Similarities and Differences

Ilyas Cicekli

Dept. of Comp. Eng., Bilkent University, 06533 Bilkent, Ankara, Turkey
ilyasQcs.bilkent.edu.tr

Abstract

A match sequence between two sentences of a language
consists of similarities and differences to represent simi-
lar parts and differing parts between those sentences. A
translation example 1s a corresponding of two sentences
in which one of them from the language £ and the other
one from the language £°. From given two translation
examples we create a match sequence for sentences of the
language £¢, and another match sequence for sentences
of the language £°. From these match sequences, gen-
eral templates are learned using certain learning heuris-
tics. These heuristics replace differences or similarities
in the match sequences, and establish bindings between
variables to create a general template. These learned
translation templates can be used in the translation of
other sentences in both directions.

Keywords: Example-Based Machine Translation, Nat-
ural Language Processing

1 Introduction

Traditional machine translation (MT) systems require
the large-scale knowledge such as lexicons, grammar
rules, mapping rules and an ontology. Acquiring these
knowledge resources manually is a time consuming and
expensive process. For this reason, researchers have been
studying the ways of automatically acquiring some por-
tions of the required knowledge. Even in some traditional
systems [12], some portions of the required knowledge
such as the lexicon are acquired automatically from a
corpus [10]. The technique presented here aims at acquir-
ing all required knowledge except morphological rules for
the machine translation task from sentence-level aligned
bilingual text corpora only.

EBMT, originally proposed by Nagao [13], is one of
the main approaches of corpus-based machine transla-
tion. The main idea behind EBMT is that a given input
sentence in the source language is compared with the
example translations in the given bilingual parallel text
to find closest matching examples so that these exam-
ples can be used in the translation of that input sen-
tence. After finding the closest matchings for the sen-
tence in the source language, parts of the corresponding
target language sentence are constructed using structural
equivalences and deviances in those matches. Follow-
ing Nagoa’s original proposal, several machine transla-
tion methods that utilize bilingual corpora have been
studied [5, 9, 16, 17, 18, 19]. Some researchers [3, 20]
only utilized bilingual corpora to create a bilingual dic-
tionary and use it during the translation process. In
other words, they aligned bilingual corpora at word level
to figure out corresponding words in languages. Bilin-

gual corpora is also aligned at phrase level by some other
researchers [1, 2, 14]. But these correspondences be-
tween two languages are only accomplished at atomic
level, and they are used in the translation of portions
of sentences. Kaji [8] tried to learn correspondences of
English and Japanese syntactic structures from bilingual
corpora. This is similar to the work in [6] and it needs re-
liable parsers for both source and target languages. The
technique described here not only learns atomic corre-
spondences between two languages, it also learns general
templates describing structural correspondence (not syn-
tactic structure) from bilingual corpora. Learning tech-
nique described in [4, 7] is similar to the first learning
heuristic described in this paper.

Researchers in Machine Learning (ML) community
have widely used exemplar-based representation. Medin
and Schaffer [11] were the first researchers who proposed
exemplar-based learning as a model of human learning.
The characteristic examples stored in the memory are
called ezemplars. In EBMT, translation examples should
be available prior to the translation of an input sentence.
In most of the EBMT systems, these translation exam-
ples are directly used without any generalization. Kitano
[9] manually encoded translation rules, however this is a
difficult and error-prone task for a large corpus. In this
paper, we formulate the acquisition of translation rules,
which are similar to exemplars, as a machine learning
problem in order to automate this task.

The translation template learning framework pre-
sented in this paper 1s based on a heuristic to infer the
correspondences between the patterns in the source and
target languages from given two translation pairs. Ac-
cording to this heuristic, given two translation exam-
ples, if the sentences in the source language exhibit some
similarities, then the corresponding sentences in the tar-
get language must have similar parts, and they must be
translations of the similar parts of the sentences in the
source language. Further, the remaining differing con-
stituents of the source sentences should also match the
corresponding differences of the target sentences. How-
ever, if the sentences do not exhibit any similarities, then
no correspondences are inferred. Given a corpus of trans-
lation examples, our learning heuristics infer the corre-
spondences between the source and target languages in
the form of templates. These templates can be used for
translation in both directions.

