
Formalizing the Specification and Execution of
Workflows using the Event Calculus

Nihan Kesim Cicekli1, Ilyas Cicekli2

1Department of Computer Engineering, METU, Ankara, Turkey
2Department of Computer Engineering, Bilkent University, Ankara, Turkey

nihan@ceng.metu.edu.tr, ilyas@cs.bilkent.edu.tr

Abstract. The event calculus is a logic programming formalism for representing events and their
effects especially in database applications. This paper proposes the event calculus as a logic-based
methodology for the specification and execution of workflows. It is shown that the control flow graph
of a workflow specification can be expressed as a set of logical formulas and the event calculus can
be used to specify the role of a workflow manager through a set of rules for the execution
dependencies of activities. The proposed framework for a workflow manager maintains a history of
events to control the execution of activities. The events are instructions to the workflow manager to
coordinate the execution of activities. Based on the already occurred events, the workflow manager
triggers new events to schedule new activities in accordance with the control flow graph of the
workflow. The net effect is an alternative approach for defining a workflow engine whose operational
semantics is naturally integrated with the operational semantics of a deductive database. Within this
framework it is possible to model sequential and concurrent activities with or without
synchronization. It is also possible to model agent assignment and execution of concurrent workflow
instances. The paper, thus, contributes a logical perspective to the task of developing formalization
for the workflow management systems.

Keywords: Event calculus, workflow formalization, temporal reasoning.

1. Introduction

A workflow is a collection of cooperating, coordinated activities designed to
accomplish a completely or partially automated process. An activity in a workflow is
performed by an agent that can be a human, a device or a program. A workflow
management system provides support for modeling, executing and monitoring the activities
in a workflow. There are many commercial products to model and execute workflows
[1,3,22,34] and there have been many formal models proposed for the analysis and
reasoning about the workflows [9,16,17,26]. The most common frameworks for specifying
workflows are graph-based, event-condition-action rules, and logic-based methods.

Graph-based approaches provide a good way to visualize the overall flow of control,
where nodes are associated with activities and edges with control or data flow between
activities. Petri nets and state charts are graph-based general-purpose process specification
formalisms that have been applied to workflow specifications [23,31]. Event-condition-
action rules have been widely used in active databases and they have been adopted in the
specification of workflows as well [5,12]. However, their expressive power is not as
general as control flow graphs. Logic-based formalisms, on the other hand, use the power
of declarative semantics of logic to specify the properties of workflows and the operational

 1

semantics of logical systems to model the execution of workflows. Logic-based approaches
mostly deal with the verification of workflows with global constraints [2,24].

We believe that logic-based methods have the benefit of well-defined declarative
semantics and well-studied computational models. In this paper we also propose a logic-
based framework for the specification and execution of workflows. We use a logic
programming approach for the specification of control flow graphs, execution
dependencies between activities and scheduling of activities within a workflow. The paper
formalizes some important properties of workflow systems. These properties include the
specification of main types of flow controls, such as sequential, concurrent, alternative and
iterative execution of activities. The paper also presents deductive rules for scheduling
activities and assigning agents to perform these activities. As another important issue, the
paper deals with the execution of concurrent workflow instances. Other issues such as
representing the transactional properties of workflows, or temporal constraints (global
constraints) between workflow activities are out of the scope of this paper.

The proposed approach is based on the Kowalski and Sergot’s Event Calculus [18].
Event Calculus, abbreviated as EC, is a simple temporal formalism designed to model
situations characterized by a set of events, whose occurrences have the effect of initiating
or terminating the validity of determined properties. Given a description of when these
events take place and of the properties they affect, EC is able to determine the maximal
validity intervals over which a property holds uninterruptedly. The EC uses a polynomial
algorithm for the verification or calculation of the maximal validity intervals and its axioms
can easily be implemented as a logic program [6].

EC provides mechanisms for storing and querying the history of all known events.
Once the event occurrences until time t are known, the state of the system can be computed
at any point of time until t. In order to be able to model the invocation of activities in a
workflow, we need to be able to represent that certain type of event invariably follows a
certain other type of event, or that a certain type of event occurs when some property holds.
In our framework events are treated as triggers that denote the start or end times of
activities. We also consider a set of external events, which might be recorded by the
activities themselves or by the user externally. Once we know the history of all events
either explicitly recorded or automatically generated by the system, the modeling of
workflow execution becomes the computation of new events from the history and thus
executing new activities until the end of the workflow is reached. The most important
result made possible by this approach is the definition of the operational semantics of event
detection, condition verification and activity scheduling in terms of a well-defined
semantics, which can be computed by that of a deductive system and queries.

The paper presents a simple scheduling algorithm in which it is possible to model
agents as separate entities and assign agents to certain activities based on their cost. The
workflow manager is designed to choose the best agent to perform the next scheduled
activity among all available agents qualified to do that activity. The representation of
events, activities and agents in this framework makes it also possible to model the
execution of concurrent workflow instances over a single workflow specification.

The main contribution of the paper is to present the use of event calculus approach in
the formalization of an important set of properties of workflow systems. The approach
allows the user to specify sequential and concurrent execution of activities; conditional

 2

transitions between activities; and also iteration of activities. The given specification can be
executed by means of some deductive rules and queries. The proposed framework has been
easily implemented as a logic program. It can be used as a quick tool in the simulation, and
testing of experimental workflows. It can be used to analyze the behavior of workflows for
different control flows with different number of agents and workflow instances. It may also
serve the need for querying some piece of information in the process history. Or it may
serve the need for querying the history of the workflow to analyze and assess the
efficiency, accuracy and the timeliness of the activities by deriving the state of the
workflow at any time in the past.

To the best of our knowledge, we are not aware of any other logic-based formalism in
which it is possible to specify all the activity execution routings that we support in this
paper and to execute concurrent workflow instances with appropriate agent assignments
within the same uniform framework. In the preliminary versions of this paper [15,16], we
propose an outline of the use of the event calculus as a basis for complex workflow
specifications where concurrent activities, agents and concurrent workflow instances can
be modeled. However many of the axioms were application specific and a large set of rules
must be written to capture the different aspects of the workflow at hand. In this paper we
overcome these difficulties by proposing general rules that will be applicable to any
workflow specification that includes the set of activity dependencies covered by our
formalism.

