
Inducing Translation Templates with Type Constraints

ILYAS CICEKLI
Dept. of Computer Eng., Bilkent University, Bilkent 06800, Ankara, TURKEY.
E-mail: ilyas@cs.bilkent.edu.tr

Abstract. This paper presents a generalization technique that induces translation
templates from a given set of translation examples by replacing differing parts in
the examples with typed variables. Since the type of each variable is inferred during
the learning process, each induced template is also associated with a set of type
constraints. The type constraints that are associated with a translation template
restrict the usage of the translation template in certain contexts in order to avoid
some of the wrong translations. The types of variables are induced using type lat-
tices designed for both the source language and the target language. The proposed
generalization technique has been implemented as a part of an EBMT system.

Keywords: EBMT, Machine Learning

1. Introduction

An example-based machine translation (EBMT) system uses a bilingual
corpus to translate a given sentence in a source language into a target
language (Nagao, 1984; Somers, 2003). Some EBMT systems use a
bilingual corpus to find translations of the parts of a given sentence,
and combine these partial solutions to get the translation of the whole
sentence. On the other hand, some other EBMT systems (Kaji et al.,
1992; Cicekli and Güvenir, 2001; Brown, 2003; Carl, 2003; Cicekli and
Güvenir, 2003; McTait, 2003) extract translation templates from ex-
ample sentences in a given bilingual corpus and use these translation
templates in the translation of other sentences. The main differences be-
tween these EBMT systems are the assumptions made on the structure
of the bilingual corpus and their generalization techniques. The EBMT
translation system that uses the generalization technique described in
this paper also extracts translation templates from a set of translation
examples.

In the EBMT system presented in (Cicekli and Güvenir, 2001; Ci-
cekli and Güvenir, 2003), a translation template is induced from two
given translation examples by replacing differing parts in these exam-
ples by variables. A variable replacing a difference that consists of
two differing parts (one from the first example, and the other one
from the second example) is a generalization of those two differing
parts. Later, any string can replace that variable during the translation
process without putting any restriction on the possible replacements.

c© 2006 Kluwer Academic Publishers. Printed in the Netherlands.

FinalCopy.tex; 5/05/2006; 9:29; p.1



2 ILYAS CICEKLI

Although the learned translation template works correctly in certain
environments, it can lead to wrong translations in some other unrelated
environments because that variable replacement cannot be appropriate
in those unrelated environments. In this paper, we propose a gener-
alization heuristic that replaces the differences with variables as well
as inducing the types of these variables from the differences. Since the
types of variables disallow some possible replacements for the variables,
the generation of some of the wrong translation results in the unrelated
contexts can be avoided.

The type of a variable that replaces a difference is found by using a
type lattice for the language of the symbols appearing in the difference.
Since the generalization technique described in this paper is used as a
part of an EBMT system between English and Turkish, the type lattices
for English and Turkish have been developed manually and they are
used in the EBMT system. The variables in the induced translation
templates are associated with the type names in the type lattices during
learning phase. Although the type lattices are created manually, the
associations of the variables with the type names in the type lattices are
done automatically during the induction of the translation templates.
The quality of the induced translation templates also depends on the
quality of the type lattices, and the quality of type lattices can be
measured experimentally.

The rest of the paper is organized as follows. The structure of
translation templates without type constraints is discussed in Section 2.
Section 3 introduces the structure of translation templates with type
constraints. The generalization process that learns the translation tem-
plates with type constraints is presented in Section 4. The systems with
and without type constraints are compared in Section 5 by giving the
results of some experiments. After the presentation of related work in
Section 6, the concluding remarks and possible future extensions are
given in Section 7.

2. Translation Templates Without Type Constraints

A language is a set of strings in the alphabet of that language, and the
alphabet of a language is a finite set of symbols. For example, a string in
a natural language, such as English or Turkish, is a sequence of tokens
in that natural language. Each token in a natural language can be a
root word or a morpheme. The set of all root words and morphemes
in a natural language is treated as its alphabet in our discussions. We
also associate each language with a finite set of variables. A generalized
string is a string of the symbols of the alphabet of the language and

FinalCopy.tex; 5/05/2006; 9:29; p.2



Inducing Translation Templates with Type Constraints 3

the variables in the set of variables associated with the language. This
means that a generalized string is a string that contains at least one
variable. We assume that each language is associated with a different
set of variables. A string without variables is called a ground string.

A translation template can be an atomic or general translation tem-
plate. An atomic translation template Ta ↔ Tb between languages La

and Lb is a pair of two nonempty strings Ta and Tb where Ta is a ground
string in La and Tb is a ground string in Lb. An atomic translation
template Ta ↔ Tb means that the strings Ta and Tb correspond to each
other. A given translation example is an atomic translation template.

A general translation template between languages La and Lb is an
if-then rule in the following form:

Ta ↔ Tb if X1 ↔ Y1 and ... and Xn ↔ Yn

where n ≥ 1, Ta is a generalized string of the language La, and Tb is a
generalized string of the language Lb. Both Ta and Tb must contain n
unique variables. The variables in Ta are X1...Xn, and the variables in
Tb are Y1...Yn. Each generalized string (Ta and Tb) in a general trans-
lation template should contain at least one symbol from the alphabet
of the language of that string.

For example, if the alphabet of La is A = {a, b, c, d, e, f, g, h} and
the alphabet of Lb is B = {t, u, v, w, x, y, z}, the examples in (1) are
well-formed translation templates between La and Lb.

(1) de ↔ vyz
abX1c ↔ uY1 if X1 ↔ Y1

aX1X2b ↔ Y2vY1 if X1 ↔ Y1 and X2 ↔ Y2

The first translation template is an atomic translation template, and
the last two are general translation templates. The first atomic trans-
lation template means that de in the language La and vyz in the
language Lb correspond to each other. A general translation template is
a generalization of translation examples, where certain components are
generalized by replacing them with variables and establishing bindings
between these variables. For example, the generalized string abX1c in
the second example in (1) represents all sentences of La starting with
ab and ending with c where X1 represents a non-empty string in A, and
the generalized string uY1 represents all sentences of Lb starting with
u where Y1 represents a non-empty string in B. That general template
says that a sentence of La in the form of abX1c corresponds to a sen-
tence of Lb in the form of uY1 given that X1 corresponds to Y1. If we
know the correspondence de ↔ vyz, the correspondence abdec ↔ uvyz
can be inferred from that general template.