The rest of the paper is organized as follows. First,
we explain how a match sequence, which represents sim-
ilarities and differences in a pair of translation examples,
can be found. Then, we describe our learning heuristics,
and how our learning heuristics can be used an example-
based machine translation system. Finally, we conclude
the paper with pointers for further research.

2 Match Sequence

In this section we formally describe what is a match se-
quence. Before we do that, we give other required defi-
nitions first.

An alphabet A is a non-empty set of terminals. For
our purposes, the set of all words, suffixes, and prefixes
in a natural language i1s the alphabet of that natural
language. Here, we treat terminals as the smallest indi-
visible meaningful units of a language.

A language £ on an alphabet A4 is a non-empty finite
set of non-empty strings on A with finite length. In
other words, £ C AT such that £ is a finite non-empty
set, and if & € £ then the length of « is finite and greater
than 0. So, we treat a natural language as a finite set of
its sentences and sentence chunks. Of course, we make
an assumption that the set of all sentences of a natural
language is finite.

A string on A is a member of A*. If a string « is a
member of £, v is called a sentence of L. The reader will
notice that a sentence is a non-empty string with finite
length according to the definitions above.

A similarity between «q and arg, where a1 and oy are
two sentences of a language £, is a non-empty string [
such that a; = ay 10012 and as = as18az2. A simi-
larity represents a similar part between ‘two sentences.

A difference between «y and «y, where oy and as are
two sentences of a language £, is a pair of two strings
(f1, B2) where £y is a substring of «; and PBa is a sub-
string of as, the same terminal cannot occur in both 3
and B2, and at least one of them is not empty. A differ-
ence represents a pair of differing parts between two sen-
tences. Sometimes we will insist that both constituents
of a difference are not empty.

A match sequence between two sentences «y and ay of
a language L is a sequence of similarities and differences
between «y and as such that the following conditions
must be satisfied by this match sequence:

1. Concatenation of similarities and the first con-

stituents of differences must be equal «a;.

2. Concatenation of similarities and the second con-
stituents of differences must be equal «as.

The order of operands in the concatenation operations
are same as their order in the match sequence. So, a
match sequence M between a; and as is in the following

form:
M = Py...P, where each P; is a similarity S; or
a difference D; = (D; 1, D;2), and n>1.

If we define two constituent functions as follows:

= S; if P; 1s a similarity .S;
»l = D; 1 if P is a difference (D; 1, D; 2)
= S; if P; 1s a similarity .S;
nZ = D; 5 if P is a difference (D; 1, D; 2)
then
Q] = 0171...07171
g = 0172...07172

An instance of a match sequence M = Pi...P, 1s an-
other match sequence M’ = P/...P/, where m > n such
that 0171...07171 = o1 = C{,l"'cr/n,l and 0172...07172 =
as = (] 5...C}, 5. An instance is created by separating
similarities and differences in a match sequence. A sim-
ilarity can be separable into two similarities if its length

is greater than 1. A difference can be separable into two
differences if the length of one of its constituent is greater
than 1. But a difference can be separable into two differ-
ences without empty constituents if the lengths of both
of its constituents are greater than 1. For our purposes,
we create instances by just separating similarities or by
just separating differences but not both of them at the
same time. An instance is called sitmilarity instance if
its created by just separating differences; and it is called
as difference instance if it is created by just separating
similarities. A similarity instance will have exactly the
same similarities as the original match sequence; and a
difference instance will have exactly the same differences
as the original match sequence.

