

Learning Translation Templates with Type Constraints

Ilyas Cicekli
Department of Computer Engineering, Bilkent University

Bilkent 06800, Ankara, TURKEY
ilyas@cs.bilkent.edu.tr

Abstract

This paper presents a generalization technique
that induces translation templates from given
translation examples by replacing differing
parts in these examples with typed variables.
Since the type of each variable is also inferred
during the learning process, each induced
template is associated with a set of type
constraints. The type constraints that are
associated with a translation template restrict
the usage of that translation template in
certain contexts in order to avoid some of
wrong translations. The types of variables are
induced using the type lattices designed for
both source language and target language.
The proposed generalization technique has
been implemented as a part of an EBMT
system.

KeyWords: EBMT, Machine Learning

1 Introduction

An example-based machine translation [8]
(EBMT) system uses a bilingual corpus to
translate a given sentence in a source language into
a target language. Some EBMT systems use a
bilingual corpus to find translations of the parts of
a given sentence, and combine these partial
solutions to get the translation of the whole
sentence. Some EBMT systems [1,2,3,4,5,6]
extract translation templates from example
sentences in a given bilingual corpus and use these
translation templates in the translation of other
sentences. The main differences between these
EBMT systems are the assumptions that they made
on the structure of the bilingual corpus and their
generalization techniques. The EBMT translation
system which uses the generalization technique

described in this paper also extracts translation
templates from a set of translation examples.

In the EBMT system presented in [3,4], a
translation template is induced from given two
translation examples by replacing differing parts in
these examples by variables. A variable replacing
a difference that consists of two differing parts
(one from the first example, and the other one
from the second example) is a generalization of
those two differing parts. Later, that variable can
be replaced by any string during the translation
process without putting any restriction on the
possible replacements. Although the learned
translation template works correctly in certain
environments, it can lead wrong translations in
some other unrelated environments because that
variable replacement cannot be appropriate in the
unrelated environment. In this paper, we propose a
generalization heuristic that replaces the
differences with variables and it also induces the
types of these variables from the differences. Since
the types of variables disallow some possible
replacements for the variables, the generation of
wrong translation results in the unrelated contexts
can be avoided.

The type of a variable which replaces a
difference is found by using a type lattice for the
language of the symbols appearing in the
difference. Since the generalization technique
described in this paper is used as a part of an
EBMT system between English and Turkish, the
type lattices for English and Turkish have been
developed by hand and they are used in the EBMT
system. The quality of the induced translation
templates also depends on the quality of the type
lattices.

The rest of the paper is organized as follows.
The structure of translation templates without type
constraints is discussed in Section 2. Section 3
introduces the structure of translation templates
with type constraints. The generalization process

that learns the translation templates with type
constraints is presented in Section 4. We give the
concluding remarks and possible future extensions
in Section 5.

2 Translation Templates Without Type

Constraints
A language is a set of strings in the alphabet

of that language, and the alphabet of a language is
a finite set of symbols. For example, a string in a
natural language, such as English or Turkish, is a
sequence of tokens in that natural language. Each
token in a natural language can be a root word or a
morpheme. In other words, the set of all root
words and morphemes in a natural language will
be treated as its alphabet in our discussions. We
also associate each language with a finite set of
variables. A generalized string is a string of the
symbols of the alphabet of the language and the
variables in the set of variables associated with the
language. This means that a generalized string is a
string that contains at least one variable. We will
assume that each language will be associated with
a different set of variables. A string without
variables is called as a ground string.

A translation template can be an atomic or
general translation template. An atomic
translation template Ta↔Tb between languages
La and Lb is a pair of two nonempty strings Ta and
Tb where Ta is a ground string in La and Tb is a
ground string in Lb. An atomic translation template
Ta↔Tb means that the strings Ta and Tb correspond
to each other. A given translation example will be
an atomic translation template.