FinalCopy.tex; 5/05/2006; 9:29; p.3



4 ILYAS CICEKLI

ANY

T1 T2

T3 T4 T5

a b c d e f

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

•
•

•

Ground Type Names = {a,b,c,d,e,f}
The set of ground type names is also
the alphabet of this simple language.

The sets of ground type names
represented by some type names.
GTa = {a}
GTT3 = {a,b}
GTT1 = {a,b,c,d}
GTT2 = {c,d,e,f}
GTANY = {a,b,c,d,e,f}

Figure 1. A Type Lattice for A Simple Language

A well-formed general translation template contains n unique vari-
ables in both sides of the translation template, and each variable in one
side of the translation template must correspond to a variable in the
other side. For example, “abX1c ↔ uY1vY2 if X1 ↔ Y1” is not a well-
formed translation template because the left side contains one variable,
and the right side contains two variables. Another ill-formed translation
template is “aX1bX2c ↔ uY1vY2 if X1 ↔ Y1 and X1 ↔ Y2” because
the variable X1 in the left side corresponds to two different variables,
and the variable X2 does not correspond to any variable.

3. Translation Templates With Type Constraints

3.1. TYPE EXPRESSIONS

All symbols in the alphabet of a language are organized as a type
lattice. The symbols in the alphabet of the language appear at the
bottom of this type lattice. In fact, each symbol is treated as a ground
type name that represents itself in the type lattice. Inner nodes in the
lattice are type names that are used for the language, and each type
name represents a set of ground type names. Thus, a ground type name
represents a singleton set containing that ground type name. At the top
of the lattice, there is a special type name, called ANY. The type name
ANY represents the set of all ground type names in the language. If t is
a type name, we say that GTt is the set of the ground type names that
are covered by t. Each node in the lattice, except ANY, can have one
or more parents. If node P is a parent of node C in the type lattice,
GTP ⊃ GTC holds. Figure 1 gives a type lattice for a simple language.

FinalCopy.tex; 5/05/2006; 9:29; p.4



Inducing Translation Templates with Type Constraints 5

ANY

Verb Noun Pronoun Tense

come go car bee I he +Past +Prog... ... ... ...

. . . . . . . . .

.........

. . . . . . . . . . . . .

.............
.........

.........

.........

.........

.........

.........

.........

.........

Figure 2. A Simplified Type Lattice for English

Since type name T1 is the parent of type name T3, GTT1 ⊃ GTT3 holds
true for the type lattice in Figure 1.

Each variable of a generalized string in a general translation template
with type constraints is associated with a type expression, and that type
expression is called the type of that variable. The type of a variable in-
dicates the possible ground strings that can replace the variable during
the translation process. A type expression is a non-empty sequence of
atomic type expressions. An atomic type expression can be either T or
nullor(T ) where T is a type name from the type lattice. If the type
of a variable is a type name T , this means that the variable can be
replaced by a ground type name from GTT . In the second case where
the type of a variable is nullor(T ), the variable is replaceable with an
empty string in addition to a ground type name from GTT . In other
words, GTnullor(T ) is equal to GTT ∪ {ε}.

The definition of GT can be extended for the type expressions that
consist of more than one atomic type expression. If a type expression T
is an atomic type sequence T1...Tn, GTT is equal to the concatenation
of the sets GTT1 through GTTn . In general, a variable of type T is
replaceable with a ground string from GTT . For example, let us consider
the simple language and its type lattice in Figure 1. If the type of a
variable is type T3, this means that it can be replaced with a ground
string from GTT3={a,b}. When the type of a variable is nullor(T3), it
can be replaced with an empty string or a string from GTT3. A variable
of the type ANY can be replaced with any ground type name. If a type
expression T is an atomic type sequence “T3 T4”, GTT is equal to
{ac,ad,bc,bd}.

The type lattices for English and Turkish are manually created, and
they are be used in the developed EBMT system. Simplified partial
type lattices for these languages can be seen in Figure 2 and Figure 3.
Major type names in each type lattice are the part of speech tags used
for the language. The affixes used in a language are also considered as
major type names. For example, the major part of speech tags such as

FinalCopy.tex; 5/05/2006; 9:29; p.5



6 ILYAS CICEKLI

ANY

Verb Noun Tense Agr

gel git araba arı +Past +Prog +1PSAgr +3PPlAgr... ... ... ...

. . . . . . . . .

.........

. . . . . . . . . . . . .

.............
.........

.........

.........

.........

.........

.........

. . . . . . . . .

.........

Figure 3. A Simplified Type Lattice for Turkish

noun, verb, pronoun and adjective are major type names in the English
type lattice, and they appear as the children of ANY. The type names
between major type names and ground type names generally represent
the subgroups of part of speech tags. The affixes are grouped according
to where they can be used. For example, the set of suffixes that can
be added to verbs is considered as a major type name. The arcs in the
figures are given as dotted lines, because there can be other nodes on
those paths. These simplified type lattices are used in the examples in
the rest of the paper, and we treat the dotted lines in the figures as the
straight lines.

The English type lattice that we created is similar to the morpholog-
ical type hierarchy used in HPSG (Pollard and Sag, 1994). Our English
type lattice can be seen as a simplified morphological type hierarchy.
At the bottom of the type lattice, there are stems and affixes, and
they are treated as ground type names since they cannot be a parent
of another type name in the type lattice. The stems are organized as
a morphological type hierarchy mainly based on their part of speech
tags. The affixes are also organized as a type hierarchy based on their
functionalities. The Turkish type lattice is also a morphological type
hierarchy for Turkish. In the Turkish type lattice, the type hierarchy
of the affixes is more complex with respect to the English type lattice
because Turkish is a morphologically complex language. For example,
the inflectional suffixes that can follow Turkish nouns are grouped with
respect to their functionalities such as agreement markers, possessive
markers and case markers.