There can be more than one match sequence for a
pair of sentences. Now, we will put extra restrictions
on match sequences by the following definition to ensure
that two sentences have a unique match sequence or no
match sequence. A minimal match sequence is a match
sequence satisfying the following conditions:

1. A similarity cannot follow another snnllarlty, and a
difference cannot follow another difference in a min-
imal match sequence. This means that if F; is a
similarity in a minimal match sequence, P;y; must
be a difference, and if P; is a difference in a minimal
match sequence, P;;1 must be a similarity.

2. If a terminal occurs in a similarity, it cannot occur
in any difference.

3. If a terminal occurs in the first constituent of a dif-
ference, 1t cannot occur in the second constituent
of a prior difference. In other words, if a terminal
occurs in [); 1, it cannot occur in D; 5 where j<1.

4. If a terminal occurs in the second constituent of a
difference, it cannot occur in the first constituent
of a prior difference. In other words, if a terminal
oceurs in [); o, it cannot occur in D; ; where j<1.

Although a terminal can appear in more than one simi-
larity according to the conditions above, we can observe
the following facts.

e If a terminal appears in both a; and «s, it must be
appear n times, where n> 1, in both sentences. Oth-
erwise, they cannot have a minimal match sequence.

e If a terminal appears more than once in both o and
g, its i'" occurrence in «y and its i'* occurrence
in oy must end up in the same similarity of their
minimal match sequence.

For example, the minimal match sequence of the sen-
tences abebd and ebfbg will be (a,e)b(e, £)b(d, g). But,
sentences abebd and ebf cannot have a minimal match
sequence because b occurs twice in the first sentence and
b occurs only once in the second sentence.

Now we give an important theorem about the minimal
match sequences.

Theorem 1 . [f two sentences oy and as have a mini-
mal match sequence, @ is unique. (i.e. if it exists,there
is only one minimal match sequence for oy and as.)

Proof. Let us assume that M; be a minimal match
sequence for two sentences «p and s, and M5 be another
minimal match sequence (different from M) for these
sentences. Since My and M, are different minimal match
sequences, at least one of two following cases must be
true:

1. A terminal appearing in a similarity of M; must
appear in a difference of M5 or,

2. A terminal appearing in a difference of M; must
appear in a similarity of M.

In the first case, a same terminal must be appear in both
a similarity and a difference of M, or it must appear in
both the first constituent of a difference and the second
constituent of a difference of M;. But, both of them
are not possible according to the definition of minimal
match sequence. The second case is also impossible, be-
cause the terminal in question does not appear in both
sentences. So, two sentences cannot have two different
minimal match sequences. O

Now, we give an algorithm to compute a minimal
match sequence for given two sentences in Figure 1 and
2. This algorithm finds a minimal sequence or it indi-
cates that there is no minimal match sequence for given
two sentences. Figure 1 contains the main function,
and Figure 2 contains an auxiliary function of the al-
gorithm. Functions minimalM with 3 arguments and
minimal M D with b arguments are recursive functions,
and they call each other in the computation of a minimal
match sequence. The reader will notice that the algo-
rithm tries to satisfy the conditions which are required
for minimal match sequences.

3 Learning Heuristics

A translation template is an atomic or general transla-
tion template. A atomic translation template between
languages £% and £’ is a pair of two sentences o « 3
where o € £% and € L. A given translation example
will be an atomic translation template.

A general translation template between languages £
and £° is an if-then rule in the following form:

T¢ -~ TVif X; =V, and ... and X,, — Y,

where n > 1, T is a string of terminals in the alpha-
bet of the langnage £% and variables X1, ..., X,,, 7% is a
string of terminalsin the alphabet of the language £° and
variables Y1, ..., Y, and both 7% and 7 must contain at
least one terminal.

For example, if the alphabet of L% is A
{a,b,c,d,e, f,g,h} and the alphabet of £’ is B
{t,u,v,w,,y, 2}, the followings are some examples o
general templates between £ and £°.

L 4 alec — UY1 1fX1 — Y1
* ClebXQC — YzUUYl 1fX1 — Y1 and X2 — Y2
[CleXzb — YzUYl 1fX1 — Y1 and X2 — Y2

A general template is a generalization of translation
examples, where certain components are generalized by
replacing them with variables and establishing bindings
between these variables. For example, in the first exam-
ple above, abX;c represents all sentences of £¢ starting
with ab and ending with ¢ where X; represents a non-
empty string on A, and uY] represents all sentences of £°
starting with u where Y] represents a non-empty string
on B. That general template says that a sentence of £°
in the form of abX;c corresponds to a sentence of £° in
the form of uY7 given that X; corresponds to Y7. If we
know that the correspondence de < vyz, the correspon-
dence abdec «— wvyz can be inferred from that general
template.

A minimal match sequence between two translation ex-
amples ay «— (1 and ag < (5 1s a pair of two minimal

-y

mintmalM (a1, az) { % where a1 and a; are two sentences
return (minimalM (a1, az,€)) }
mintmalM (a1, a2, M) {
if ((a1 =€) and (a2 = €)) return(M);
else if ((a1 = €))
if (a terminal in a2 appears in a C; 1 of M)
exit(no-minimal-match-sequence);
else return(M || (¢, a2));
else if ((az = €))
if (a terminal in a1 appears in a C; 3 of M)
exit(no-minimal-match-sequence);
else return(M || (a1, €));
else {
ft1 < first terminal of a;
fto «— first terminal of ao;
if (ft1 = ft2) {
o find the longest prefix between oy and ao,
and call it similarity .S;
e drop S from both a1 and asz;
if (a terminal in S appears in a difference of M)
exit(no-minimal-match-sequence);
else return(mintmaelM (a1, a2, M || 5)); }
else if (ft; appears in az) {
o let oo = o1 fth azp
where a1 does not contain ft1;
if (a terminal in a2 appears in a C;; of M)
exit(no-minimal-match-sequence);
else return(minimalM (a1, ftiaz o, M || (e, a21))); }
else if (ft2 appears in a1) {
olet a1 =11 ftoaip
where a1 does not contain fiz;
if (a terminal in a1,1 appears in a C; 2 of M)
exit(no-minimal-match-sequence);
else return(minimal M (ftraq 2, a2, M || (a1,1,¢€))); }
else {
e drop ft1 from aq;
e drop fi2 from aq;

return(minimaelM D(a1, a2, M, ft1, ft2)); } } }

Figure 1: Minimal Match Sequence Algorithm

match sequences M? — M? where M? is the minimal
match sequence of @ and «s and M? is the minimal
match sequence of f; and (5. If a minimal match se-
quence exists for a pair of translation examples, it will
be unique. An instance of M® «— M? is a pair of an
instance of M® and an instance of M®. If both instances
are similarity instances, we call the resulting instance as
a similarity instance of M® « M?, and as a difference
instance of M?® «— M? if both of them are difference
instances.

Our learning heuristics learn translation templates
from given two translation examples. To learn transla-
tion templates from given two examples, first a minimal
match sequence of these examples 1s found; then learn-
ing heuristics are applied to the instances of this mini-
mal match sequence. A learning heuristic learns a gen-
eral template by replacing similarities or differences with
variables in a match sequence, and establishing bindings
between these variables. In addition, a learning heuristic
can also learn atomic templates. Of course, if there is no
minimal match sequence for examples, learning heuris-

mintmalM D(ay, az, M, dq, d2) {
if (a1 =€) and (az = €))
if (a terminal in d» appears in a C; 1 of M
or a terminal in d; appears in a C;» of M)
exit(no-minimal-match-sequence);
else return(M || (di1,dz));
else if ((a1 = ¢))
if (a terminal in ds || a2 appears in a C; 1 of M
or a terminal in d; appears in a C;» of M)
exit(no-minimal-match-sequence);
else return(M || (di1, dz || @2));
else if ((az = ¢))
if (a terminal in d; ||a1 appears in a C; 3 of M
or a terminal in d» appears in a C;1 of M)
exit(no-minimal-match-sequence);
else return(M || (d1 || a1, d2));
else {
ft1 < first terminal of aq;
fto «— first terminal of ay;
if (ft, appears in a32) {
e let a2 = (21 ft1 Q22
where a1 does not contain fii;
if (a terminal in ds ||a2,1 appears in a C;1 of M
or a terminal in d; appears in a C;» of M)
exit(no-minimal-match-sequence);
else return(minimalM(al s ft1 a2 2, M || (d1, d2 || 61/271))); }
else if (ft2 appears in a1) {
olet an =11 ftoaip
where a1 does not contain fiy;
if (a terminal in d; ||a1,1 appears in a Cs2 of M
or a terminal in d» appears in a C; 1 of M)
exit(no-minimal-match-sequence);
else return(minimalM(ftQQlyg, a2, M || (d1 || 1.1, d2))), }
else {
e drop ft1 from aq;
e drop fi2 from aq;

return(minimalM D(aq, a2, M, dy || ft1,d2 || ft2)); } } }
Figure 2: Minimal Match Sequence Algorithm (cont.)

tics cannot be applied to those examples. In addition,
each learning heuristic may insist extra conditions on
minimal match sequences.

3.1 Replacing Differences with Variables

Our first learning heuristic tries to learn new transla-
tion templates by replacing differences with variables
in match sequences, and establishing bindings between
these variables. To able to apply this heuristic to the
minimal match sequence of two translation examples
Ey = oy — B3 and Fy = ag < (32, both the minimal
match sequence of oy and «s and the minimal match se-
quence of 3 and (5 must contain at least one similarity
and one difference, and both of them cannot contain a
difference with empty constituent.

This heuristic can learn new templates from each simi-
larity instance M® — M? of the minimal match sequence
of translation examples £ and E5 satisfying the follow-
ing conditions:

1. Both M? and M® must contain at least one similar-
ity and one difference. This condition will be auto-
matically satisfied by the instance, because we insist
that the original minimal match sequence must sat-
1sfy this condition.

2. Both M® and M? cannot contain a difference with
empty constituent.

3. Both M% and M? must contain n differences where
n > 1. In other words, they must contain equal
number of differences.

4. Each difference in M® must correspond to a differ-
ence in M?, and a difference cannot correspond to
more than one difference in other side. Thus, we
will have n difference correspondings.

If we a match sequence satisfying the first three con-
ditions, n difference correspondings must be found to
satisfy the fourth condition. For example, if there are
two differences D{ and D§ in M*?, and two differences
D} and D) in M?; we cannot determine whether D{
corresponds to D! or DS without using prior knowledge.
Now, let us assume that the corresponding of D{ to D?
has been learned earlier; in this case D§ must correspond
to D5. In general, if n—1 correspondings of differences
have been learned earlier, the last two differences must
correspond to each other. We say that the correspond-
ing of differences D* = (D¢ D%) and D* = (D?, D%)
has been learned, if the following two atomic translation
template have been learned earlier.

D¢ — DY

DS — D}

Now, let us assume that the differences in M? are

¢.....,D% and the differences in M* are D} ..., D! where
D¢ corresponds to D?. In this case, first n—1 correspond-
ings have been learned earlier, and the corresponding of
D% and D! is inferred now. The learning heuristic re-
places each D{ with the variable X; to create M*DVars
from M?, and each D! with the variable Y; to create
M*DVars from M. Then, it learns the following gen-
eral template.

M®DVars — M*DVars
ifX{ <Y and ... and X,, <« Y,

In addition, the following two atomic templates are
learned from the inferred corresponding of DI =

(Dg,laDg,z) and DZ = (DZ,1aDZ,2)~
Dg@ — Dfm
Dg,z — DZ 2

3.2 Replacing Similarities with Variables
Our second learning heuristic tries to learn new trans-
lation templates by replacing similarities with variables
in match sequences, and establishing bindings between
these variables. To able to apply this learning heuristic
to difference instances of the minimal match sequence of
two translation examples, the minimal match sequence
has to contain at least one similarity and one difference
at both sides.

A difference instance M ¢ «— M? of the minimal match
sequence must satisfy the following conditions so that
this learning heuristic can be applied to it.

1. Both M and M?® must contain at least one similar-
ity and one difference. This condition will be auto-
matically satisfied by the instance, because we insist
that the original minimal match sequence must sat-
1sfy this condition.

2. Both M?® and M? must contain n similarities where

n > 1. In other words, they must contain equal
number of similarities.

3. Each similarity in M must correspond to a simi-
larity in M?, and each similarity cannot correspond
to more than one similarity in other side. Thus, we
will have n similarity correspondings.

If we a match sequence satisfying the first three condi-
tions, n similarity correspondings must be found to sat-
1sfy the fourth condition. For example, if there are two
similarities S¢ and S2 in M?, and two similarities S? and
S in M?; we cannot determine whether S{ corresponds
to S? or S without using prior knowledge. Now, let
us assume that the corresponding of S{ to S? has been
learned earlier; in this case S$ must correspond to S5. In
general, if n — 1 correspondings of similarities have been
learned earlier, the last two similarities must correspond
to each other. We say that the corresponding of similar-
ities S* and S° has been learned, if the following atomic
translation template has been learned earlier.

S s S

Now, let us assume that the similarities in M?® are
5¢.....,5% and the similarities in M? are S?,.....S? where
S& corresponds to SY. In this case, first n — 1 cor-
respondings have been learned earlier, and the corre-
sponding of S¢ and S? is inferred now. The learning
heuristic replaces each S with the variable X; to cre-
ate M*SVars from M*, and each S? with the variable
Y; to create M*SVars from M®. Then, M*SVars and
M$SVars are created from M®SVars by replacing dif-
ferences with their first constituents and with their sec-
ond constituents, respectively. Similarly, M?SVars and
MXSVars are created from M®SVars. The learning
heuristic will infer the following first general template if
both M{#SVars and M{SV ars contain at least one ter-
minal, and it will infer the second one if both M§SVars
and M£SVars contain at least one terminal.

M{SVars — M}SVars

ifX{ <Y and ... and X,, <= Y,
MESVars — MiSVars

ifX{ <Y and ... and X,, <= Y,

In addition, the following atomic template is learned
from the inferred corresponding of S and S?%.

5% s 5P

4 Application to Example-Based
Machine Translation

Our learning heuristics can be used in the learning of
translation templates from a given bilingual corpus for
two natural languages. To learn translation templates,
the learning heuristics should be applied to every pair of
atomic translation templates in the system. Given trans-
lation examples are also treated as atomic translation
templates, in fact learning starts from those examples.
Learning should continue until no more new templates
can be learned from atomic translation templates. The
learned translation templates can be used in the trans-
lation of other sentences in both directions.

The learning heuristics can work on surface level rep-
resentation of sentences. However, in order to generate
useful templates, 1t 1s helpful to use the lexical represen-
tation. In this case, the set of all root words, all prefixes,
and all suffixes in a natural language is treated as the al-
phabet of that language for our purposes. So, a natural

language is treated as the set of all meaningful strings
on that alphabet. Normally, given translation examples
should be sentences of those natural languages, but they
can also be phrases in those languages. Of course, mor-
phological analyzers will be needed for both languages
to compose the lexical forms of sentences.

An example-based machine translation system using
our learning heuristics can work as follows:

1. Sets of bilingual translation examples should be
collected. Since sentences should be in the lexi-
cal representations for meaningful translation tem-
plates, the lexical representations of words in exam-
ples should be found using morphological analyzers.

2. Translation templates should be learned from these
sets of bilingual translation examples using our
learning heuristics. The learning heuristics should
be applied for every pair of atomic translation tem-
plates until no more translation templates can be
learned. At the end of this step, we will have a set
of translation templates. Words in those templates
will be in the lexical form, and these templates can
be used in both directions of translations. In this
step, a confidence factor can also be assigned to each
translation template to indicate how good is that
translation template. To able to assign these con-
fidence factors [15], statistical techniques based on
the information available in the sets of translation
examples can be used.

3. To translate a sentence from one language to an-
other, first the lexical representation of that sen-
tence is created using a morphological analyzer of
the source language. Using the learned translation
templates, possible translations of this sentence are
found. Using confidence factors assigned to tem-
plates, solutions are sorted with respect to calcu-
lated confidence factors of solutions. At the end, we
hope that the top results contain good translations
and the correct translation is among the top results.
After solutions are converted into surface level rep-
resentations by using the morphological analyzer of
the target language, a human expert can choose the
correct solution by just looking the top results.

To explain the behavior of our learning heuristics on
the actual natural language sentences, we give a sim-
ple learning example for translation examples between
English and Turkish. Assume that we have the transla-
tion examples ‘I will drink water <« su igecegim’
and ‘I will drink tea « gay igecegim’ between
English and Turkish. Their lexical representations are ‘I
will drink water < su i¢+FUT+1SG’ and ‘I will
drink tea < ¢ay i¢+FUT+1SG’ where +FUT and
+1SG denote future tense and first singular agreement
morphemes in Turkish, respectively. For these two exam-
ples, the minimal match sequence will be ‘I will drink
(water,tea) — (su,gay) i¢+FUT+1SG’. From this
match sequence the first learning heuristic learns the fol-
lowing 3 templates.

I will drink X; < VY] ig+FUTH+1SG
lf X1 — Y1
water < su
tea «— gay
In addition, the second heuristic learns the following
3 templates.

X, water < su Y;
lf X1 — Y1
Xy tea < gay V)
lf X1 — Y1
I will drink « ig+FUTH41SG

5 Conclusion

In this paper, we presented a model for learning trans-
lation templates between two languages. The most im-
portant part of this model is two learning heuristics that
are based on a simple pattern matcher. Translation tem-
plates are directly learned from sets of translation exam-
ples without using other knowledge resources such as lex-
icons, grammars, and ontology. The knowledge resources
required for this technique are sets of translation exam-
ples and morphological processors for the languages.

We believe that humans learn general sentence patters
using similarities and differences between many different
example sentences that they are exposed to. This obser-
vation led us to idea that general sentence patterns can
be thought to a computer using learning heuristics based
on similarities and differences in sentence pairs. In the
sense that our mechanism is close to how the humans
learn languages from examples.

The learning technique described in this paper can be
used in an incremental manner. Initially, a set of transla-
tion templates 1s learned from a set of translation exam-
ples. When a new set of translation examples is available,
new translation templates can be learned from this new
set together with previously learned atomic translation
templates.

The learning heuristics are used in a example-based
machine translation system between English and Turk-
ish. In this system, we got very promising results. Al-
though in that system examples between English and
Turkish, we believe that the techniques are also applica-
ble for other language pairs. In fact, to test this claim
we have also applied this technique between English and
French using a small set of translation examples. We got
comparable results that we got for the system of English
and Turkish.

References

[1] Brona, C., and Padraig, C., Translating Software
Documentation by Example: An EBMT Approach
to Machine Translation, in: Proceedings of Int.
ECAT Workshop: Multilinguality in the Software In-
dustry, 1996.

[2] Brown, R. D., Example-Based Machine Transla-
tion in the Pangloss System, in: Proceedings of
COLING-96, 1996.

[3] Brown, R. D., Automated Dictionary Extraction for
”Knowledge-Free” Example-Based Translation, in:
Proceedings of TMI’97, 1997.