A general translation template between
languages La and Lb is an if-then rule in the
following form:

Ta ↔ Tb if X1↔Y1 and ... and Xn↔Yn

where n≥1, Ta is a generalized string of the
language La, and Tb is a generalized string of the
language Lb. Both Ta and Tb must contain n
variables. The variables in Ta are X1 ... Xn, and the
variables in Tb are Y1 ... Yn. Each generalized string
(Ta and Tb) in a general translation template should
contain at least one token from the alphabet of the
language of that string.

For example, if the alphabet of La is A =
{a,b,c,d,e,f,g,h} and the alphabet of Lb is B =
{t,u,v,w,x,y,z}, the following are some examples of
translation templates between La and Lb.

• de ↔ vyz
• abX1c ↔ uY1 if X1 ↔ Y1
• aX1X2b ↔ Y2vY1 if X1 ↔ Y1 and X2 ↔ Y2

The first translation template is an atomic
translation template, and last two are general
translation templates. The first atomic translation
template means that de in the language La and vyz
in the language Lb correspond to each other. A
general translation template is a generalization of
translation examples, where certain components
are generalized by replacing them with variables
and establishing bindings between these variables.
For example, in the second example above, the
generalized string abX1c represents all sentences of
La starting with ab and ending with c where X1
represents a non-empty string on A, and the
generalized string uY1 represents all sentences of
Lb starting with u where Y1 represents a non-empty
string on B. That general template says that a
sentence of La in the form of abX1c corresponds to
a sentence of Lb in the form of uY1 given that X1
corresponds to Y1. If we know the correspondence
de↔vyz, the correspondence abdec↔uvyz can be
inferred from that general template.

3 Translation Templates With Type

Constraints

3.1 Type Expressions

All symbols in the alphabet of a language are
organized as a type lattice. The symbols in the
alphabet of the language appear at the bottom of
the type lattice. In fact, each symbol is treated as a
ground type name that represents itself in the type
lattice. Inner nodes in the lattice are type names
that are used for the language, and each type name
represents a set of ground type names. Thus, a
ground type name represents a singleton set
containing that ground type name. At the top of the
lattice, there is a special type name, called ANY.
The type name ANY represents the set of all
ground type names in the language. If t is a type
name, we will say that GTt is the set of the ground
type names that are covered by t. Each node in the
lattice, except ANY, can have one or more parents.
If node P is a parent of node C in the type lattice,
GTP⊃GTC holds. Figure 1 gives a type lattice for a
simple language. Since type name T1 is the parent
of type name T3, GTT1⊃GTT3 will be true for that
type lattice.

Each variable of a generalized string in a
general translation template with type constraints
is associated with a type expression, and the type
expression is called the type of the variable. The
type of a variable indicates the possible ground
strings which can replace that variable during the

ANY • Ground Type Names = {a,b,c,d,e,f}
• The set of ground type names is also the

alphabet of this simple language.
• The sets of ground type names represented by

some type names.
GTa = {a}
GTT3 = {a,b}
GTT1 = {a,b,c,d}
GTT2 = {c,d,e,f}
GTANY = {a,b,c,d,e,f}

T2 T1

 T3 T4 T5

b c d e f a

Figure 1. A Type Lattice for A Simple Language

translation process. A type expression is a non-
empty sequence of atomic type expressions. An
atomic type expression can be either T or nullor(T)
where T is a type name from the type lattice. If the
type of a variable is a type name T, this means that
the variable can be replaced by a ground type
name from GTT. In the second case where the type
of a variable is nullor(T), the variable is
replaceable with an empty string in addition to a
ground type name from GTT. In other words,
GTnullor(T) is equal to GTT∪{ε}.