The rest of the paper is organized as follows. Section 2 summarizes the basics of the
event calculus by presenting the major axioms that are used in this paper. Section 3
discusses control flow graphs, relationship between events and activities, and also proposes
a naming convention to uniquely identify events and activities to support concurrent
workflow instances. Section 4 presents the rules for the local execution dependencies of
sequential, concurrent, alternative and iterative activities in a workflow. The functionality
of the workflow manager is described in Section 5 by presenting rules to start and end
activities and assign agents to activities in concurrent workflow instances. The
computational issues are discussed in Section 6 which also describes the implementation of
the proposed framework. Section 7 presents a conceptual architecture of a workflow
management system for a more realistic implementation of the framework. Section 8
discusses the related work by comparing them with the proposed approach in this paper.
The paper is concluded by summarizing the features of the proposed framework and
possible future extensions in Section 9.

2. Event Calculus

The event calculus is a logic programming formalism for representing events and their
effects, especially in database applications [18]. A number of event calculus dialects have
been presented since the original paper [13,14,25]. The one described here is based on a
later simplified version presented in [19]. In contrast with the definition in [19], two
assumptions are made in this version of the event calculus: The events have no extended
duration, and the properties that events initiate, hold in the period initiated by the event and
contain the said event. These assumptions simplify the formulation and implementation of
the event calculus, but, otherwise nothing essential depends on them.

 3

The event calculus is based on general axioms concerning notions of events, properties
and the periods of time for which the properties hold. The events initiate and/or terminate
periods of time in which a property holds. As events occur in the domain of the application,
the general axioms imply new properties that hold true in the new state of the world being
modeled, and infer the termination of properties that no longer hold true from the previous
state.

The main axiom (also called the persistence axiom) used by the event calculus to infer
that a property holds true at a time is described as follows1:

 holds_at(P, T) ←
 happens(E, T1) , T1 ≤ T , initiates(E, P), not broken(P, T1, T).

Here, the predicate holds_at(P, T) represents that property P holds at time T; the predicate
happens(E, T) represents that the event E occurs at time T; the predicate initiates(E, P)
represents that the event E initiates a period of time during which the property P holds; and
the predicate broken(P, T1, T2) represents that the property P ceases to hold between T1
and T2 (inclusive) due to an event which terminates it. The time points are ordered by the
usual comparative operators. The not operator is interpreted as negation-as-failure. The use
of negation-as-failure gives a form of default persistence into the future. Thus, the
persistence axiom states that once a property P is initiated by an event E at time T1, it holds
for an open period of time containing time point T1 (i.e. [T1, T)), unless there is another
event happened at some point of time after T1, that breaks the persistence of property P.

Other axioms used in the body of this axiom are defined as follows. The axiom for
happens(E, T) is usually defined as an extensional predicate symbol that records the
happening of the event E at time point T. A particular course of events that occur in the real
world being modeled is represented with a set of such extensional predicates. The axiom
for broken(P, T1, T2) is defined by the following clause:

 broken(P, T1, T2) ←
 happens(E, T), terminates(E, P), T1 ≤ T ≤ T2.

That is, the persistence of the property P is broken at time point T2 if a distinct event E that
happened at time T between T1 and T2 terminates the persistence of P. Here the predicate
terminates(E, P) represents that the event E terminates any ongoing period during which
property P holds.

Finally the axioms for initiates and terminates are specific to the application at hand.
The problem domain is captured by a set of initiates and terminates clauses. For instance,
the following rule describes the effect of an event of promoting an employee:

initiates(E, rank(Employee, Title)) ←
 event(E), act(E, promote), actor(E, Employee), role(E,Title).

Here the property rank(Employee, Title) denotes a property in the application’s database
that starts to hold after the occurrence of the event E. The details of the event specification
can be given as a set of binary predicates (semantic networks) as described in [18].

1 The usual convention of using uppercase letters to represent logical variables is followed throughout
the paper.

 4

When an employee leaves the job, the property rank(Employee, Title) ceases to hold.
This is described by the following rule in which the anonymous variable underscore in
logic programming is used in place of Title, since the title value is not used in the body of
the rule:

 terminates(E, rank(Employee, _)) ←
 event(E), act(E, lay_off), actor(E, Employee).

EC is defined as the collection of all types of axioms described above. Once the event
occurrences until time t are known, the state of the system can be computed at any point of
time until t using the holds_at predicate. The event occurrences are recorded as an
extensional database and snapshots of the database state can be derived at any time using
this history of events.We can extend the EC by adding the definition of other predicates
such as holds_for(Property, TimePeriod) to find out the period of time for which a property
holds:

 holds_for(P, T1, T2) ←
 happens(E1, T1), initiates(E1, P), happens(E2, T2),
 terminates(E2, P), not broken(P, T1, T2).

Alternatively, as in [11] we can define holdsNow(Property) to point implicitly to the
current state, under the assumption that Now can be initiated with the time point that
corresponds to the system clock at invocation time.

 holdsNow(Property) ←
 clock(Now), holds_at(Property, Now).

In [11], the event calculus is used to formalize a large set of syntactic and semantic
aspects of active databases. The approach to the formalization is centered on the idea of
using a history as defined in the EC, to define event occurrences, database states, and
actions on these. A history is a particular form of an extensional database containing
representations of event occurrences. The authors show how the history is used with the
event calculus to give rise to a sequence of extensional databases in the application.
Broadly, event and condition specifications are given a Datalog-related operational
semantics, while action specifications denote the addition of new axioms to the logical
theory that is the representation of the history.

In this paper, we show how the event calculus can be used in the specification and the
execution of workflows. That is, we show not only the activation of event-condition-action
rules but also other forms of activity invocations. A workflow process definition contains a
collection of activities and the order of activity invocations or conditions under which
activities must be invoked (i.e. control flow) and also data flow between the activities.
This paper proposes a formalization of workflow process definitions and their executions
within the framework of the event calculus. In the proposed approach, events denote the
start and end time points of activities and the state of the workflow is described by
properties. Thus, events will be used to specify the control flow and the effects of the
events are used to describe the data flow within the workflow.