Although the major nodes in the type lattice are part of speech
tags, there are also type names to represent smaller and larger groups.
For example, there are type names for numbers and ordinals. The type
names representing small groups can help avoiding over generalization.
For example, “+Past” and “+Prog” are tense morphemes, and they
can only follow the verbs in Turkish. In the Turkish type lattice, their
immediate parent is the type name “Tense”, the parent of “Tense”

FinalCopy.tex; 5/05/2006; 9:29; p.6



Inducing Translation Templates with Type Constraints 7

is “VerbSuffix”, and the parent of “VerbSuffix” is “Suffix”. The mor-
phemes “+Past” and “+Prog” are generalized as “Tense” according to
this type hierarchy, because “Tense” is their immediate parent. Thus,
this finer type hierarchy can avoid the over generalization of these
symbols.

3.2. TRANSLATION TEMPLATES WITH TYPE
CONSTRAINTS

A translation template with type constraints is a general translation
template where all variables are associated with type expressions. A
translation template with type constraints is a translation template in
the following form:

Ta ↔ Tb if X
TA1
1 ↔ Y

TB1
1 and ... and X

TAn
n ↔ Y

TBn
n

where each of TA1 , ..., TAn and TB1 , ..., TBn is a type expression. A
translation template with type constraints also puts a restriction on
the possible replacements of variables during the translation process.
For example, the template in (2) is a translation template with type
constraints.

(2) I XV erb +Past ↔ Y V erb +Past +1PSAgr if XV erb ↔ Y V erb

This general template represents the fact that an English sentence in
the form of “I XV erb +Past” corresponds to a Turkish sentence in the
form of “Y V erb +Past +1PSAgr” given that X and Y are translations
of each other with respect to the translation templates. This template
also specifies that X can only be replaced by a verb on English side,
and Y can only be replaced by a verb on Turkish side. In this example,
“+Past” means the past tense suffix on both English and Turkish sides,
and “+1PSAgr” on Turkish side is the first person singular agreement
suffix.

The translation template in (2) can be used in the translation of the
Turkish sentence into the English sentence in (3) if the correspondence
“gel↔come” is available with respect to the translation templates.
During the translation process, both variables are replaced by English
and Turkish verbs without violating type constraints in the translation
template.

(3) geldim ⇒ I came
gel+Past+1PSAgr I come+Past

Type constraints in the translation templates restrict wrong usages
of templates in certain circumstances. For example, if we try to use the

FinalCopy.tex; 5/05/2006; 9:29; p.7



8 ILYAS CICEKLI

translation template in (2) without using type constraints, it may lead
to wrong translation results. Let us assume that we want to translate
the Turkish sentence in (4) into English using the translation template
in (2) without any type constraints.

(4) utangaçtım (I was shy)
utangaç+Past+1PSAgr

Without using the type restrictions, variable Y on Turkish side can
match with “utangaç” which is an adjective (not a verb). If the corre-
spondence ”shy↔utangaç” is available, variable X on English side can
match with “shy” (not a verb). Thus, it can lead to the meaningless
translation result “I shy +Past” at the lexical level. Type constraints in
the translation template will avoid this wrong translation by rejecting
the binding of Y with “utangaç” which is an adjective.

During the translation process, the variables in the source language
portion of a translation template are bound to the parts of the given
sentence that will be translated. The string that a variable is bound
to must satisfy the type constraint that is imposed by the variable.
Otherwise, the translation template cannot be used in the translation of
the sentence. Then, the string that a variable is bound to is translated,
and the translation result must satisfy the type constraint that the
corresponding variable in the target language portion of the translation
template imposes. Otherwise, that translation result is rejected. For
example, if we use the translation template in (2) to translate the
English sentence “I come+Past” into Turkish, the variable XV erb is
bound to the string “come”. Before the string “come” is translated, it
must satisfy the type constraint “Verb” that is imposed by the type of
the variable XV erb. Then, the string “come” is translated into Turkish.
The translation results must satisfy the type constraint “Verb” that
is imposed by the corresponding variable Y V erb. In other words, we
only accept the translation results that are Turkish verbs, and reject
all other translations of “come”.

Every word in a given source language sentence is morphologically
analyzed by the source language morphological analyzer in order to
create the lexical level representation of the input sentence. There can
be more than one lexical level representation of the sentence because
of the morphological ambiguity. Then, the translation results are found
using the translation templates in the system for all lexical representa-
tions of the input sentence. The produced translation results are in the
lexical representation, and the target language morphological generator
finds the surface level representations of the translation results. We use
our own versions of morphological processors for Turkish and English.

FinalCopy.tex; 5/05/2006; 9:29; p.8



Inducing Translation Templates with Type Constraints 9

4. Learning Translation Templates

In the EBMT system described in (Cicekli and Güvenir, 2001; Cicekli
and Güvenir, 2003), translation templates are inferred without type
constraints from the given translation examples. Each translation ex-
ample consists of an English sentence and a Turkish sentence, and their
lexical level representations are used for the sentences.

In order to induce a translation template from given two translation
examples E1

a ↔ E1
b and E2

a ↔ E2
b , we first find the match sequence

Ma ↔ Mb where the match sequence Ma is a match sequence between
E1

a and E2
a, and the match sequence Mb is a match sequence between

E1
b and E2

b . A match sequence between two sentences is a sequence
of similarities and differences between those sentences. A similarity
between two sentences is a non-empty sequence of common items in
both sentences. A difference between two sentences is a pair of two
sequences (D1,D2) where D1 is a sub-sequence of the first sentence
and D2 is a sub-sequence of the second sentence, and D1 and D2 do
not contain any common item.