The definition of GT can be extended for the
type expressions that consist of more than one
atomic type expression. If a type expression T is
an atomic type sequence T1...Tn, GTT is equal to
the concatenation of the sets GTT1 through GTTn.
In general, a variable of type T is replaceable with
a ground string from GTT. For example, let us
consider the simple language and its type lattice in
Figure 1. If the type of a variable is type T3, this
means that it can be replaced with a ground string
from GTT3={a,b}. When the type of a variable is
nullor(T3), it can be replaced with an empty string
or a string from GTT3. A variable of the type ANY
can be replaced with any ground type name. If a
type expression T is an atomic type sequence “T3
T4”, GTT is equal to {ac,ad,bc,bd}.

Type lattices for English and Turkish are
partially created by hand in order to be used in the
developed EBMT system. Simplified partial type
lattices for these languages can be seen in Figure
2. The details of those type lattices are not given in
the figure. Major type names in each type lattice
are the part of speech tags used for that language.
The affixes used in a language are also considered
as major type names. For example, the major part
of speech tags such as noun, verb, pronoun and
adjective are major type names in English type
lattice, and they appear as children of ANY. The

type names between major type names and ground
type names generally represents the subgroups of
part of speech tags. The affixes are grouped
according to where they can be used. For example,
all suffixes can be added to verbs is considered as
a major type name.

3.2 Translation Templates With Type

Constraints

A translation template with type constraints is
a general translation template where all variables
are associated with type expressions. A translation
template with type constraints will be a translation
template in the following form:

 Ta↔Tb
if X1

TA1↔Y1
TB1 and...and Xn

TAn↔ Yn
TBn

where each of TA1,...,TAn and TB1,...,TBn is a
type expression. A translation template with type
constraints also puts a restrictriction on the
possible replacements of variables during the
translation process. For example, the following is a
translation template with type constraints

I XVERB +PAST ↔ YVERB +PAST +1PSAGR
if XVERB↔ YVERB

This general template represents that an English
sentence in the form of “I XVERB +PAST”
corresponds to a Turkish sentence in the form of
“YVERB +PAST +1PSAGR” given that X
corresponds to Y. This template also specifies that
X can only be replaced by a verb at English side,
and Y can only be replaced by a verb at Turkish
side. In this example, “+PAST” means the past
tense suffix at English side, and “+PAST” and
“+1PSAGR” at Turkish side mean that the past
tense suffix and the first person singular agreement
suffix, respectively. This translation template can

ANY

be used in the translation of the following Turkish
sentence

geldim
gel+PAST+1PSAGR

into the following English sentence

 I came
I come+PAST

given that the correspondence “gel↔come” is
available. During the translation process, both
variables are replaced by English and Turkish
verbs without violating type constraints in the
translation template.
 Type constraints in the translation templates
restrict wrong usages of templates in certain
circumstances. For example, if we try to use the
previous translation template without type
constraints, it may lead to wrong translation
results. Let us assume that we want to translate the
following Turkish sentence into English using this
translation template without type constraints.

 utangaçtım (I was shy)
utangaç+PAST+1PSGAGR

Without using the type restrictrictions, variable Y
at Turkish side can match with “utangaç” which is
an adjective (not a verb). If the correspondence
“shy↔utangaç” is available, variable X at English
side can match with “shy” (not a verb). Thus, it
can lead to the meaningless translation result “I
shy +PAST” at the lexical level. Type constraints
in the translation template will avoid this wrong
translation by rejecting to bind Y with “utangaç”
which is an adjective.

4 Learning Translation Templates
In the EBMT system described in [3,4],

translation templates are inferred without type
constraints from given translation examples. Each
translation example consists of an English
sentence and a Turkish sentence and their lexical
level representations are used for the sentences. A
translation template is a generalization of two
translation examples where some differing parts of
the sentences are generalized by replacing them
with variables, and establishing bindings between
these variables.