 5

3. Workflow Concepts

In this section we briefly provide the definitions of basic concepts of workflow
systems that are used throughout the paper. Then, the basic concepts of workflow systems
are associated with the constructs of the event calculus.

3.1. Basic Definitions

A workflow is a process involving the coordinated execution of multiple activities
performed by different processing entities. Examples of workflows are processing of
purchase orders over the Internet, processing of insurance claims, mail routing in an office
etc. An activity (task) defines some work to be done. Examples of tasks include updating a
database, generating a bill, mailing a form. An agent is a processing entity that performs
the activities. An agent may be a person, a hardware device or a software system (e.g. a
mailer, an application program, a database management system). Human tasks include
interacting with computers such as providing input commands. A workflow instance is an
enactment of a workflow. It is possible that several instances of a workflow can run
concurrently. For example, a workflow manager can execute several processing orders at
the same time.

Specification (or design) of a workflow involves describing those aspects of its
constituent activities and the agents that execute them. It also defines the relationships
among activities and their execution requirements. Execution of the multiple activities by
different agents may be controlled by a human coordinator or by a software system called a
workflow management system. In this paper we are interested in designing a workflow
manager within the framework of the event calculus. For this purpose we first discuss the
specification of workflows in a logical framework. We then provide the rules to specify the
execution requirements of workflows.

3.2. Specification of Workflows

The Workflow Management Coalition (WfMC) defines a reference model that
describes the major components and interfaces within a workflow architecture [35]. In a
workflow, activities are related to one another via flow control conditions (transition
information). It is possible to design workflow with many different transition patterns [33].
Accordingly we identify the following basic routings among the activities:

1. Sequential: Activities are executed in sequence (i.e. one activity is followed by the
next activity.)

2. Parallel: Two or more activities are executed in parallel. Two building blocks are
identified: (a) AND-split and (b) AND-join. AND-split enables two or more
activities to be executed concurrently after another activity has been completed.
The AND-join synchronizes the parallel flows, one activity starts only after all
activities in the join have been completed.

3. Conditional: One of the alternative activities is executed. In order to model a
choice among two or more alternatives two blocks can be used: (a) XOR-split and
(b) XOR-join. In XOR-split, based on a condition check, only one of several
branches is chosen. In XOR-join it is assumed that none of the alternative
branches is ever executed in parallel.

 6

4. Iteration: It may sometimes be necessary to execute an activity or a set of
activities multiple times.

Among the most common frameworks for specifying workflows, control flow graphs
are most appropriate for showing the execution dependencies of the activities in a
workflow. It provides a good way to visualize the overall flow of control. In a control flow
graph the vertices identify the names of activities. The edges represent the successor
relation on the activities. A typical graph specifies the initial and the final activities in a
workflow, the subsequent activities for each activity in the graph, and whether all of these
subsequent activities must be executed concurrently, or it is sufficient to execute only one
branch depending on a condition.

i e f

g

h

XOR

cond1

cond2

AND XOR AND

d

c

b

a

Fig. 1. An example control flow graph

Fig. 1 illustrates a control flow graph where the activity a is the initial task, and i is the
final activity. After the activity a, the subsequent activities b, c and d are executed
concurrently, which is indicated with the “AND” label. Activity e can only start after
activities b, c, and d are completed. After the activity e is completed the activity f can start.
The splitting branch labeled as “XOR” indicates that when activity f is finished, there is a
choice of executing g or h. By the definition of XOR-split, only one of the conditions
cond1 or cond2 will be true, and either activity g or activity h will start executing depending
on which condition holds. The conditions are based on workflow control data and apply to
the current state of the workflow. The conditions can depend on some logical status, or
output generated by some prior activity in the workflow, or on the value of some external
variable (e.g. time). Activity i is enabled immediately after either one of the activities g or
h is completed.

As a real example, the control graph shown in Fig. 1 can be viewed as the workflow of
paper reviewing process. When a paper is submitted electronically (external event), the
workflow starts with the initial activity a, say select reviewers. The agent of this activity is
a person (the editor). Once three reviewers are selected the paper is distributed to the
reviewers and the reviewers (person agents) review the paper concurrently (the concurrent
activities b,c,d). The subsequent activity e, say combine reviews is activated only when
three reviews are completed. The agent of this activity can be a computer program which
notifies the editor via email. Then the next activity f of decision making is done by the

 7

Table 1. Successor relationships between activities

Predicate Description
initial_activity(A) A is the first activity in the workflow
sequential(A1,A2) A2 follows A1 unconditionally
and_split(A,L) A is followed by a list of activities L
xor_split(A,ActCondPairs) A is followed by Ai in ActCondPairs if condition Condi is true
and_join(L, A) A starts after all the list L of activities complete
xor_join(L, A) A starts after one of the list L of activities completes
final_activity(A) A is the last activity in the workflow

editor and a decision of reject or accept will be made. If the decision is accept the next
activity g will be prepare an accept letter. If the decision is reject the next activity h will be
prepare a reject letter. Only one of the alternatives will be executed. Finally, the review is
forwarded to the author of the paper (activity i).

3.2.1. Control flow graph described as a set of logical formulas

A given control flow graph can be represented as a set of predicates in first-order
logic. In this paper, we consider five different successor relations between activities. We
represent these relations with separate predicate symbols which are described in Table 1.
For instance, the workflow depicted in Fig. 1 can be described by a set of predicates as
follows:

initial_activity(a).
and_split(a,[b,c,d]).
and_join([b,c,d], e).
sequential(e, f).
xor_split(f, [(g, cond1), (h, cond2)]).
xor_join([g,h],i).
final_activity(i).

This example does not include an iterative execution structure. The specification of
iteration is described in Section 4.4 separately.

This set of predicates maps the formal structure of the control flow graph directly into
a set of logic formulas. The actual execution order of activities is determined by the
workflow manager. The workflow manager uses execution dependency rules to determine
which activity needs to be scheduled next. The execution dependency rules are various
scheduling preconditions and they are described as axioms within the framework of the
event calculus (see section 4, axioms AxS 1-8). However before introducing the axioms for
execution dependencies, we first describe the relationship between activities in a workflow
and the events in the event calculus.