For example, the two examples in (5) are translation examples be-
tween English and Turkish sentences. The lexical level representations
of the sentences are used, and common parts in the sentences are
underlined.

(5) I come +Past ↔ gel +Past +1PSAgr
I go +Past ↔ git +Past +1PSAgr

From the two examples in (5), the match sequence in (6) is found. In
the match sequence in (6), (come,go) is a difference on English side,
(gel,git) is a difference on Turkish side, and the remaining parts of the
match sequence are similarities.

(6) (come,go) +Past ↔ (gel,git) +Past +1PSAgr

One of the learning heuristics described in (Cicekli and Güvenir,
2001; Cicekli and Güvenir, 2003) infers a translation template by re-
placing differences by variables and establishing bindings between these
variables. This learning heuristic can create a translation template if
both sides of the match sequences contain n fferences where n ≥ 1 and
the correspondences of n−1 difference pairs have been already learned.
For example, for the match sequence in (6), this learning heuristic infers
the three translation templates in (7).

(7) I X +Past ↔ Y +Past +1PSAgr if X ↔ Y
come ↔ gel
go ↔ git

FinalCopy.tex; 5/05/2006; 9:29; p.9



10 ILYAS CICEKLI

The first translation template in (7) is a general translation template
created by replacing differences with variables X and Y . The last
two translation templates are atomic translation templates and they
are inferred from the correspondence of the differences (come,go) and
(gel,git).

Variables X and Y in the translation template in (7) do not have
any type constraints, and they are replaceable with any ground strings
as long as they are translations of each other during the translation
process. As we discussed in Section 3, this can lead to wrong translation
results in unrelated environments. In order to reduce the amount of
wrong translation results, translation templates are associated with
type constraints. In the rest of this section, we describe how transla-
tion templates with type constraints are inferred from given translation
examples.

4.1. INFERRING A TYPE EXPRESSION FOR TWO
SYMBOLS

When we replace a difference with a variable, we should also find a
type expression for that variable. If both constituents of a difference are
symbols (strings with length 1), the type expression for those symbols
is found using the type lattice of that language, and the found type
expression is used as a type constraint for the variable replacing that
difference. For example, when we infer a translation template from the
match sequence in (6), we also infer types of the variables replacing
the differences (come,go) and (gel,git). Of course, we use English type
lattice for the difference (come,go), and Turkish type lattice for the
difference (gel,git).

If we have two symbols in a difference, they should be ground type
names in the type lattice of the language of those symbols. For example,
the symbols come and go in the difference (come,go) are ground type
names in English type lattice. Since the variable replacing the difference
(come,go) represents the symbols come and go, the type of this variable
should cover both of these symbols. We say that a ground type gt is
covered by a type t, if gt ∈ GTt. Thus, if there is a type T that covers
both symbols come and go, both come ∈ GTT and go ∈ GTT . In the
worst case, type ANY covers any given two ground type names in a
language.

In general, there can be more than one type covering any given two
type names. Since we do not want to over generalize, we select the
most specific type covering both of them. We say that type T2 is more
specific than type T1 if GTT1 ⊃ GTT2 holds. This means that T1 is one
of the ancestors of T2. So, if both T1 and T2 cover given type names

FinalCopy.tex; 5/05/2006; 9:29; p.10



Inducing Translation Templates with Type Constraints 11

and T2 is more specific than T1, T2 is selected as a type expression for
the given type names.

In some cases, there can be two ancestors T1 and T2 of a given pair
of type names A and B, and neither GTT1 ⊃ GTT2 nor GTT2 ⊃ GTT1

holds. So, the youngest one of T1 and T2 is selected to represent A and
B. In order to find a youngest ancestor of two given types, the shortest
path containing one of their ancestors is found and the ancestor on that
shortest path is the youngest ancestor of them. A type is also considered
as an ancestor of itself. Thus, the youngest ancestor of types T1 and T2

will be T1 if T1 is an ancestor of T2.
According to English type lattice in Figure 2, the youngest ancestor

of come and go is type “Verb”, and the youngest ancestor of gel and
git is type “Verb” according to Turkish type lattice in Figure 3. So,
the translation template with type constraints in (8) is induced from
the match sequence in (6). In addition to this template, two atomic
translation templates in (8) are also induced.

(8) I XV erb +Past ↔ Y V erb +Past +1PSAgr if XV erb ↔ Y V erb

come ↔ gel
go ↔ git

A difference (t1, t2), where t1 and t2 are two different type names in
the type lattice, is generalized as a type name t3 if t3 is the youngest
ancestor of t1 and t2. Each generalization has a generalization score
to indicate the amount of the generalization. We use the length of the
shortest path between t1 and t2 as a generalization score. For exam-
ple, the generalization score of the difference (come,go) as “Verb” is
2 because the length of the shortest path between come and go is 2
according to the simplified English type lattice in Figure 2. In fact,
when a difference is generalized, the generalization with the small-
est generalization score is selected as its generalization. We say that
gen(come, go) is the generalization of the difference (come,go), and
genscore(come, go) is the generalization score of this generalization.

Because of homonym and the structure of the type lattice, a type
name can have multiple parents in the type lattice. For example, the
word fly has “Verb” and “Noun” as its parents in the English type lat-
tice. The difference (fly,swim) is generalized as “Verb” because “Verb”
is the youngest ancestor of fly and swim. On other hand, the difference
(fly,eagle) is generalized as “Noun” because “Noun” is the youngest
ancestor of fly and eagle.

FinalCopy.tex; 5/05/2006; 9:29; p.11



12 ILYAS CICEKLI

4.2. INFERRING A TYPE EXPRESSION FOR TWO
STRINGS

If a difference has a constituent whose length is greater than
one, the generalization of that difference cannot be an atomic
type expression. If n is the length of the longest constituent
of a difference, its generalization is a type expression consisting
of n atomic type expressions. If a difference is (a1...an, b1...bn)
where the lengths of the constituents are equal, the generalization
gen(a1...an, b1...bn) is equal to gen(a1, b1)...gen(an, bn). The general-
ization score genscore(a1...an, b1...bn) for this generalization is equal
to genscore(a1, b1) + ... + genscore(an, bn).