In order to induce a translation template from
given two translation examples E1

a↔E1
b and

E2
a↔E2

b, we first find the match sequence
Ma↔Mb where the match sequence Ma is a match
sequence between E1

a and E2
a, and the match

sequence Mb is a match sequence between E1
b and

E2
b. A match sequence between two sentences is a

sequence of similarities and differences between
those sentences. A similarity between two
sentences is a non-empty sequence of common
items in both sentences. A difference between two
sentences is a pair of two sequences (D1,D2) where
D1 is a sub-sequence of the first sentence and D2 is
a sub-sequence of the second sentence, and D1 and
D2 do not contain any common item.

For example, let us assume that the lexical
representations of the following two translation
examples between English and Turkish are given.

I come +PAST ↔ gel +PAST +1PSAGR
I go +PAST ↔ git +PAST +1PSAGR

a) Simplified Type Lattice for English

ANY

 .
.

.
 .

 .
.

.
 . .

 .
 .

VERB

come go

TENSESUF

+PAST +ING

VERB

gel git

TENSESUFAGR

 ...
+1PSGAGR +PAST +PROG

b) Simplified Type Lattice for Turkish

Figure 2. Simplified Type Lattices for English and Turkish

where common parts in the sentences are
underlined. From these two examples, the
following match sequence is found.

I (come,go) +PAST ↔
(gel,git) +PAST +1PSAGR

where (come,go) is a difference at English side,
(gel,git) is a difference at Turkish side, other parts
of the match sequence are similarities.
 One of the learning heuristics described in
[3,4], infers a translation template by replacing
differences by variables and establishing bindings
between these variables. This learning heuristic
can create a translation template if both sides of
the match sequences contain n differences where
n≥1, and the correspondences of n-1 difference
pairs have been already learned. For example, for
the match sequence above, this learning heuristics
infers the following translation templates.

I X +PAST ↔ Y +PAST +1PSAGR
if X ↔ Y

come ↔ gel
go ↔ git

The first translation template is a general
translation template created by replacing
differences with variables X and Y. The last two
translation templates are atomic translation
templates and they are inferred from the
correspondence of the differences (come,go) and
(gel,git).
 Variables X and Y in this translation template
do not have any type constraints, and they are
replaceable with any ground strings as long as they
are translations of each other during translation
process. As we discussed in Section 3.1, this can
lead to wrong translation results in unrelated
environments. In order to reduce the amount of
wrong translation results, translation templates will
be associated with type constraints. In the rest of
this section, we describe how translation templates
with type constraints are inferred from the given
translation examples.

4.1 Inferring A Type Expression for Two

Symbols

When we replace a difference with a variable,
we should also find a type expression for that
variable. If both constituents of a difference are
symbols (strings with length 1), the type
expression for those symbols is found using the
type lattice of that language, and the found type
expression will be used as a type constraint for the
variable replacing that difference. For example,

when we infer a translation template from the
match sequence “I (come,go) +PAST ↔ (gel,git)
+PAST +1PSAGR”, we also infer types of the
variables replacing the differences (come,go) and
(gel,git). Of course, we use English type lattice for
the difference (come,go), and Turkish type lattice
for the difference (gel,git).

If we have two symbols, they are also ground
type names in the type lattice of the language of
those symbols. For example, come and go are
ground type names in English type lattice. Since
the variable replacing the difference (come,go)
represents the symbols come and go, the type of
this variable should cover both of those symbols.
We say that a ground type gt is covered by a type
t, if gt∈GTt. So, if type T covers both symbols
come and go, both come∈GTT and go∈GTT. At the
worst case, type ANY will cover any given two
ground type names in a language.

In general, there can be more than one type
covering any given two type names. Since we do
not want to over-generalize, we select the most
specific type covering both of them. We say that
type T2 is more specific than type T1, if
GTT1⊃GTT2 holds. This means that T1 is one of the
ancestors of T2. So, if both T1 and T2 covers given
type names and T2 is more specific than T1, T2 is
selected as a type expression for the given type
names.

In some cases, there can be two ancestors T1
and T2 of a given pair of type names, and the
ancestors may not hold any specifity relation
between them. That is, neither GTT1⊃GTT2 nor
GTT2⊃GTT1 holds. So, the youngest ancestor of the
two given types is selected to represent them.