 8

3.2.2. Events and Activities

In the event calculus, events have no duration. The occurrences of events are
considered as instantaneous happenings that are recorded in the database. Activities in a
workflow, however, have duration. Agents need time to carry out their tasks. The period of
time necessary to complete an activity can be either fixed or varying depending on the
nature of the activity. For instance if the activity involves a mechanical task its duration
may be fixed. However if the activity is performed by a human the duration of the activity
can be varying. In workflow systems, a workflow specification is generally not concerned
with the details of the internal operations of the activities, but rather with the way the
activities are sequenced. A workflow manager is concerned only with those aspects of an
activity that are externally visible on the workflow level. Thus for a workflow manager, an
activity can be in one of the possible execution states (such as initial, executing, committed
etc.) and state transitions are enabled in terms of externally observable events, such as start
and commit. In our framework each activity is initiated by an event and its termination is
regarded as another event that records the completion of that activity. Thus each activity A
has a starting event start(A) and an ending event end(A). Once we know the times of these
events, the duration of the activity can be derived easily. The relationship between the
activities and events is described in Fig. 2. Notice that, between these two special events,
the activity is in execution state and the internal operation of the activity is unknown to the
workflow manager. We do not model the internal behavior of the activities in the event
calculus.

Activities are executed by agents. The workflow manager assigns activities to agents
and agents execute the activities. The workflow manager maintains the states of activities
by recording their starting and ending times. The starting time of the activity corresponds
to the time of its start event which is triggered by the workflow manager. The ending time
of the activity corresponds to its end event which is sent by the agent to the workflow
manager. If it is a fixed duration activity (e.g. agent is a hardware device and performs an
automatic task), the end event will be sent by the agent within a predefined period of time.
If the duration of the activity varies, then its execution time period may depend on some
conditions or occurrences of some external events. The conditions that describe the end of
the activity may be produced by the agent performing the activity. For instance, the activity
may be a computer program and it may finish only when the user of the program fills in
and submits a form. Such an input can be considered as an external event. Then the agent

activity a

start(a)
at time T1

end(a)
at time T2

time line

Fig. 2. Events start and end activities.

 9

will terminate its execution by sending end activity event to the workflow manager. The
execution duration of an activity is therefore application dependent and the activity must be
designed to inform the workflow manager of its completion.

In this paper we view the activities as independent modules executed by proper agents
and the implementation details of activities are out of the scope of this paper. We consider
only their interfaces with the workflow manager in terms of their starting time, ending time
and any relevant data that they generate to affect the workflow execution. In the event
calculus, the interaction of activities with the workflow manager is simulated by the use of
axioms AxH 3 and AxH 4 that are presented in Section 5.2.1.

3.2.3. Concurrent workflow instances and naming conventions

One of the objectives of this paper is to express the execution of concurrent workflow
instances over the same workflow specification. For instance, if the workflow describes the
activities in an order processing application, there may be more than one order being
processed at the same time. In order to be able to model such concurrent instances of a
given workflow and the execution of the same activities for different workflow instances,
we use a special naming convention.

Each workflow instance is given a unique name (identity). This unique identity is an
atomic term and it can be generated by the system when the workflow instance is started.
Since each activity is executed at different times for different workflow instances, their
names must be associated with an execution id to identify each of these executions. In its
simplest form, this execution id will be the workflow instance id. For example, an
execution of activity e in Fig. 1, in a workflow instance w1 can be represented by the term
act(e,w1), and when it is completed it can trigger the execution of the activity f with the
same workflow id, i.e. act(f,w1).

In a workflow specification, one may also use iteration of activities in the specification
of a workflow. An activity in an iteration block can be executed more than once, and each
execution of that activity should be uniquely identified. The block name together with an
iteration number can be used to uniquely identify each execution of an activity in the
iteration block. This means that the naming convention should be general enough to
express the different executions of the same activity in different iterations.

In order to be able to successfully address these issues, we use the following naming
convention for identifying the different executions of activities: Each activity execution is
represented by a term act(ActName,EID) where ActName is the name of the activity given
by the user at the specification, and EID is the execution id of the activity generated by the
system. An execution id EID of an activity is defined as follows:
i. EID can be an atomic term, which is simply the workflow instance id. In this case, the

activity execution is identified with the activity name and the workflow instance id
only.

ii. In case of specifying the execution of an activity within an iteration block, EID can be
a functional term of the form b(ParentEID,BlockName,IterationNo) where ParentEID
is the execution identity of the activity after which this iteration block is started,
BlockName is the name of the iteration block, and IterationNo represents the iteration
number for that block. The use of ParentEID allows us to uniquely identify the

 10

executions of activities at any nesting level in the iteration blocks, as described in
Section 4.4.

For example, the workflow in Fig. 1 is actually translated into the following predicates in
our framework, using the naming conventions described here:

initial_activity(act(a,EID)).
and_split(act(a,EID), [act(b,EID), act(c,EID), act(d,EID)]).
and_join([act(b,EID), act(c,EID), act(d,EID)], act(e,EID)).
sequential(act(e,EID), act(f,EID)).
xor_split(act(f,EID),[(act(g,EID), cond1), (act(h,EID), cond2)].
xor_join([act(g,EID), act(h,EID)], act(i,EID)).
final_activity(act(i,EID)).

We need to identify the event occurrences uniquely too. In a workflow system, each
activity is carried out by an agent and several agents may qualify to execute one activity.
The same activity may be executed by different agents in different instances of the
workflow. Thus, agent assignment is another consideration in naming the events. We use
the following naming convention in describing the events that start and end an activity: The
starting event for an activity A that is to be carried out by the agent Ag in a workflow
instance W is described as start(A,Ag,W), and the ending event is identified as
end(A,Ag,W). The workflow instance id is already included in the naming of the activity,
however it is separately held in the naming of events too, because it simplifies the rules that
we describe below.

