
Towards Automated Web Service Composition with the
Abductive Event Calculus

Onur Aydın1 Nihan Kesim Cicekli2 Ilyas Cicekli3

1Microsoft Corporation, Seattle, U.S.A.
2Department of Computer Engineering, METU, Ankara , Turkey

 3Department of Computer Engineering, Bilkent University, Ankara, Turkey
onura@microsoft.com, nihan@ceng.metu.edu.tr, ilyas@cs.bilkent.edu.tr

In this paper, the use of a logic programming framework, the event calculus [3], is

discussed in the automated composition of web services. The web service discovery
problem is beyond of the scope of the paper. Our goal is to show that the event calcu-
lus can be used for both definitions of web services composition. That is, it can be
used to generate a composite process as the output of planning. It can also be used to
define a generic composition and produce a user specific composition (plan) accord-
ing to the user constraints. Abductive planning of event calculus is used to show that
when atomic services are available, composition of services that would yield the de-
sired effect is possible. An abductive planner implementation of the event calculus [4]
is extended to be used for plan generation.

Event Calculus and Abductive Event Calculus

Event calculus [3] is a logical formalism which is used with domains where events af-
fect and change the world. The formulation of the event calculus is defined in first or-
der predicate calculus. There are actions and effected fluents. Fluents are changing
their valuations according to effect axioms defined in the theory of the problem do-
main. Each event calculus theory is composed of axioms. The axioms that define
whether a fluent holds starting from the initial state are as follows.

HoldsAt(F, T) ←Initially(F) ∧ ¬Clipped(T0, F, T)
HoldsAt(¬F, T) ← Initially(¬F) ∧ ¬Declipped(T0, F, T)

Axioms below are used to deduce whether a fluent holds or not at a specific time.
HoldsAt(F, T) ←Happens(E, T1), Initiates(E, F, T1), T1 < T , ¬Clipped(T1, F, T)
HoldsAt(¬F, T) ←Happens(E, T1), Terminates(E, F, T1), T1 < T, ¬Declipped(T1, F, T)

The predicate Clipped defines a time frame for a fluent that is overlapping with the
time of an event which terminates or releases this fluent. Similarly Declipped defines
a time frame for a fluent which overlaps with the time of an event that initiates or re-
leases this fluent.

Abduction is logically the inverse of deduction. It is used over the event calculus
axioms to obtain partially ordered sets of events. Abduction is handled by a second
order logical prover which is defined as an abductive theorem prover (ATP) in [4].
ATP tries to solve the goal list by proving the elements one by one. During the resolu-
tion, abducible predicates, < (temporal ordering) and Happens, are stored in a residue
to keep the record of the narrative. The narrative is a sequence of time-stamped
events, and the residue keeping a record of the narrative is the plan.

Web Services Composition with Abductive Planning

The event calculus can be used for planning as it is theoretically explained in [4]. The
planning problem in the event calculus is formulated in simple terms as follows:
Given the domain knowledge (i.e. a conjunction of initiates, terminates), the Event
Calculus axioms (i.e. HoldsAt) and a goal state (e.g. HoldsAt(f,t)), the abductive theo-
rem prover generates the plan which is a conjunction of Happens and temporal order-
ing predicates. ATP returns a valid sequence of time stamped events that leads to the
resulting goal. Multiple solutions are thought to be as different braches of a more gen-
eral plan and they are obtained with the help of backtracking.

In the event calculus framework, the web services are modeled as events with input
and output parameters. For instance, a web service, which returns the availability of a
flight between two locations, can be described as:

Happens(getFlights(Orgn, Dest, FlDate, FNL), T1, T1) ←
Ex_getFlights(Orgn, Dest, FlDate, FNL).

The predicate Ex_getFlights is used as a precondition for the event and it is invoked
anytime it is added to the plan to populate the input parameters.

It is also possible to create generic compositions in the event calculus. ATP can
then be used to generate a plan which corresponds to the user specific execution of the
composite service. Composite services correspond to compound events in the Event
Calculus [2]. An OWL-S to event calculus translation scheme is presented to show
that OWL-S composition constructs can be expressed as event calculus axioms [1].

Conclusions

The Event Calculus framework can be used for the solution of web service compo-
sition problem. When a goal situation is given, the event calculus can find proper
plans as web service compositions with the use of abduction technique. It is possible
that the solutions that are generated by the event calculus can be compiled into a
graph like composition for the satisfaction of the goal situation [1]. The Event Calcu-
lus can also be used to create generic compositions and ATP can be used to generate a
plan which corresponds to the user specific execution of the composite service.

As a future work, the results expressed in this paper will be implemented in a real
web environment. Common structures of compositions will be expressed as meta
event calculus constructs. Another improvement might be on queries which are
known a priori for the compositions. Queries can be entered in a natural language and
then translated into the event calculus goals.

References

1. Aydin, O., Automated web service composition with the event calculus, M.S. Thesis,
Dept. of Computer Engineering, METU, Ankara, 2005.

2. Cicekli N. K., Cicekli I. Formalizing the specification and execution of workflows using
the event calculus, to appear in Information Sciences.

3. Kowalski R. A., Sergot M. J.A Logic-Based Calculus of Events. New Generation Com-
puting, Vol. 4(1), pp. 67--95, 1986.

4. Shanahan M.P. An abductive event calculus planner. Journal of Logic Programming, Vol.
44(1-3), pp. 207--240, July 2000.