If the lengths of constituents are different, we have to consider differ-
ent possibilities and some symbols have to be generalized with empty
strings. For example, we have to consider the three generalizations in
(9) for the difference (abc, de).

(9) gen(a, d)gen(b, e)gen(c, ε)
gen(a, d)gen(b, ε)gen(c, e)
gen(a, ε)gen(b, d)gen(c, e)

When there is more than one possible generalization for a difference, we
select the one with the smallest generalization score. Since we assume
that we have an imaginary type for each type name in the type lattice
such that it is a parent of that type name and the empty string, the
score of the generalization of a symbol with the empty string is assumed
to be 2. The generalization of a symbol a and the empty string is
represented by nullor(a).

Let us consider the two translation examples in (10). For these
examples, the match sequence in (11) is found.

(10) I come +Past ↔ gel +Past +1PSAgr
I am go +Prog ↔ git +Prog +1PSAgr

(11) I (come +Past, am go +Prog) ↔
(gel +Past, git +Prog) +1PSAgr

In order to select the generalization for the difference (come +Past, am
go +Prog), we have to consider the three generalizations in (12).

(12) gen(come,am) gen(+Past,go) gen(ε,+Prog)
gen(come,am) gen(ε,go) gen(+Past,+Prog)
gen(ε,am) gen(come,go) gen(+Past,+Prog)

Since the last generalization has the smallest generalization score, it
is selected as the generalization for this difference. So, the generaliza-
tion for this difference is the type expression “nullor(am) Verb Tense”.

FinalCopy.tex; 5/05/2006; 9:29; p.12



Inducing Translation Templates with Type Constraints 13

Similarly, the difference (gel +Past, git +Prog) has only one possible
generalization that is “gen(gel,git) gen(+Past,+Prog)”. Thus, the gen-
eralization for the difference (gel +Past, git +Prog) will be the type
expression “Verb Tense”. As a result, the translation template with
type constraints in (13) is inferred from these two translation examples.
In addition to this translation template, two more atomic translation
templates in (13) are also inferred.

(13) I Xnullor(am) V erb Tense ↔ Y V erb Tense +1PSAgr
if Xnullor(am) V erb Tense ↔ Y V erb Tense

come +Past ↔ gel +Past
am go +Prog ↔ git +Prog

4.3. INDUCING TEMPLATES FROM LEARNED
TEMPLATES

We learn not only the translation templates from examples, but also
learn new translation templates from the previously induced templates
by generalizing them. The induced templates are treated as transla-
tion examples containing the typed variables and symbols. In order
to achieve the induction of new translation templates from these tem-
plates, two typed variables are treated as the same symbol if their types
are the same. Thus, the typed variables are treated as symbols and
we are able to apply our learning technique to the previously induced
templates. Let us consider the two translation templates in (14).

(14) I XV erb +Past ↔ Y V erb +Past +1PSAgr
if XV erb ↔ Y V erb

You XV erb +Past ↔ Y V erb +Past +2PSAgr
if XV erb ↔ Y V erb

Although the variables XV erb in these two templates may represent
different symbols in actual translation examples, these two symbols are
treated as the same symbol since the type of both is “Verb”. For ex-
ample, the first template may be induced from the first two translation
examples in (15), and the second translation template may be induced
from the last two translation examples in (15).

(15) I come +Past ↔ gel +Past +1PSAgr
I go +Past ↔ git +Past +1PSAgr
You sleep +Past ↔ uyu +Past +2PSAgr
You come +Past ↔ gel +Past +2PSAgr

As a result of these generalizations, the variable XV erb in the first
template represents “come” and “go”, but the variable XV erb in the

FinalCopy.tex; 5/05/2006; 9:29; p.13



14 ILYAS CICEKLI

second template represents “sleep” and “come”. Since both of them
represent verbs, we treat them as the same symbol during the induction
process.

When we try to learn a translation template from two previously
induced translation templates, we first find the match sequence of the
heads of these two translation templates. For example, the match se-
quence of the heads of the two translation templates in (14) is given
in (16). From the match sequence in (16), we induce the three trans-
lation templates in (17). In the first template in (17), XPronoun

1 is the
generalization of the difference (I,you), and Y Agr

1 is the generalization
of the difference (+1PSAgr ,+2PSAgr).

(16) (I,you) XV erb +Past ↔ Y V erb +Past (+1PSAgr ,+2PSAgr)

(17) XPronoun
1 XV erb

2 +Past ↔ Y V erb
2 +Past Y Agr

1

if XPronoun
1 ↔ Y Agr

1 and XV erb
2 ↔ Y V erb

2

I ↔ +1PSAgr
you ↔ +2PSAgr

In (14), the variables XV erb and Y V erb in both of the translation
templates end up in similarities in the match sequence of these transla-
tion templates. Their correspondence in the example translation tem-
plates in (14) is copied into the body of the newly induced translation
template in (17). The first translation template in (17) can be seen as
a further generalization of the translation templates in (14).

In general, a variable ends up in a similarity or a difference of a match
sequence. Let us assume that the first example translation template has
only one corresponding variable pair X ↔ Y and the second example
translation template has only one corresponding variable pair Z ↔ W .
If X and Z end up in a similarity (i.e. X and Z are of the same type
variable), our learning heuristic insists that Y and W must end up
in a similarity too (i.e. Y and W must have the same type too). In
this case, the constraint X ↔ Y (which is equal to Z ↔ W ) in the
body of the first translation example also appears in the body of the
newly learned translation template. If X and Z end up in a difference
(α1Xβ1, α2Zβ2), Y and W must end up in a difference (γ1Y δ1, γ2Wδ2)
too, and these two differences must be the corresponding differences.
In this case, these two differences are replaced with appropriate typed
variables A and B, and the constraint A ↔ B appears in the body of the
newly induced translation template. The type of A is the generalization
of the difference (α1Xβ1, α2Zβ2), and the type of B is the generaliza-
tion of the difference (γ1Y δ1, γ2Wδ2). In addition to the newly induced
translation template, the following two translation templates in (18)
are induced from these corresponding differences.