4. Execution Dependencies of Activities

This section presents a logic-based formalization for the execution dependencies of
activities in a workflow. The execution order of activities depends on the successor relation
among activities, and conditions that are currently satisfied on the system state. Since we
support the execution of multiple workflow instances, we include the workflow number in
establishing the local execution dependencies between the activities within the same
workflow instance.

The execution dependencies between the activities are described by rules for defining
the four argument predicate follows. The semantics of a formula in the form:
follows(Act1,Act2,W,T) represents the fact that, Act2 follows Act1 in the workflow instance
W at time T. In the following subsections we present the rules for the predicate follows for
each successor relation that we consider in this paper. These rules, mainly, describe the
scheduling preconditions of activities and therefore they are named as axioms for
scheduling (AxS in short).

4.1. Sequential Activities

Fig. 3 shows a graphical representation of sequential routing of activities. When
activity ai finishes, the next activity aj can start unconditionally. For sequential activities,
we can write the following execution dependency rule:

 follows(Act1, Act2, W, T) ← (AxS 1)
 sequential(Act1, Act2), happens(end(Act1, _, W), T).

 11

i.e. Act2 follows Act1 in a workflow instance W at a time T when Act1 finishes in that
workflow instance W at the time T. The anonymous variable underscore is used in place of
the agent name to denote that the rule is valid for any agent.

ai aj

 Fig. 3. Activity aj starts when ai finishes.

4.2. AND-split and AND-join

In a workflow, activities after an AND-split are scheduled to be executed concurrently.
Fig. 4.a illustrates an AND-split. When the activity ai finishes, activities a1, a2, … an can
start concurrently. Fig. 4.b illustrates AND-join. Here the activity aj can start when all the
preceding activities b1, b2, … bm finish.

 a1 b1

ai aj

a2

an

b2

bm

ANDAND

Fig. 4. a) AND-split b) AND-join

When the end of activity ai is recorded, all subsequent activities are scheduled.
Similarly, the activity aj can be scheduled only when the ending events of all its
predecessor activities are recorded. Thus we represent the execution dependency of an
AND-split with the following rule:

 follows(Act1, Act2, W, T) ← (AxS 2)
 and_split(Act1, ActList), happens(end(Act1, _, W), T), member(Act2, ActList).

Here, predicate member will be true when Act2 is a member of the activity list ActList
in AND-split. The rule expresses the fact that every member of this list must follow the
activity at the branch.

The following rule is used to represent the execution of an AND-join of activities:

follows(Act1, Act2, W, T) ← (AxS 3)
 and_join(ActList, Act2),
 findActEndTimePairs(ActList, W, ActEndTimePairs),
 actWithMaxEndTime(ActEndTimePairs, Act1, T).

 12

The rule uses the predicate findActEndTimePairs that holds when all predecessor activities
in ActList are completed in a workflow instance W. If this predicate holds,
ActEndTimePairs will be the list of all predecessor activities together with their ending
times. Then the predicate actWithMaxEndTime picks the predecessor activity with the
latest ending time. In Fig. 4.b, activity aj must wait for the completion of all predecessor
activities b1 .. bm. The last conjunct in this rule ensures that aj is scheduled at the time of the
last ending activity among activities b1,…,bm. The definitions of predicates
findActEndTimePairs and actWithMaxEndTime are given in the appendix.

4.3. XOR-split and XOR-join

In an XOR-split only one of the alternative activities is executed depending on the
evaluated condition. The important point here is that only one of the conditions should hold
true at the time of the decision in order to guarantee that only one execution path is chosen.

Fig. 5. a) XOR-split b)XOR-join

an

ai aj

a1

a2

b1

b2

bm

XORXOR

condn

cond2

cond1

 In an XOR-split (Fig. 5.a), when the activity ai ends, one of the activities a1, a2, ..., an
can start depending on the condition satisfied at that time. The conditions may be a state
check (i.e. a holds_at predicate) to verify that some property holds either in the underlying
database or in the workflow state.

 follows(Act1, Act2, W, T) ← (AxS 4)
 xor_split(Act1, ActCondPairs), happens(end(Act1, _, W), T1),
 member((Act2,Cond2), ActCondPairs),
 initiates(Ev, Cond2), happens(Ev, T2), max([T1,T2], T) ,
 holds_at(Cond2, T) .

Here we assume that one of the conditions at the split should evaluate to true. If none of the
conditions hold then none of the execution paths can be chosen. The idea is to consider
each alternate path one-by-one and check if its condition is true. This is achieved by the
predicate member which is used to retrieve activity-condition pairs one by one from the list
of activities in the XOR-split. The picked activity Act2 will be scheduled in a workflow
instance W at time T only if T is the later of the two time points: (i) the ending time of Act1,
and (ii) the time of the event that initiates the condition Cond2 for Act2. We must also
check that Cond2 still holds at time T.

 13

In an XOR-join (Fig. 5.b) if any one of the incoming activities is finished, the activity
at the join can start executing. Given that no parallel execution of alternative threads can
occur, this pattern corresponds to a simple merge. Thus we represent the XOR-join by the
following rule:

 follows(Act1, Act2, W, T) ← (AxS 5)
 xor_join(ActList, Act2), findOneActEndTimePair(ActList, W, Act1, T).

The rule uses the predicate findOneActEndTimePair which holds when one of predecessor
activities in ActList is completed in a workflow instance W. If this predicate holds, Act1
will be the completed predecessor activity and T will be its ending time. Thus, the
subsequent activity is scheduled at time T of the first ending activity. The definition of
predicate findOneActEndTimePair is given in the appendix.

4.4. Iteration

In some workflow applications it might be necessary to execute a group of activities
one or more times. The number of times these activities are executed may depend on some
workflow state, or it can be a fixed number. Fig. 6 sketches a control flow graph which
includes such a loop structure. The graph illustrates a post-condition checking loop
structure. That is, the activities a1 to an are executed at least once, then the iteration
condition is checked. While the condition holds, the activities are executed again. The
activities a1 through an can be arranged in any of the transition types that we have
discussed above.