In order to find a youngest ancestor of two
given types, the shortest path containing one of
their ancestors is found and the ancestor on that
shortest path is the youngest ancestor of them. A
type is also considered as an ancestor of itself.
Thus, the youngest ancestor of types T1 and T2 will
be T1 if T1 is an ancestor of T2.

According to English type lattice, the youngest
ancestor of come and go is type VERB, and the
youngest ancestor of gel and git is type VERB
according to Turkish type lattice in Figure 2. So,
the following translation template with type
constraints is induced from the match sequence “I
(come,go) +PAST ↔ (gel,git) +PAST
+1PSAGR”:

I XVERB +PAST ↔
YVERB +PAST +1PSAGR

if XVERB↔ YVERB

 When we replace a difference (t1,t2) where t1
and t2 are two different type names in their type
lattice with a type name t3 which is the youngest
ancestor of t1 and t2, we generalize (t1,t2) as t3.
Each generalization has a generalization score to
indicate the amount of that generalization. We use
the length of the shortest path between t1 and t2 as
a generalization score. For example, the score for
the generalization of (come,go) as VERB is 2,
because the length of the shortest path between
come and go is 2. In fact, when a difference is
generalized, the generalization with the smallest
generalization score is used. We will say that
gen(t1,t2) is t3, and genscore(t1,t2) is 2.

4.2 Inferring A Type Expression for Two

Strings

If a difference has a constituent whose length
is greater than one, the generalization of that
difference cannot be an atomic type expression. If
n is the length of the longest constituent of a
difference, its generalization will be a type
expression consisting of n atomic type
expressions. If a difference is (a1...an,b1...bn)
where the lengths of the constituents are equal, the
generalization gen(a1...an,b1...b4) will be

 gen(a1,b1) gen(a2,b2) ... gen(an,bn).

The generalization score genscore(a1...an,b1...bn)
for this generalization will be equal to

genscore(a1,b1) + genscore(a2,b2) + ...
+ genscore(an,bn).

If the lengths of constituents are different, we have
to consider different possibilities and some
symbols have to be generalized with empty strings.
For example, we have to consider the following
three generalizations for the difference (abc,de):

 gen(a,d) gen(b,e) gen(c,ε)
 gen(a,d) gen(b,ε) gen(c,e)
 gen(a,ε) gen(b,d) gen(c,e)

When there are more than one possible
generalization for a difference, we select the one
with the smallest generalization score. Since we
assume that we have an imaginary type for each
ground type name in the type lattice such that it is
a parent of that ground type name and the empty
string, the score of the generalization of a symbol
with the empty string is assumed to be 2. The
generalization of a symbol a and the empty string
is represented by nullor(a).

 Let us consider the following two translation
examples.

 I come +PAST ↔ gel +PAST +1PSAGR
 I am go +ING ↔ git +PROG +1PSAGR

For these examples, the following match sequence
is found.

I (come +PAST, am go +ING) ↔
(gel +PAST, git +PROG) +1PSAGR

In order to select the generalization for the
difference (come +PAST, am go +ING), we have
to consider the following three generalizations:

 gen(come,am) gen(+PAST,go) gen(ε,+ING)
gen(come,am) gen(ε,go) gen(+PAST,+ING)
gen(ε,am) gen(come,go) gen(+PAST,+ING)

Since the last generalization has the smallest
generalization score, it will be selected as the
generalization for this difference. So, the
generalization for this difference will be the
following type expression:

 nullor(am) VERB TENSESUF

Similarly, the difference (gel +PAST, git +PROG)
has only one possible generalization:

 gen(gel,git) gen(+PAST,+PROG)

Thus, the generalization for the difference (gel
+PAST, git +PROG) will be the following type
expression:

 VERB TENSESUF

As a result, the following translation template with
type constraints will be inferred from these two
translation examples.