FinalCopy.tex; 5/05/2006; 9:29; p.14



Inducing Translation Templates with Type Constraints 15

(18) α1Xβ1 ↔ γ1Y δ1 if X ↔ Y
α2Zβ2 ↔ γ2Wδ2 if Z ↔ W

For example, let us assume that the two translation templates in
(19) have been induced previously from the translation examples in
(20). The first translation template in (19) can be learned from the first
two translation examples in (20), and the second translation template
in (19) can be learned from the last two examples in (20).

(19) I am a XNoun ↔ bir Y Noun +1PSAgr
if XNoun ↔ Y Noun

I am XV erb +Prog ↔ Y V erb +Prog +1PSAgr
if XV erb ↔ Y V erb

(20) I am a student ↔ bir öğrenci +1PSAgr
I am a tailor ↔ bir terzi +1PSAgr
I am go +Prog ↔ git +Prog +1PSAgr
I am come +Prog ↔ gel +Prog +1PSAgr

The match sequence of the heads of the translation templates in (19)
is the match sequence in (21). From the match sequence in (21), we
induce the first translation template in (22) by generalizing the dif-
ference (a XNoun,XV erb +Prog) as XANY ANY and the difference (bir
Y Noun,Y V erb +Prog) as Y ANY ANY . In addition to the first template
in (22), the last two translation templates in (22) are also induced from
the corresponding differences in (21).

(21) I am (a XNoun,XV erb +Prog) ↔
(bir Y Noun,Y V erb +Prog) +1PSAgr

(22) I am XANY ANY ↔ Y ANY ANY +1PSAgr
if XANY ANY ↔ Y ANY ANY

a XNoun ↔ bir Y Noun if XNoun ↔ Y Noun

XV erb +Prog ↔ Y V erb +Prog if XV erb ↔ Y V erb

The first translation template in (22) is a general form of the transla-
tion templates in (19). Thus, it can be used in the translation of other
sentences in addition to the sentences in the form of the translation
templates in (19). For example, the first translation template can be
used in the translation of “I am fly +Prog” into “uç +Prog +1PSAgr”
if “uç +Prog” is the translation of “fly +Prog”. These English and
Turkish sentences are in the form of the second translation template in
(19). Although the sentence “I am very fast” is not in the form of any
of the translation templates in (19), the first translation template in

FinalCopy.tex; 5/05/2006; 9:29; p.15



16 ILYAS CICEKLI

(22) can also be used in the translation of this English sentence into the
Turkish sentence “çok hızlı +1PSAgr” if “çok hızlı” is the translation
of “very fast”.

The last two translation templates in (22) can be used in the transla-
tion of the subparts of the sentences. For example, the third translation
template in (22) can be used in the translation of “fly +Prog” into “uç
+Prog” if “uç” is the translation of “fly”. Of course, the second and
third templates in (22) can be used in the translation of the parts of the
sentences, and those sentences can be in the form of the first template
in (22) or some other translation template.

5. Experiments

In order to see the effects of the variables with types, we compare both
versions of our system. The first version uses translation templates
without type constraints, and the second version uses translation tem-
plates with type constraints. They can translate English sentences into
Turkish sentences, and Turkish sentences into English sentences. Dur-
ing the translation process, both versions produce a set of translation
results for a given sentence.

The translation results are sorted with respect to their specificity
factors. Each translation template is associated with a specificity factor
in each translation direction (English to Turkish, Turkish to English).
A specificity factor of a translation template depends on the number of
symbols in the source language part of the translation template. The
usage of specificity factors helps the correct solution to appear among
the first translation results.

We tested both of our systems with a bilingual corpus between
English and Turkish. The training set contains 4152 sentence pairs,
and the test set contains 1039 sentence pairs. The sentences in the test
set are structurally similar to the sentences in the training set, and
they are relatively short sentences. The length of the longest English
sentence is 17 symbols, and the average length of English sentences is
7.2 symbols. The length of the longest Turkish sentence is 21 symbols,
and the average length of Turkish sentences is 8.4 symbols. Each symbol
is either a stem or a morpheme. Since the training data contains the
correspondences of some English and Turkish words, the minimum sen-
tence lengths are 1 for both languages. The results of the experiments
are given in Tables I and II.

The first columns in the tables indicate the average number of
translation results that are produced by the systems per sentence.
The numbers for the system without type constraints are much higher

FinalCopy.tex; 5/05/2006; 9:29; p.16



Inducing Translation Templates with Type Constraints 17

Table I. Translation Results from English to Turkish

Avg. # Recall Corr.Sol. Corr.Sol. Corr.Sol. BLEU

of Corr.Sol. appears appears appears Score

Results appears in First in First in First

per in Pos. of Three Five

sentence Results Results Pos. of Pos. of

Results Results

Without

Type 328 93% 55% 76% 88% 0.79

Constraints

With

Type 4.5 91% 66% 89% 90% 0.82

Constraints

than the numbers for the system with type constraints. This means
that the system without type constraints produces many incorrect
results together with the correct solutions. The main reason is the
over generalization in the system without type constraints. Since the
type constraints put extra restrictions in the usage of translation tem-
plates, the system with type constraints eliminates most of the incorrect
translations.

The second columns in the tables indicate whether the correct trans-
lations appear in the produced translation results or not. The values in
these columns can be seen as recall results. For example, the percent-
age of whether the correct solutions appear in translation results for
the system without type constrains is 93 percent. In other words, this
means that the correct translations did not occur among the produced
translation results for the 7 percent of the sentences in the test set.
Recall results are 2-3 points lower for the system with type constraints.
This means that the extra restrictions cause to miss some of the correct
translations.