4.4.1. Specification of the loop structure

In our framework, the body of the loop structure is considered as a block and each
block is given a unique name. We use the predicate serial in the specification of the
workflow, in order to describe that a block follows an activity, or a block is followed by an
activity. Each block has an initial and final activity. Since the activities within the block are
executed several times within a workflow instance, each execution must be identified
uniquely within the history of events. For this purpose, we use the naming conventions for
the activities described in Section 3.2.3 for the loop structures while translating the
iteration into a set of logic formulas. Each execution of an activity in a loop is identified

block: b1

am

loopcond

Yes

No
a1 an

a0

Fig. 6. Activities a1 to an are executed while the condition is true.

 14

with a term of the form:

act(ActName,b(ParentID, BlockName, IterationNo))

where ActName is the user defined name for the activity, and b(ParentID, BlockName,
IterationNo) is the execution id of this activity. For instance, the activity a1 is represented
with the term act(a1, b(w1 ,b1, I)), where w1 is the workflow-id of the workflow instance
which starts the iteration block b1, and I represents the iteration number during execution.
Thus, the specification of block b1 in Fig. 6 includes the following formulas:

serial(act(a0, EID), block(b1,EID)).
serial(block(b1,EID), act(am,EID), loopcond).
initial(block(b1,EID), act(a1,b(EID, b1, I)).
final(block(b1,EID), act(an, b(EID, b1, I))).

The set of logical formulas above for the iteration block b1 indicates that after the
activity a0 with an execution id EID, the iteration block b1 with the same execution id EID
will start. The activity am will start with the same execution id (EID) after the block b1 if
the condition loopcond does not hold at the time when the last activity of this block is
completed. If the execution id of the block is w1, the execution ids of all activities in this
block will be b(w1, b1, I). The predicates used for the representation of blocks in a
workflow graph are listed in Table 2. The control flow structures between activities within
the block are still described with the predicates that we introduced in Table 1 using the
naming conventions described in Section 3.2.3. For instance, a sequential transition
between two activities, say a1 and a2, in the block is described as:

sequential(act(a1,EID), act(a2, EID)).

Since EID’s carry the block name and the iteration number, activity a2 in block b1 follows
a1 at every iteration sequentially.

Table 2. Predicates to represent blocks

Predicate Description
initial(B, Act) Act is the first activity in block B
serial(Act, B) Block B is subsequent to activity Act
serial(B, Act, Cond) Subsequent to block B is activity Act with the loop condition Cond
final(B, Act) Act is the last activity in block B

4.4.2. Rules for the execution dependency of a block

In the following we introduce three rules to describe the execution dependency of a
block in a workflow in our framework. The first rule is used to start the first activity in a
block with iteration number 1:

 follows(Act1, InitAct, W, T) ← (AxS 6)
 serial(Act1, B), happens(end(Act1, _, W), T),
 initial(B, InitAct), setIterationNo(InitAct,1).

 15

The rule states that, after activity Act1, the next activity is the initial activity InitAct of
block B if block B is in sequence with activity Act1 in the workflow W at time T. The
iteration number for the initial activity InitAct is set to 1 since this is going to be its first
execution in the current workflow instance (see the appendix for the definition of the
predicate setIterationNo). The next rule represents the case of exiting the block:

 follows(FnlAct, Act2, W, T) ← (AxS 7)
 serial(B, Act2, Cond), final(B, FnlAct),

 happens(end(FnlAct, _, W), T), not holds_at(Cond, T).

The rule states that in a workflow instance W, the next activity after the final activity of a
block is activity Act2, if the block is followed by activity Act2 and the loop condition does
not hold at the time of the final activity is completed. Finally, we describe the iteration of
the activities in the block with the following rule:

 follows(FnlAct, InitAct, W, T) ← (AxS 8)
 initial(B, InitAct), final(B, FnlAct), serial(B, _, Cond),
 happens(end(FnlAct, _, W), T), holds_at(Cond, T), getIterationNo(FnlAct, I),
 J = I + 1, setIterationNo(InitAct, J).

This rule states that if the final activity of a block with the iteration number I is completed
in the workflow W at time T, the initial activity of that block can start with iteration number
I +1 if the loop condition holds at time T (see the appendix for the definition of the
predicate getIterationNo).

We assume that the condition of a loop can be initiated and terminated by either
external events or system-generated events for activities. In this section we described the
specification of a post-condition checking loop structure. However, it is possible to
describe pre-condition checking loop structures in a similar fashion.

The naming convention used in identifying the execution of activities within a block
allows us to represent nested loop structures in a control flow graph too. The execution id
of an activity in the nested block will carry the execution id of the activities in its outer
loop (parent block). Thus an activity in an inner loop will be initiated with an id which
includes the id of this parent block activities. This allows us to uniquely identify the
execution of the activities in the inner loop(s). For instance, assuming that there is another
block, say b2, defined inside block b1 in Fig. 6, the execution id of an activity in block b2
in a workflow instance w1 will be: b(b(w1, b1, I), b2, J). Here b(w1,b1,I) is the execution
id of the activity in the parent block b1 after which b2 is started and I represents the
correct iteration number during execution; b2 is the current block name, and J is the
iteration within the inner loop. This nesting of execution ids through the parent id makes it
possible to nest several loop structures within the same workflow.

The specifications and rules for the iterative structures that we discussed in this section
can be extended to represent sub-workflows in a workflow. A sub-workflow can be viewed
as a block with a unique name. A sub-workflow can start after an activity of the workflow
instance, and when that sub-workflow is completed another activity in that workflow
instance can start. Each activity in a sub-workflow instance can be uniquely identified with
the unique name assigned to that sub-workflow instance and the unique name assigned to
the instance of the workflow that started that sub-workflow instance. The naming

 16

State of Activity
active(Act, Ag, W)

completed(Act, Ag, W)

waiting(Act2, Ag2, W, T)

convention described in th
However we will not discu
paper.