I Xnullor(am) VERB TENSESUF ↔
YVERB TENSESUF +1PSAGR
if Xnullor(am) VERB TENSESUF ↔ YVERB TENSESUF

5 Conclusion

In this paper, we have presented a learning
technique that induces translation templates from
given translation examples, by replacing the
differing parts with variables. Types of variables
are also learned during the learning phase from the
replaced differing parts. The types of variables
help to reduce the amount of wrong translation
results by restricting the usage of the translation
templates in unrelated contexts.

The learning heuristic described in this paper
has been implemented as a part of an EBMT
system between English and Turkish. When the

translation results of the EBMT system using
translation templates with type constraints were
compared with the translation results of the EBMT
system using translation templates without type
constraints, the type constraints have eliminated
more wrong translations from the translation
results.

The type expression that is inferred for a
variable replacing a difference with two symbols
depends on the shortest path between those two
symbols in their type lattice. The youngest
ancestor of those symbols is the generalization of
that difference. By selecting the youngest ancestor
for those symbols, we hope that we get the most
specific generalization for those symbols. The
youngest ancestor may not be most specific
generalization depending on those symbols and the
structure of the type lattice. Although there can be
another techniques to find the most specific
generalization, the shortest path is one of the good
techniques.

The inferred type expression by the
generalization technique presented here is a most
specific generalization. If we do not use any type
constraint for a variable, it will be most general
generalization. Other generalizations may be
preferred by using certain generalization metrics.
In this case, the regular expressions can be a better
choice to represent type expressions. We are
currently investigating these alternatives.

In this paper, the constraints for the variables
are type constraints. The generalization technique
described here can be also used in the inference of
the semantic constraints if the semantic lattices
(similar to Wordnet) are available for source and
target languages. The quality of translation
templates will depend on the quality of the used
semantic lattices. The EBMT system in [7] also
tries to generalize semantic features.

References

[1] Brown, R. D., Clustered Transfer Rule

Induction for Example-Based Translation, in:
Recent Advances in Example-Based Machine
Translation, Carl, M., and Way, A. (eds.), The
Kluwer Academic Publishers, Boston, 2003,
pp: 287-306.

[2] Carl, M., Inducing Translation Grammars
from Bracket Alignments, in: Recent Advances
in Example-Based Machine Translation, Carl,
M., and Way, A. (eds.), The Kluwer Academic
Publishers, Boston, 2003, pp:339-361.

[3] Cicekli, I., and Guvenir, H. A., Learning
Translation Templates from Bilingual
Translation Examples, in: Recent Advances in
Example-Based Machine Translation, Carl,
M., and Way, A. (eds.), The Kluwer Academic
Publishers, Boston, 2003, pp: 255-286.

[4] Cicekli, I., and Guvenir, H. A., Learning
Translation Templates from Bilingual
Translation Examples, Applied Intelligence,
Vol. 15, No. 1, 2001, pp: 57-76.

[5] Kaji H., Kida Y., and Morimoto Y., Learning
Translation Templates from Bilingual Text, in:
Coling (1992), pp: 672-678.

[6] McTait, K., Translation Patterns, Linguistic
Knowledge and Complexity in EBMT, in:
Recent Advances in Example-Based Machine
Translation, Carl, M., and Way, A. (eds.), The
Kluwer Academic Publishers, Boston, 2003,
pp: 307-338.

[7] Matsumoto, Y., and Kitamura M., Acquisition
of Translation Rules from Parallel Corpora, in:
Recent Advances in Natural Language
Processing, Amsterdam, John Benjamins,
1995, pp: 405-416.

[8] Nagao, M.A., Framework of a Mechanical
Translation between Japanese and English by
Analogy Principle, in: Artificial and Human
Intelligence, Elithorn, A., and Banerji, R.
(eds.), North Holland, Amsterdam, 1984, pp:
173-180.

	1 Introduction
	References