The column 3 gives the percentage of the number of correct transla-
tions appearing in the first position of the produced translation results.
Although the percentage for the system without type constraints is
55 percent, the percentage for the system with type constraints is 66
percent in the English to Turkish direction. This means that some of the
top ranked wrong translations are eliminated by the type constraints,
and we get this 11 percent increase. The increase in the Turkish to
English direction is 14 percent according to the numbers in Table II. If

FinalCopy.tex; 5/05/2006; 9:29; p.17



18 ILYAS CICEKLI

Table II. Translation Results from Turkish to English

Avg. # Recall Corr.Sol. Corr.Sol. Corr.Sol. BLEU

of Corr.Sol. appears appears appears Score

Results appears in First in First in First

per in Pos. of Three Five

sentence Results Results Pos. of Pos. of

Results Results

Without

Type 413 93% 45% 72% 82% 0.72

Constraints

With

Type 5.3 90% 59% 78% 89% 0.78

Constraints

the translation system is used to return only one result, the numbers
in the third columns explain the performance of the system.

The columns 4 and 5 give the similar percentages for the cases in
which correct solutions appear in the first three or five results, respec-
tively. If the translation system is used to return top translation results
and a human selects the actual translation from these top results, the
numbers in columns 4-5 explain the performance of the system. In
both directions of the translation, the system with type constraints pro-
duces more top translation results containing the correct solutions. This
means that the type constraints push the correct translation into top
translation results by eliminating some incorrect translations among
the top translation results.

The last columns of the tables give BLEU scores of both systems.
When we evaluate BLEU scores, we assume that each sentence (given in
the test set) has only one correct solution and we pick the first transla-
tion in the produced translations as the result of the translation. Under
these assumptions, we use the same methods described in (Papineni et
al., 2002) in the evaluation of BLEU scores. The results in the tables
indicate that the system with type constraints gets better BLEU scores.
This means that the obtained translation results are much closer to the
correct translations.

According to the numbers given in the last four columns of Tables I
and II, both of the translation systems perform better in the English
to Turkish direction. One of the observed reasons for this performance
difference in the translation directions is the usage of the third per-

FinalCopy.tex; 5/05/2006; 9:29; p.18



Inducing Translation Templates with Type Constraints 19

son singular pronouns in English and Turkish. The three third person
singular pronouns (he/she/it) map to a single third person singular
agreement morpheme in Turkish. During the translation from Turkish
to English, one of these three pronouns is selected and it may not be
the correct solution.

The results of the experiments presented in this section validate our
intuition that type constraints improve the precision by eliminating
the incorrect translation from the produced translation results. This
can be observable from the precision results in columns 3-5, and BLEU
scores in column 6. On the other hand, the system with type constraints
may miss a few of the correct translations because of extra restrictions.
The system with type constraints induces more translation templates
than the system without type constraints because the same template
without type constraints can appear more than once with different type
constraints.

6. Related Work

The method presented in this paper generalizes the given examples by
replacing their differing parts with variables in order to create transla-
tion templates. The variables in the induced templates are associated
with types, and these types indicate the morphological categories of
the strings that can replace those variables in the translation process.
The induced translation templates with type constraints are used in
the translation of other sentences in the translation process.

The system described in (Furuse and Iida, 1995) generalizes given
translation examples as abstract translation templates. The method
described in (Kaji et al., 1992) also generalizes examples to create
translation templates with variables, and these variables represent the
syntactic categories of the possible replacements for those variables. In
order to create translation templates from aligned translation pairs in
(Kaji et al. 1992), they parse the translation examples and align the
syntactic units in the examples. According to the method described in
(Carl, 1999; Carl, 2003), the examples are generalized based on their
syntactic categories and morphological features. The method described
in (Brown, 2003) also induces transfer rules, and the transfer rules can
be combined into equivalence classes using word-level clustering. The
main difference between our method and the mentioned methods is
that we use type lattices in the generalization process in order to find
the morphological categories of the variables in the induced translation
templates.

FinalCopy.tex; 5/05/2006; 9:29; p.19



20 ILYAS CICEKLI

The EBMT system in (Matsumoto and Kitamura, 1995) induces
the translation rules based on semantic categories. The variables in the
generalized rules are associated with semantic categories. The general-
izations are performed according to similarities determined by thesauri.
The similar methods based on semantic categories are also described in
(Nomiyama, 1992; Akiba et al., 1995; Almuallim et al., 1994) . Although
the system described in this paper only generalizes the examples accord-
ing to morphological categories, it can be extended to generalize them
according to semantic categories. For example, we may use WordNet
in order to find the semantic categories of differing parts.

7. Conclusion

In this paper, we have presented a learning technique that induces
translation templates from given translation examples, by replacing
the differing parts with variables. Types of variables are also learned
from the replaced differing parts during the training phase. The types
of variables help to reduce the amount of wrong translation results by
restricting the usage of the translation templates in unrelated contexts.

The learning heuristic described in this paper has been implemented
as a part of an EBMT system between English and Turkish. When the
translation results of the EBMT system using translation templates
with type constraints are compared with the translation results of the
EBMT system using translation templates without type constraints, it
can be seen that the type constraints have eliminated more wrong trans-
lations from the translation results. The average number of translation
results per sentence is approximately 5 sentences for the system with
type constraints, and it is approximately 300 sentences for the system
without type constraints. This means that there are a lot of wrong
translations in these 300 sentences, and most of them are eliminated
in the system with type constraints. In addition, the percentage of the
number of correct translations in the top positions of the produced
translations is also increased because some of the highly ranked wrong
translation results are eliminated from the translation results.

The type expression that is inferred for a variable replacing a dif-
ference with two symbols depends on the shortest path between those
two symbols in their type lattice. The youngest ancestor of the symbols
is a generalization of the difference. By selecting the youngest ancestor
for the symbols, we hope that we get the most specific generalization
for them. The youngest ancestor may not be the most specific general-
ization depending on the symbols and the structure of the type lattice.
Although there can be other techniques to find the most specific gen-

FinalCopy.tex; 5/05/2006; 9:29; p.20



Inducing Translation Templates with Type Constraints 21

eralization, the shortest path is one of the good techniques. There are
also other possible generalization techniques (Resnik, 1995; Budanitsky
and Hirst, 2001) that can be used in our problem domain, and some of
them are used to measure semantic similarity in a taxonomy such as
WordNet (Fellbaum, 1998).

The type of a variable is a sequence of the type names in the
type lattice and represents a specific generalization of the strings in
the difference that the variable replaced. If we do not use any type
constraint for a variable, it will be the most general generalization for
those strings. We may prefer an intermediate generalization for them
between the specific one and the most general one. In this case, the
regular expressions can be a better choice to represent type expressions.
We are currently investigating these alternatives.

In this paper, the constraints for the variables are type constraints.
The generalization technique described here can also be used in the
inference of the semantic constraints if the semantic lattices, which are
similar to WordNet, are available for the source and target languages.
The quality of translation templates will depend on the quality of the
used semantic lattices, and the quality of the lattice can be checked
experimentally.

Acknowledgements

This work is partially supported by The Scientific and Technical Coun-
cil of Turkey Grant “TUBITAK EEEAG-105E065”.

References

Akiba, Y., M. Ishii, H. Almuallim, and S. Kaneda: 1995, Learning English Verb
Selection Rules from Hand-made Rules and Translation Examples. In Proceedings
of the Sixth International Conference on Theoretical and Methodological Issues
in Machine Translation (TMI95), Leuven, Belgium, pp: 206-220.

Almuallim, H., Y. Akiba, A. Yamazaki, A. Yokoo, and S. Kaneda: 1994, Two
Methods for Learning ALT-J/E Translation Rules from Examples and a Semantic
Hierarchy. In Proceedings of the 15th International Conference on Computational
Linguistics (COLING-94), Kyoto, Japan, pp: 57-63.

Brown, R. D.: 2003, Clustered Transfer Rule Induction for Example-Based Transla-
tion. In Recent Advances in Example-Based Machine Translation, Carl, M., and
Way, A. (eds.), The Kluwer Academic Publishers, Boston, pp: 287-306.

Budanitsky, A., and G. Hirst: 2001, Semantic Distance in WordNet: An Experiment,
Application-oriented Evaluation of Five Measures, In Proceedings of WordNet
and Other Lexical Resources Workshop (NAACL 2001), Pittsburgh, pp: 29-34.

Carl, M.: 1999, Inducing Translation Templates for Example-Based Machine
Translation. In Machine Translation Summit VII, Singapore, pp: 250-258.

FinalCopy.tex; 5/05/2006; 9:29; p.21



22 ILYAS CICEKLI

Carl, M.: 2003, Inducing Translation Grammars from Bracket Alignments. In Recent
Advances in Example-Based Machine Translation, Carl, M., and Way, A. (eds.),
The Kluwer Academic Publishers, Boston, pp: 339-361.

Cicekli, I., and H. A. Güvenir: 2003 Learning Translation Templates from Bilingual
Translation Examples. In Recent Advances in Example-Based Machine Trans-
lation, Carl, M., and Way, A. (eds.), The Kluwer Academic Publishers, Boston,
pp: 255-286.

Cicekli, I., and H. A. Güvenir: 2001, Learning Translation Templates from Bilingual
Translation Examples. Applied Intelligence 15, 57-76.

Fellbaum, C. (Ed.): 1998, Wordnet: An Electronic Lexical Database, MIT Press.
Furuse, O., and H. Iida: 1995, ‘An Example-Based Method for Transfer Driven

Machine Translation. In Proceedings of the Sixth International Conference on
Theoretical and Methodological Issues in Machine Translation (TMI95), Leuven,
Belgium, pp: 139-150.

Kaji, H., Y. Kida, and Y. Morimoto: 1992, Learning Translation Templates
from Bilingual Text. In Proceedings of the 14th International Conference on
Computational Linguistics (COLING-92), Nantes, France, pp: 672-678.

McTait, K.: 2003, Translation Patterns, Linguistic Knowledge and Complexity in
EBMT. In Recent Advances in Example-Based Machine Translation, Carl, M.,
and Way, A. (eds.), The Kluwer Academic Publishers, Boston, pp: 307-338.

Matsumoto, Y., and M. Kitamura: 1995, Acquisition of Translation Rules from Par-
allel Corpora. In Recent Advances in Natural Language Processing, Amsterdam,
John Benjamins, pp: 405-416.

Nagao, M.A.: 1984, Framework of a Mechanical Translation between Japanese and
English by Analogy Principle. In Artificial and Human Intelligence, Elithorn,
A., and Banerji, R. (eds.), North Holland, Amsterdam, pp: 173-180.

Nomiyama, H.: 1992, Machine Translation by Case Generalizations. In Proceedings
of the 14th International Conference on Computational Linguistics (COLING-
92), Nantes, France, pp: 714-720.

Papineni, K., S. Roukos, T. Ward, and W. Zhu: 2002, ‘BLEU: a Method for
Automatic Evaluation of Machine Translation. In 40th Annual meeting of the
Association for Computational Linguistics, Philadelphia, pp: 311-318.

Pollard, C., and I. Sag: 1994, Head-Driven Phrase Structure Grammar, University
of Chicago Press.

Resnik, P.: 1995, Using Information Content to Evaluate Semantic Similarity in a
Taxonomy, Journal of Artificial Intelligence Research 11, pp: 448-453.

Somers, H.: 2003, An Overview of EBMT. In Recent Advances in Example-
Based Machine Translation, Carl, M., and Way, A. (eds), The Kluwer Academic
Publishers, Boston, pp: 3-57.

FinalCopy.tex; 5/05/2006; 9:29; p.22