5. Workflow Managemen

A workflow managem
activities. We have so far p
activities and the descriptio
current logical framework.
workflows through the eve
state maintained by the wo
activities by appropriate age

5.1. Workflow State

At any time the execut
of its constituent activities a
executed, the state of the w
the event calculus axioms.
schedules new activities acc
desirable to check which a
agents are idle and which on

Each activity is charac
these states. An activity ma
executing state (active) a
determines the next activit
agents that can perform that
retrieves the activity from
state. When the agent finish

Each agent is associate
agent. The property waitin
includes the information a
waiting(Act, Agent, W, T)
particular workflow instanc
activity started waiting for t
idle or assigned. An agent
agent and the agent is not a

Table 3. Execution states of activities
Meaning Initiating event
Activity Act is being executed by
agent Ag in workflow instance W

start(Act, Ag, W)

Activity Act is completed in
workflow instance W

end(Act, Ag, W)

Activity Act2 is in the worklist of
agent Ag2 in W with timestamp T

release(Ag1, Act1, W)
is section can easily be extended to cover sub-workflows too.
ss the details of executing sub-workflows any further in this

t

ent system must permit the specification and execution of
resented the axioms necessary for the specification of workflow
n of scheduling preconditions among the activities within the
 In this section, we explain the execution semantics of the
nt calculus. We first describe the representation of the system
rkflow manager; next we present the rules for the execution of
nts.

ion state of a workflow can be defined as a collection of states
nd agents. As event occurrences are recorded and activities are
orkflow changes. The state of the workflow is derived through
 The workflow manager keeps track of agent assignment and
ording to the workflow specification. At any point in time, it is

ctivities are being executed, which ones are completed, which
es are assigned to tasks, etc.

terized with a set of executable states and transitions between
y be in either of the following states: an initial state (waiting),
nd done state (completed). When the workflow manager
y to be executed, it puts the activity into the worklists of all
 activity; and the activity enters in waiting state. When an agent
its worklist and starts executing it, the activity enters in active
es executing the activity, it enters the completed state.
d with a worklist that shows which activities are waiting for that
g is also used to represent the worklists of agents since it

bout which activity is waiting for which agent. The property
 describes that activity Act is waiting for agent Agent in a
e W. The time variable T denotes the point of time at which the
he agent. An agent can be in either of the following two states:
is in idle state when there is no activity in the worklist of the
ssigned to any activity. The agent is in assigned state when an

17

activity is in active state with that agent. We describe these two states of an agent with two
predicates: idle(Agent) and assigned(Agent, Activity, W). The state of the agent may be
changed by two events: assign(Agent, Activity, W) and release(Agent, Activity, W).

In addition to the time dependent description of the workflow state, there are also static
properties of the workflow. The agent definitions, the activities for which they are
qualified, the cost of each agent for each activity are static properties of the workflow and
they are defined in the workflow specification. For simplicity, we assume that the cost of
an agent is the amount of time that an agent requires to perform an assigned activity. In
order to represent the relationship between the activities and agents we use the predicate
qualified(Ag, Act, Cost) which is true when it takes Cost units of time for an agent Ag to
finish the activity Act.

The time-dependent states for activities and agents together with the events causing the
transitions between these states are summarized in Table 3 and Table 4 respectively. The
time dependent states of activities and agents are initiated and terminated by events
occurring in the workflow system. The third columns in the tables show these events. The
axioms of the event calculus will be used in reasoning with these events and their effects.
In the following we present the rules to describe how these events cause state transitions
and these rules are named as axioms for initiates/terminates (AxIT in short) for reference
purposes.

An activity becomes active in a workflow instance when its starting event is recorded
in the database. An event recording the end of an activity sets up a completed state for that
activity, terminating its active state. Thus we write,

initiates(start(Act, Ag, W), active(Act, Ag, W)). (AxIT 1)

initiates(end(Act, Ag, W), completed(Act, Ag, W)). (AxIT 2)

terminates(end(Act, Ag, W), active(Act, Ag, W)). (AxIT 3)

When an activity starts being executed by an agent, the agent is not idle any more and
it is assigned to that activity until it finishes the activity. When the activity is finished, the
agent is released and it is ready to execute the next activity. Thus, we write the following
rules:

terminates(assign(Ag, _, _), idle(Ag)). (AxIT 4)

initiates(assign(Ag, Act, W), assigned(Ag, Act, W)). (AxIT 5)

When an agent finishes its task and it is released, it becomes idle. If the worklist of the
agent is empty, the agent remains in the idle state. If there are one or more activities
waiting for that agent in the agent’s worklist, the agent is assigned to the next activity in its
worklist. The assignment of the agent to the next activity is described in Section 5.2.2 (see
axioms AxH 5 and AxH 6). Here, we present the rules that describe the effects of the event
release on the system state.

State of Agent Meanin
idle(Ag) Agent A

assigned(Act, Ag, W) Agent
Act in w

Table 4. States of agents
g Initiating event
g is idle release(Ag, Act, W)

Ag is carrying out the activity
orkflow instance W

assign(Ag, Act, W)
18

 initiates(release(Ag, _, _), idle(Ag)) . (AxIT 6)

 terminates(release(Ag, Act, W), assigned(Ag, Act, W)) . (AxIT 7)

The use of the property waiting(Act, Agent, W, T) is twofold. First, it is used to
represent the state of an activity. Second it is used to represent the worklists of agents. An
is released when it completes an activity and the subsequent activity is enabled by the
workflow manager (using the axioms AxS 1-8). The subsequent activity is inserted to the
worklists of all agents qualified to do that activity. The following axiom is describing this
behavior:

 initiates(release(Ag1,Act1,W), waiting(Act2, Ag2, W, T)) ← (AxIT 8)
 follows(Act1, Act2, W, T), qualified(Ag2, Act2, _).

The rule states that when an agent Ag1 is released from an activity Act1 in a workflow W at
time T1, the subsequent activity Act2 is made waiting for all qualified agents in the
workflow instance W, with the timestamp T.

When an activity is assigned to an agent, the activity is no longer in waiting state. It is
removed from all worklists:

 terminates(assign(_, Act, W), waiting(Act, _, W, _)). (AxIT 9)

This rule has the effect of removing the activity from all worklists, because it is used to
terminate the property waiting(Act, _, W, _) which represents the set of all agents that the
activity Act in workflow instance W has been waiting.

