computing 	�	��
	�	� �	���

	� Bowen� K�A�� Buettner� K�A�� Cicekli� I�� and Turk� A�� A Fast Incremen�
tal Portable Prolog Compiler� Lecture Notes in Computer Science �������
����
Springer�Verlag� New York� �	���

�
� Bratko� I�� PROLOG Programming For Articial Intelligence� �nd Edition�
Addison�Wesley� New York� �		
�

��� Bru�aerts� A�� and Henin� E�� Negation as Failure� Proofs� Inference Rules and
Meta�Interpreters� in� Meta
Programming in Logic Programming� Abramson� H��
and Rogers� M�H� �eds��� The MIT Press� Cambridge� �	�	� pp� ��	��	
�

��� Bugliesi� M�� Lamma� E�� and Mello� P�� Modularity in Logic Programming� Journal
of Logic Programming ��������	
���� �		��

��� Cicekli� I�� A Garbage Collector For The MetaProlog System �or� Collecting All
The Garbage in Prolog Systems�� Logic Programming Research Group Technical
Report LPRG�TR������ Syracuse� �	���

��� Cicekli� I�� Design and Implementation of An Abstract MetaProlog Engine for
MetaProlog� in� Meta
Programming in Logic Programming� Abramson� H�� and
Rogers� M�H� �eds��� The MIT Press� Cambridge� �	�	� pp� ��������

��� Cicekli� I�� Design and Implementation of An Abstract MetaProlog Engine for
MetaProlog� Ph�D� Dissertation� Syracuse University� Syracuse� �		��

��� Clocksin� W�F�� and Mellish� C�S�� Programming in Prolog� �nd Edition� Springer�
Verlag� New York� �	���

��� Dincbas� M�� and Le Pape� J�� Metacontrol of Logic Programs in METALOG� in�
Proc� of Int� Conf� on Fifth Generation Computer Systems� Tokyo� �	���

��� Eshghi� K�� Application of Meta�Language Programming to Fault Finding in Logic
Circuits� in� Proc� of the �st Int� Conf� on Logic Programming� Marseille� �	���

�	� Eshghi� K�� MetaLanguage in Logic Programming� Ph�D� Dissertation� Imperial
College� London� �	���

�
� Gallaire� H�� and Lasserre� C�� A Control Metalanguage for Logic Programming�
in� Proc� of Logic Programming Workshop� �	�
�

��� Giordano� L� and Martelli� A�� A Modal Reconstruction of Blocks and Modules in
Logic Programming� in� Proc� of the ���� Int� Symp� on Logic Programming� The
MIT Press� Cambridge� �		�� pp� ��	�����

��� Lamma� E�� Mello� P� and Natali� A�� The Design of An Abstract Machine For
E�cient Implementation of Contexts in Logic Programming� in� Proc� of the �th
Int� Conf� on Logic Programming� The MIT Press� Cambridge� �	�	� pp� �
������

��� Lamma� E�� Mello� P� and Natali� A�� Re�ection Mechanisms for Combining Prolog
Databases� Software
Practice and Experience ��������	
���� �		��

��� Lamma� E�� Mello� P� and Natali� A�� An Extended Warren Abstract Machine
for The Execution of Structured Logic Programs� Journal of Logic Programming
������
���� �		��

��� Mello� P� and Natali� A�� Extending Prolog with Modularity� Concurrency and
Meta�Rules� New Generation Computing ������		�
	��� �		��

��� Miller� D�� A Logical Analysis of Modules in Logic Programming� Journal of Logic
Programming ����
���� �	�	�

��� Montiero� L�� and Porto� A�� Contextual Logic Programming� in� Proc� of the �th
Int� Conf� on Logic Programming� The MIT Press� �	�	� pp� �����
��

��� Miyachi� T�� Kunifuji� S�� Kitakami� H�� Furukawa� K�� Takeuchi�A�� and Yokota�
H�� A Knowledge Assimilation Method for Logic Databases� in� Proc� of the ����
Int� Symp� on Logic Programming� IEEE Computer Society Press� Washington
D�C�� �	��� pp� ��������

�	� Nakashima� K�� Knowledge Representation in Prolog�KR� in� Proc� of the ���� Int�
Symp� on Logic Programming� IEEE Computer Society Press� Washington D�C��

��

�	��� pp� ������
�
�
� Nadathur� G�� Jayaraman� B�� and Kwon� K�� Scoping Constructs in Logic Pro�

gramming� Implementation Problems and Their Solution� Journal of Logic Pro

gramming ������
���� �		��

��� Quintus Prolog Reference Manual� Quintus Computer Systems Ltd�� �	���
��� des Rivieres� J�� Meta�Level Facilities in Logic�Based Computational Systems�

in� Proc� of the Workshop on Meta
Level Architectures and Re�ection� Alghero�
Sardinia� Italy� �	���

��� Roy� P�V� A Prolog Compiler for the PLM� Master Thesis� University of California
at Berkeley� �	���

��� Russell� S�� The Complete Guide to MRS� Knowledge Systems Laboratory Report
KSL������� Standford� �	���

��� Safra� M� and Shapiro� E�� Meta�Interpreters for Real� in� Concurrent Prolog� Vol
�� Shapiro� E� �ed��� The MIT Press� Cambridge� �	��� pp� ������	�

��� Sterling� L�� and Shapiro� E�� The Art of Prolog� The MIT Press� Cambridge� �	���
��� Sterling� L�S�� Meta�Interpreters� The Flavors of Logic Programming�� in� Proc�

of Workshop on Deductive Databases and Logic Programming� Washington D�C��
�	��� pp� ��������

��� Sterling� L�S�� and Beer� R�D�� Incremental Flavor�Mixing of Meta�Interpreters for
Expert System Construction� in� Proc� of the 	rd Symp� on Logic Programming�
IEEE Computer Society Press� Washington D�C�� �	��� pp� �
����

�	� Sterling� L�S�� and Lakhotia� A�� Composing Prolog Meta Interpreters� in� Proc� of
the �th Int� Conf� and Symp� on Logic Programming� The MIT Press� Cambridge�
�	��� pp� �����
��

�
� Sterling� L�S�� A Meta�Level Architecture for Expert System� in� Meta
Level Ar

chitectures and Re�ection� Maes� R�� and Nardi� D� �eds��� North Holland� �	���

��� Warren� D�H�D�� An Abstract Prolog Instruction Set� SRI Technical Report �
	�
�	���

��� Weyhrauch� R�W�� Prolegomena to A Theory of Mechanized Formal Reasoning�
Articial Intelligence �	��		
���� �	�
�

��� Weyhrauch� R�W�� An Example of FOL using Metatheory� in� Proc� of the �th
Conf� on Automated Deduction� Springer�Verlag� New York� �	���

��� Yalcinalp� U�� and Sterling� L�� An Integrated Interpreter for Explaining Prolog�s
Successes and Failures� in� Meta
Programming in Logic Programming� Abramson�
H�� and Rogers� M�H� �eds��� The MIT Press� Cambridge� �	�	� pp� �	���
��

