
Intelligent Indexing, Querying and Reconstruction of Crime Scene 
Photographs 

 
Funda Durupınar, Umut Kahramankaptan and Ilyas Cicekli 

 
                               Department of Computer Engineering 
                                             Bilkent University 
                                         Ankara, 06800, Turkey 

 

Abstract 
 
In this paper, we present a system that performs intelligent indexing, querying, and 3-D reconstruction of 
crime scene photographs from short English descriptions. In our system, natural language is used to 
describe crime scene photographs. This approach makes use of the object properties and spatial relations 
between objects in the scene for indexing and scene construction purposes. For retrieval and querying, 
similarity scores between the extracted relations are calculated. The most important innovation of our 
research is that it creates a conceptual similarity between spatial relations and it weighs the similarity of 
arguments with values between 0 and 1. Another development is in defining the inverse operation 
between relations and the role changing operators with their weights between arguments. Thus, our 
method calculates the similarity between triplets not only with each other but also with the new triplets 
that have been created by these new operators.  
 
Keywords: Image Indexing, Multimodal Documentation, Image Retrieval, Text-to-Scene Conversion, 
Scene Construction, Information Extraction 
 

1 Introduction 
 
Preservation of the scene after a crime is almost always impossible. Therefore, in order to prevent the 
destruction of evidence and because photographs capture important information about the event, crime 
scene officers take various photographs of the scene with varying levels of detail. Then, each of these 
photographs are indexed and numbered in sequence as Pastra et al. [7] have performed. However, 
retrieval of information from a series of photographs is not easy. At this point, natural language 
processing (NLP) is an effective medium for the indexing and retrieval of these photographs. In addition, 
instead of having only 2-D information such as photographs of the event, it would be more convenient for 
the investigators to examine the crime scene interactively. However, since the original scene cannot be 
preserved, a virtual scene can be helpful for the investigation process. Here, computer graphics and the 
creation of a 3-D scene are used. Again, NLP makes the 3-D scene creation an uncomplicated procedure 
for the user. Thus, a text-to-scene conversion system is used for synthesizing the scene from photograph 
descriptions.  
 
This paper explains a system that performs indexing, retrieval and 3-D reconstruction of crime scene 
photographs. Organization of the paper is as follows: Section 2 gives information about similar research 
areas such as crime scene investigation through NLP and text-to-scene conversion systems. Section 3 
describes the methods adopted in this study.  Finally, Section 4 gives a discussion about the project, 
including future work and conclusions.  

 



2 Background 
 
Our work is based on the Scene of Crime Information System (SOCIS) [7-10], which can be regarded as 
an alternative to image retrieval systems as it uses vision-specific features of an image and uses the terms 
in the description of the image. SOCIS can extract specialist terms and organize them in a conceptual 
hierarchy and it can identify meaning-bearing relations among the objects depicted in the image. SOCIS 
integrates an image database with an organized collection of diverse texts that are informative about the 
images in various ways. Data mined from these texts forms the basis for indexing and retrieval of images. 
 
The SOCIS indexing prototype is a knowledge-based system, where the input is a single caption or a set 
of captions in plain text. SOCIS takes the captions as input, processes them and extracts relational facts of 
the form as class1:argument1 RELATION class2:argument2, where relations are spatial. Captions express 
these relations through prepositions and space-denoting verb forms. For the retrieval of the appropriate 
photographs, SOCIS processes a user query by extracting triplets from it, matching the query triplets with 
the indexing triplets, and then presenting the matching photographs to the user. In the matching phase, if 
exact argument matching fails, the program tries to find matches to the semantic expansion of the 
arguments through the class information. If it still fails, it performs simple argument matching with 
semantic broadening where applicable. 
 
In our study, we reconstruct the scene by using 3-D computer graphics, which distinguishes our program 
from SOCIS. The most important project done on text-to-scene conversion is the WordsEye system [4].  
This system does automatic conversion of English text into representative three-dimensional scenes. 
WordsEye first does syntactic and semantic analysis of the input text and then converts the semantic 
information into low-level depictors that represent 3-D objects, poses, spatial relations, color attributes by 
means of depiction rules. Syntactic analysis is through the tagging and parsing of the input text.  After 
parsing, the output of the parser is converted into a dependency structure, which is then semantically 
interpreted and converted into a semantic representation. For linguistic analysis, WordsEye uses existing 
components such as Church’s [2] part of speech tagger, Collins’ statistical parser [3] and WordNet [5]. 
For the scene construction, WordsEye makes use of 3-D polygonal objects. The scene generated is static 
and does not include animation. 
 
Another application of text-to-scene conversion is CarSim [1,12], which analyzes descriptions of car 
accidents written in English and constructs the 3-D scenes of these accidents. In CarSim, the resulting 
scene can be animated as well as being static. Similar to other text-to-scene conversion applications, 
CarSim has two modules: one for linguistic analysis and another for visualization. In the linguistic 
analysis, the WordNet lexical database , and the Link-Grammar dependency parser [11] are used. For 
visualization,  static objects are positioned and vehicle motions are planned first. Then, vehicle 
trajectories are generated. Finally, the scene is rendered and animated accordingly. 

 
3 Method 
 
Our system consists of linguistic components and a computer graphics component. In the system, we first 
get individual sentences from photograph descriptions in English. Then, we send each sentence to the 
parser and retrieve information from that sentence. The resulting information can be used by both the 
query and the scene generation systems. Figure 1 shows the design of our system. 

 
 
 
 

 



 
 
 
 
 
 
 

Photograph descriptions in English Definition Splitter 

ParserInformation Extractor 

Query System 

Sentence Splitter 

Scene Generation 

Figure 1. System design 
 

3.1 Parsing 
 
In order to extract information from the text, it should be syntactically analyzed at first. For this purpose, 
syntactic parsing of the text is required. However, not every parser would be effective. We need to 
retrieve information about objects in the scene. Thus, relationships between words in a sentence must be 
obtained. Therefore, in our system, we have used a dependency parser. Instead of writing a parser from 
scratch, as it would be a time-consuming task unrelated to the purpose of the project, we have used Link 
Grammar Parser to analyze English Sentences [6]. Link Grammar includes an application program 
interface (API), which enables access to the crucial functions of Link Grammar. Link Grammar has over 
60,000 word definitions making up the grammar in the dictionary and it parses one sentence at a time. A 
sentence is the API's representation of an input string, tokenized and interpreted according to a specific 
dictionary. The sentences are obtained through the sentence splitter. After a sentence is created and 
parsed, a set of linkages is returned. A linkage is  a sentence with a collection of links. There may be more 
than one linkages of a sentence. In addition, if the parse has a conjunction, then the linkage is made up of 
at least two sublinkages.  
 
The output of Link Grammar comes in two forms: The first one is the dependency links between words of 
a sentence and the second one is a constituent tree. Our concern is on the dependency links rather than the 
constituent tree. Table 1 gives the connectors used by Link Grammar and utilized in our system.In 
general, a connector may only link to another with the same name. In addition, connector subscripts 
determine how connectors are linked. In addition to linkage information, part of speech tags can be 
obtained from the parser as well. These tags are indicated by suffixes such as .n for nouns, .v for verbs, .a 
for adjectives and .e for adverbs. Part of speech information is also used in the information extraction 
phase. 
 

Table 1. Link types in Link Grammar
 

A: connects pre-noun ("attributive") adjectives to following nouns. 
AN: connects noun-modifiers to following nouns. 
D: connects determiners to nouns. 
J: connects prepositions to their objects. 
M: connects nouns to various kinds of post-noun modifiers. 
O: connects transitive verbs to their objects, direct or indirect. 
P: connects forms of the verb "be" to various words that can be its complements: 
prepositions, adjectives, and passive and progressive participles. 
S: connects subject nouns to finite verbs. 

 
 
 
 
 
 
 
 

 



3.2 Information Extraction 
 
The output of the parser module is used in extracting information and constructing semantic 
representations. This section explains the semantic representations and the rules to create these 
representations. 
 
3.2.1 Semantic Representations 
  
There are two types of semantic representations: One for displaying objects with their attributes and the 
other for displaying spatial relationships between two objects in the scene.  The first type of 
representations is as:  Class:OBJ(name, count, sx, sy, sz, cr, cg, cb, material), where,  name is the object’s 
name, count is the quantity of that object, and sx, sy, sz are scaling parameters all in x, y and z directions. 
cr, cg, cb determine the red, green and blue color components. Material determines what that object is 
made of. Class in the representation of the objects is the most specific ontological concept describing that 
object in our ontology. 
 
The second type of representations is as: 

• ABOVE(object1; object2) 
• BELOW(object1; object2) 
• ON(object1; object2) 
• UNDER(object1; object2) 
• INSIDE(object1; object2) 

• AROUND(object1; object2) 
• RIGHT(object1; object2) 
• LEFT(object1; object2) 
• FRONT(object1;object2) 
• BEHIND(object1; object2) 

 
where, object1 and object2 are the objects that are related to each other spatially. 
 
During  the information extraction, we get attributes quantity,  size, color and material. Quantity attribute 
of an object is reflected in its count parameter. Size attribute of an object is reflected in its scale 
parameters. For instance, for the “big” adjective, we scale the object by 2 in all directions, or for the 
“narrow” adjective, we scale the object in x direction by a factor of 0.5, reducing the width of the object 
by 50%. All this information is stored in our dictionary. The “size” dictionary includes the adjectives with 
their scaling factors. Color and material attributes are reflected in the color and material parameters. 
Again, color information is stored in the “color” dictionary and material information is included in the 
specified “material” dictionary. For instance, the color “yellow” is stored with its corresponding RGB 
components as (1.0, 1.0, 0.0). In addition, materials are represented as the textures on objects.  

3.2.2 Rules to Extract Information 
 
For extracting information, a rule-based approach is adopted. These rules are summarized in Tables 2, 3 
and 4. We can see how the rules are applied on an example. For instance, parser output of the sentence 
“There is a wooden table behind a big, red statue.” is as: 
 
                                       +-----------Js---------+ 
              +-------Ost-----+        |    +---------Ds------+ 
              | +-------Ds----+        |    | +-------A-------+ 
     +SFst +  | |   +---A-----+---Mp---+    | +--Xc-+ +---A---+ 
     |     |  | |   |         |        |    | |     | |       | 
     There is.v a wooden.a table.n behind.p a big.a , red.a statue.n . 
 
First of all, the new objects, i.e. “table” and “statue” are extracted by checking the right hand side of Ds 
links (Rule 1.a in Table 2). Then, attributes of these objects are retrieved, where ClassOfTable is the most 

 



specific ontological concept for table and ClassOfStatue is the most specific ontological concept for 
statue. Thus, adjective “wooden” is attributed to “table” and adjectives “big” and “red” are attributed to 
“statue” (Rule 1.a in Table 3).Finally, the ‘behind’ relationship is extracted by applying Rule 2 in Table 4. 
 
The semantic representation of this sentence is: 
 

ClassOfTable:OBJ(table, 1,1.0, 1.0, 1.0, 1.0, 1.0, 1.0, wooden). 
ClassOfStatue:OBJ(statue, 1, 2.0, 2.0, 2.0, 1.0, 0.0, 0.0, nomaterial). 
BEHIND(ClassOfTable:table; ClassOfStatue:statue), 
 

where ClassOfTable is the most specific ontological concept for table and ClassOfStatue is the 
most specific ontological concept for statue. 
 

Table 2. Extracting new objects                                            

 

1. For singular count nouns, Ds links are checked for the all sublinkages. 
a. If left-end od Ds is “a” or “an”, new object is inserted. 
b. Otherwise, no object insertion 

2. For plural count nouns, Dmc links are checked for all sublinkages. 
Left end of a Dmc link denotes a number 

3. For mass nouns, POS tags of words are checked and the noun without a Ds link is selected. 

Table 3. Extracting the attributes of objects 

 

1. A and AN links are checked for all sublinkages. 
a. The left-end of A is an attribute of an existing object 
b. If the left-end is one of left/right/bottom/top/front/back, then append it to the name. 

2. Ss links followed by Pa links are checked for all sublinkages. 
Left-end of Ss is the object; right-end of Pa is the defining adjective. 

Table 4 Extracting relationships between objects 
For all linkages, 
1. Ss links followed by Pp links followed by Js links are checked. 

a. Left-end of Ss is the first object, [left-end+1,right-end] of Pp is the preposition, right end of Js is the 
second object. Such a relation must not have been added before. Also, object1’s name should not be the 
same as object2’s name. 

b. If there is a direction information, append it to the noun before adding the relation ship. 
2. Mp links and Js links with right-end of Mp equal to left-end of Js are checked. 

a. Left-end of Mp is object1 
b. Right-end of Js is object2 
c. [left-end+1,right-end] of Mp is the preposition 
d. If there is a direction information, append it to the noun before adding the relationship 

3. Mg links followed by Os links, Ss links followed by Os links, and  Ss links followed by Pg*b links followed 
by Os links are checked. 
a. Left-end of Mg is object1 
b. Right-end of Mg is relation verb 
c. Right-end of Os is object2 
d. If there is a direction information, append it to the noun before adding the relationship 

 



3.3 Querying 
 
The system’s interface prompts the user to think as if completing a sentence of the form “show me all 
cases that have photographs in the database that depict...”. This query is then processed exactly as if it 
were a caption. Relational facts are extracted from the query. Then, these relational facts are matched 
against each photograph’s indexing terms and similarity scores are computed. More complicated query 
structures like querying with more than one description and queries with more structured input may also 
be possible.  
 
Our database consists of case descriptions in a semi-structured pattern. Descriptions of general scene 
photographs are in free-form text. These descriptions are marked with non-word strings. First, the text of 
the general description is stored. The following elements are the photograph description texts. Every 
description is processed and their spatial information is attached to their description texts. 
 
Our Ontology is derived from WordNet via ad-hoc methods. It has a top-level hierarchy, like WordNet. 
Its tree structure makes the computation easy. Similarity functions of spatial relationships that will be 
explained in the next section depend on tree structure and top-level hierarchy properties.  

3.3.1 Relation Structure 
 
Relations are triplets and they have a structure as: 
 

T(Arg1;Rel; Arg2) = Rel (Class1 :Arg1; Class2 : Arg2) 
 
where Rel represents the kind of relationship between Arg1 and Arg2. Arg1 and Arg2 represent two objects 
from scene of crime and Class1 and Class2 represent the ancestors of Arg1 and Arg2 in the ontology 
relatively. 
 
In order to measure the similarity of two triplets, it is necessary to measure the similarity of all the main 
structures making up the triplet. For instance,  T1 = (Class1 :Arg1;Rel;Class2 : Arg2)  has the main structures 
as Class1, Class2, Arg1, Arg2 and Rel . 
 
The semantic distance (or semantic similarity) between two objects Class1,Class3 of two relations 

T1 = (Class1 : Arg1;Rel;Class2 : Arg2)   and T2 = (Class3  : Arg3;Rel;Class4 : Arg4)  
can be calculated using Ontology, which is a tree, as: 
 

OntoSim(Class1,Class3)= 1/(1+length(ShortestPath(Ontology Tree, Class1,Class3)) 
 
Similarity between two objects Arg1,Arg3 with their properties can be calculated with the formula ArgSim 
  

ArgSim(A,B)= β1*Match(Arg1Name, Arg3Name) + β2*Match(Arg1Count, Arg3Count) + β3*Match(Arg1Adj, Arg3Adj) 
 
Match(X,Y)= γ1*Equal(XScale, YScale) + γ2*Equal(XColor, YColor) + 
                      γ3*Equal(XMaterial, YMaterial)      if X and Y are in Adjective Type 
Match(X,Y)= Equal(X, Y)      Otherwise 
 
Equal(X, X)=1 
Equal(X, Y)=0       if X≠Y 

 
The weights αi, γj, βk may be identified experimentally. 
 

 



 

We should take advantage of the similarity between relations in the same manner as we make use of the 
similarity between objects for the ontology. Relations may have opposite meanings to each other. They 
may point at similar locations around the object as spatial relations, like right and left or right and front. 
Thus, in order to find the similarity ratios between triplets, we can exploit the conceptual similarity 
between their relations. Similarities between two relations are represented in Table 5. These values are 
assigned intuitively.  
 
For a basic similarity check between two triplets T1 = (Class1 :Arg1;Rel;Class2 : Arg2)  and     
T2 = (Class3 : Arg3;Rel;Class4 : Arg4), the following equation is calculated. 
 

BasicSim(T1; T2) = Sim(R1,R2) * ( α1 * OntoSim(Class1,Class3) +  α1 * OntoSim(Class2,Class4) 
                                                    + α2 * ArgSim(Arg1,Arg3) + α2 * ArgSim(Arg2,Arg4) ), 
 
Sim(T1; T2) = MAX {BasicSim(T1;T2),  BasicSim(T1;CT2), BasicSim(CIT1;T2), BasicSim(CIT1; CT2)} 
 
CT1 := (Class2 :Arg2;Rel;Class1 : Arg1) 
IT1 := (Class2 :Arg2; Rel-1;Class1 : Arg1)  

 
The value of Rel-1  can be found in Table 6. 
 
• Inverse operator I is used for representing information in a different way. E.g.  

 
ABOVE(a,b)=ABOVE-1 (b,a)=BELOW(b,a). 
I ABOVE(a,b) = BELOW(b,a). 
 

In order to refrain from giving penalty to the opposite relations, the following equation must be used 
since the inverse operator does not change the information. 
 

Sim(I T1; T2) = Sim(T1; T2) 
  
• Change operator C is used for representing mirror information.  

 
      C ABOVE(a,b) = ABOVE(b,a). 

 
Here, only the variable positions are changed. This is very similar information but different in the 
sense of parameter positions. This can be helpful to find similar cases when used with the original 
information. Thus, the following equation must hold. 
 

Sim(CT1;T2)= PUNISHMENT_VALUE *   Sim(T1; T2) 
 

 
Classification of the combinations in the set created by using C and I operators due to BasicSim values is 
as follows: 
 

{BasicSim(T1;T2), BasicSim(T1;CT2),  BasicSim(CIT1;T2), BasicSim(CIT1; CT2) } 
 
With an optimistic approach, the maximum of these values can be used as a similarity value. Taking 
maximum can be helpful to prevent a semantic error in the extraction of that relation. 
 
When more than one relational fact is extracted from the query, the system attempts to match each query 
triplet with each indexing term of each photograph and a sum of the scores that each photograph receives 
is calculated and used for the final selection of the most appropriate images to be returned to the user. In 



cases where no relational facts can be extracted from the query, no simple keyword extraction is done. 
The similarity between a query description and a photograph description is found as follows: 
 

Function findSimilarityDesc(QueryDescription D1, PhotographDescription D2) { 
maximized_similarity =  ∑

∈ lationsDl
Dlsimilarityfind

Re.Re
21

11

),(Remax__

return maximized_similarity 
} 
 
Function  find_max_similarity(Relation Triplet R, Description D) { 
 ∃ Rel1∈D.Relations ∀Rel2∈D.Relations such that Rel1≠Rel2 and Sim(Rel1,R)≥Sim(Rel2,R) 
 return Sim(Rel1,R) 
} 

 
 
Table 5. Similarity values between spatial relationships 

 
Sim(R1,R2) ABOVE BELOW AROUND RIGHT LEFT FRONT BEHIND IN ON 
ABOVE 1 0.7 0.2 0.2 0.2 0.2 0.2 0.15 0.1 
BELOW 0.7 1 0.2 0.2 0.2 0.2 0.2 0.15 0.1 
AROUND 0.2 0.2 1 0.5 0.5 0.5 0.5 0.7 0.1 
RIGHT 0.2 0.2 0.5 1 0.7 0.2 0.2 0.15 0.1 
LEFT 0.2 0.2 0.5 0.7 1 0.2 0.2 0.15 0.1 
FRONT 0.2 0.2 0.5 0.2 0.2 1 0.7 0.15 0.1 
BEHIND 0.2 0.2 0.5 0.2 0.2 0.7 1 0.15 0.1 
IN 0.15 0.15 0.7 0.15 0.15 0.15 0.15 1 0.1 
ON 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 1 
 

Table 6. Reverse operation defined between spatial relationships

R ABOVE BELOW AROUND RIGHT LEFT FRONT BEHIND IN ON 
R-1 BELOW ABOVE IN LEFT RIGHT BEHIND FRONT AROUND ON 

 

3.4 Scene Generation 
 
In the scene generation, initially, the objects, which are polygonal, are rendered due to their attributes. 
Objects are stored as 3-D polygonal objects.  If object count is more than one, it is depicted as one object, 
not many objects. 
 
For the spatial relationships, bounding boxes of objects are calculated. By default, positive y direction is 
the upward direction, negative x is the left, positive z is the front direction. Thus, ABOVE, BELOW, 
UNDER, RIGHT, LEFT, FRONT and BEHIND relations are implemented by translating the objects due to 
the amount calculated from their bounding boxes. In addition, INSIDE and AROUND relations are 
implemented by overlapping the center of the bounding boxes of the two objects. Computing these 
relationships are all straightforward. However, calculating the ON relationship is not so simple since there 
is no previously defined direction for the surface of an object to be considered. For instance, a table has 
the positive y direction for an “on” surface, whereas a wall may have the negative x direction for its ‘on’ 
surface. Thus, we have defined “on” normals for all the objects. Then, whenever the relationship 
ON(object1, object2) is encountered, certain transformations are done on object1 to overlap its surface 
normal with that of object2’s. 

 



 
The transformation values for all these relations can be shown as: 
 

ABOVE(object1; object2):object1.translate.y := boundingbox1.ymax – boundingbox2.ymin + 1 
BELOW(object1; object2):object1.translate.y:= boundingbox2.ymin – boundingbox1.ymax – 1 
RIGHT(object1; object2):object1.translate.x := boundingbox1.xmax – boundingbox2.xmin  
LEFT(object1; object2):object1.translate.x := boundingbox2.xmin – boundingbox1.xmax  
FRONT(object1; object2):object1.translate.z := boundingbox2.zmax – boundingbox1.zmin  
BEHIND(object1; object2):object1.translate.z := boundingbox2.zmin – boundingbox1.zmax 
INSIDE(object1; object2):object1.translate :=  boundingbox2.center – boundingbox1.center 
AROUND(object1; object2):object1.translate :=  boundingbox1.center – boundingbox2.center 
 
ON(object1, object2) 

1. (α,direction)=CalculateRotationAngle(on_normal(object2), on_normal(object1)) 
2. object1.rotate.direction.angle = α 
3. object1.translate:=  boundingbox2.center – boundingbox1.center 
4. Move object1 to the surface of object2 

 
Figure 2 shows an example scene from the text : “ There is a carpet on the floor and a door on the front 
wall. A window is on the right wall. There is a painting on the left wall. “ 
 
 

 
 

Figure 2. The viewing area with a generated scene 

 

 



4 Conclusions & Future Work 
 
Our system is a practical application that uses natural language processing techniques combined with 3-D 
computer graphics. The success of our program mainly depends on the parser since other components all 
use the output of the parser. However, since similar studies are not very common, it is virtually difficult to 
compare the success rate of our program with other systems.  In addition, access to public data is 
restricted. Therefore, our main problem in this project can be considered the collection of data. In its 
current state, our project can be considered just an initial step towards our objectives; however, there are 
many possibilities for improvement. 
 
For future work, a specialized corpus on crime scene descriptions can be obtained to create a specialized 
dictionary and ontology for this program. For this purpose, our project should be conducted in 
collaboration with security forces and experts in this area. 
 
Instead of using intuitive values for similarity values between spatial relationships displayed in Table 5, a 
statistical research or knowledge acquisition from an expert can be done. 
 
In addition, the idea of this project can be enhanced with integrating speech recognition techniques or 
more advanced rendering facilities into our project. Furthermore, similar research can be done on other 
expert domains such as architectural design. 
  

5 References 
 

1. Akerberg O, Svensson H, Schulz B, Nugues P, “CarSim: An Automatic 3D Text-to-Scene 
Conversion System Applied to Road Accident Reports” ,11th Conference of the European Chapter 
of the Association for Computational Linguistics, 2003. 

2. Church K, “A Stochastic Parts Program and Noun Phrase Parser for Unrestricted Text”,  
Proceedings of the Second Conference on Applied Natural Language Processing, 1988. 

3. Collins M, “Head-Driven Statistical Models for Natural Language Parsing”,  Ph.D. Thesis,  1999. 
4. Coyne B, Sproat R., “WordsEye: An Automatic Text-to-Scene Conversion System”, ACM 

SIGGRAPH , 2001. 
5. Fellbaum C, “WordNet: An Electronic Lexical Database”, MIT Press, Cambridge, 1998. 
6. http://www.link.cs.cmu.edu/link/ 
7. Pastra K, Saggion H, Wilks Y, "Intelligent Indexing of Crime-Scene Photographs“, IEEE Computer 

Society , 2003. 
8.  Pastra K, Saggion H, Wilks Y, "Extracting Relational Facts for Indexing and Retrieval of   
…..Crime-Scene Photographs“, Knowledge-Based Systems, vol. 16 (5-6), pp.313-320, Elsevier Science,  
......2002. 
9. Pastra K, Saggion H, Wilks Y, ”NLP for Indexing and Retrieval of Captioned Photographs“, EACL 

2003: 143-146, 2003. 
10. Pastra K, Saggion H, Wilks Y, ”Using Natural Language Processing for Semantic Indexing of 

Scene-of-Crime Photographs”, Proceedings of CICLing 2003, Lecture Notes in Computer Science, 
vol. 2588, pp. 526-536, Springer Verlag, 2003. 

11. Sleator D, Temperley D, “Parsing English with a Link Grammar”,  Third International   ..Workshop   
…..on Parsing Technologies, 1993. 
12. Svensson H, Akerberg O, “Development and Integration of Linguistic Components for an    

............Automatic Text-to-Scene Conversion System”, M.S. thesis ,2002. 

 


	Intelligent Indexing, Querying and Reconstruction of Crime S
	Abstract
	1 Introduction
	2 Background
	3 Method
	3.1 Parsing
	3.2 Information Extraction
	3.2.1 Semantic Representations
	3.2.2 Rules to Extract Information

	3.3 Querying
	3.3.1 Relation Structure

	3.4 Scene Generation
	Move object1 to the surface of object2


	4 Conclusions & Future Work
	5 References