[4] Cicekli, I., and Giivenir, H. A., Learning Transla-
tion Rules From A Bilingual Corpus, in: Proceedings
of the 2nd International Conference on New Meth-
ods in Language Processing (NeMLaP-2), Ankara,
Turkey, September 1996, pp:90-97.

[5] Furuse, O., and Tida, H., Cooperation between
Transfer and Analysis in Example-Based Frame-

work, in: Proceedings of COLING-92, Nantes,
France, 1992, pp:645-651.

Guvenir, H.A., and Tung, A., Corpus-Based Learn-
ing of Generalized Parse Tree Rules for Translation,
in: Gord McCalla (Ed). New Directions in Artificial
Intelligence: Proceedings of the 11th Biennial Con-
ference of the Canadian Society for Computational
Studies of Intelligence. Springer-Verlag, LNCS 1081,
Toronto, Ontario, Canada, May 1996, pp:121-131.
Guvenir, H. A, and Cicekli, 1., Learning Trans-
lation Templates from Examples, in: Information
Systems, Vol. 23, No. 6, 1998, pp: 353-363

Kaji, H., Kida Y., and Morimoto, Y., Learning
Translation Templates from Bilingual Text, in: Pro-
ceedings of COLING-92, 1992, pp:672-678.

Kitano, H., A Comprehensive and Practical Model
of Memory-Based Machine Translation, in: Proceed-
wngs of the Thirteenth International Joint Confer-
ence on Artificial Intelligence, Morgan Kaufmann,
1993, pp:1276-1282.

Lonsdale, D., Mitamura, T., and Nyberg, E.; Acqui-
sition of Large Lexicons for Practical Knowledge-
Based MT, in: Machine Translation, Vol 9(3),
Kluwer Academic Publishers, 1994, pp:251-283.
Medin, D.L., and Schaffer, M.M. Context Theory of
Classification Learning, Psychological Review, 85,
1978, pp:207-238.

Mitumura, T., and Nyberg, E., The KANT Sys-
tem: Fast, Accurate, High-Quality Translation in
Practical Domains, in: Proceedings of COLING-92,
Nantes, France, 1992, pp:1069-1073.

Nagao, M. A., Framework of a Mechanical Trans-
lation between Japanese and English by Analogy
Principle, in: Artificial and Human Intelligence, A.
Elithorn and R Banerji (eds.), NATO Publications,
1984.

Nirenburg, S., Beale, S., and Domashnev, C., A
Full-Text Experiment in Example-Based Machine
Translation, in: Proceedings of the International

Conference on New Methods in Language Process-
wng, NeMLap, Manchester, UK, 1994, pp:78-87.

Oz, Z., and Cicekli, I., Ordering Translation Tem-
plates by Assigning Confidence Factors, in: Lecture
Notes in Computer Science 1529, Springer Verlag,
1998, pp:51-61.

Sato, S., and Nagao, M., The Memory-Based Trans-
lation, in: Proceedings of COLING-90, 1990.

Sato, S., MBT2: A Method for Combining Frag-
ments of Examples in Example-Based Translation,
Artificial Intelligence, Vol T7h, FElsevier Science,
1995, pp: 31-30.

Smadja, F., McKeown, K. R., and Hatzivassiloglou,
V., Translating Collocation for Bilingual Lexicons:
A Statistical Approach in: Computational Linguis-
tics, Vol 22(1), The MIT Press, 1996, pp:1-38.
Sumita, E., and lida, H., Experiments and
Prospects of Example-Based Machine Translation,
in: Proceedings of the 29th Annual Meeting of the
Association for Computational Linguistics, 1991.
Wu, D, Xia, X., Large-Scale Automatic Extraction
of an English-Chinese Translation Lexicon in: Ma-
chine Translation, Vol 9, Kluwer Academic Publish-
ers, 1995, pp:285-313.