5.2. Workflow Execution

A critical issue in workflow management is the assignment of activities to appropriate
agents in order to execute the workflow. Many different scheduling and optimizing
algorithms may be proposed for this purpose. In this paper, we formalize a simple agent
assignment algorithm. The activity is assigned to the best agent among all available agents
qualified to perform that activity. The best agent is determined by comparing the estimated
costs of the candidate agents. When an agent pulls the activity from its worklist, the
activity is removed from the worklists of all other agents too (see axiom AxIT 9). Choosing
always the best available agent may not result in an optimized execution of the workflow,
however, optimizing the execution of a workflow is out of the scope of this paper.

In this section, we first present the rules to start the execution of activities and to
record the end of activities. We, then, present the rules for actually assigning tasks to
agents and rules to release agents. The rules listed below, describe the generation of new
events to trigger the desired functionalities. They are used to record new event occurrences
in the history through the predicate happens. Therefore we name these rules as axioms for
happens (AxH in short).

5.2.1. Rules for triggering events

The execution of an activity can start only when an agent is assigned to that activity.
As soon as the agent is assigned, the starting event of the activity is generated, which is
described by the following rule:

 19

 happens(start(Act, Ag, W), T) ← (AxH 1)
 happens(assign(Ag, Act, W), T).

This rules states that when the event of assigning the agent Ag to activity Act in workflow
instance W happens, the starting event of activity Act happens at the same time. The event
assign(Ag, Act, W) is generated by the workflow manager as described in Section 5.2.2 (see
axioms AxH 5 and 6).

When an activity is completed, the ending event of the activity is recorded and the
agent that completed the activity is released. This is represented by the following rule:

 happens(release(Ag, Act, W), T) ← (AxH 2)
 happens(end(Act, Ag, W), T).

In a real workflow, the end of an activity would be sent to the workflow manager by
the agent performing that activity, and the end of that activity is saved in the database.
Some activities may be completed in a fixed amount of time. For some other activities, the
duration may not be predicted; the end of the activity may depend on the occurrence of an
external event. The application must include rules to determine the end of the activity. In
our framework, in order to simulate the execution of fixed time and varying time activities
we write rules AxH 3 and AxH 4. In AxH 3 we assume that the time required for a fixed
duration activity is determined by the assigned agent. Thus, we write the following rule for
fixed-time activities:

 happens(end(Act, Ag, W), T) ← (AxH 3)
 happens(start(Act, Ag, W), Ts), fixed_activity(Act),

qualified(Ag, Act, Td), T = Ts + Td.

That is, the agent Ag finishes the activity Act in Td time units after the starting event of the
activity. For varying time activities, we assume that an external event (e.g. a user input) is
waited to finish the activity. The end of the activity depends on the time required by the
assigned agent and the time of the occurrence of the external event. The end of the activity
is described as the time whichever happens later.

 happens(end(Act, Ag, W), T) ← (AxH 4)
 happens(start(Act, Ag, W), Ts), varying_activity(Act), end_event(Act, ExtEvent),
 happens(ExtEvent, Te), qualified(Ag, Act, Td), Tf is Ts + Td, max([Te, Tf], T).

5.2.2. Rules for assigning agents to activities

The scheduled activities wait in the worklists of the qualified agents. An agent keeps
checking its worklist when it is idle or when it is released after the completion of an
activity. If worklist is not empty, the agent pulls the activity that has been waiting for the
longest time from the list. The following rule describes the assignment of an agent to the
longest waiting activity as soon as it is released from another activity.

 happens(assign(Ag, Act, W), T) ← (AxH 5)
 happens(release(Ag, _, _), T), holds_at(waiting(Act, Ag, W, T1), T),,
 holds_at(idle(Ag),T), not waiting_longer(Act, Ag, T1, T),
 not better_agent(Ag, Act, T).

 20

If there are two or more activities waiting for the agent with the same timestamp, the
conjunct holds_at(idle(Ag), T)) in the body of the rule guarantees that we assign the agent
to only one of these waiting activities. This condition will be true before any assignment,
but it will not hold at the time immediately after the first assignment.

The rule for waiting_longer checks for any other activity in the worklist of the agent
that has been waiting longer than this activity. It looks up the system state at time T to find
out which activities are waiting for this agent and compares their timestamps:

 waiting_longer(Act, Ag, T1, T) ←
 holds_at(waiting(Act2, Ag, W, T2), T), Act ≠ Act2, T2 < T1.

The check for better_agent is necessary in order not to assign the same task to different
agents. Since one or more qualified agents may be available at the same time, we make
sure that the activity is assigned to one of them (the best available one) only. The rule for
better_agent checks if there are other less costly agents qualified for the activity. If two
agents have the same cost, the first considered one is selected.

 better_agent(Ag1, Act, T) ←
 qualified(Ag1, Act, C1), qualified(Ag2, Act, C2), C2 < C1,
 holds_at(idle(Ag2), T).

As long as the worklist of an agent is empty, the agent stays in the idle state. However,
when an activity is inserted into its worklist, it is assigned to the activity if there is no better
agent to do that activity. An activity may be placed into the worklist of an agent at any
time. As discussed in Section 5.1, the property waiting is initiated for an activity when the
workflow manager determines that activity to be the subsequent activity (see AxIT 8). The
agent checks its worklist at every time point that it is released from an activity (see AxH 5).
If there is no activity in its worklist, it continues to be idle. There must be a way of
triggering the agent to check its worklist when it is idle. This is achieved by the following
rule, which triggers the event assign every time an activity is placed into an empty worklist
of an idle agent:

 happens(assign(Ag, Act, W), T) ← (AxH 6)
 initiates(_, waiting(Act, Ag, W, T)), holds_at(waiting(Act, Ag, W,T), T),
 holds_at(idle(Ag), T), not better_agent(Ag, Act, T).

Here, the condition initiates(_, waiting(Act, Ag, W, T)) is necessary to find the time point T
at which the activity is placed into the worklist. The anonymous variable represents any
event that may initiate the property waiting. As soon as such an event happens, the idle
agent is assigned to the waiting activity. There may be one or more activities that have
been inserted to the worklist of an agent at the same time when the agent is in idle state.
The conjunct holds_at(idle(Ag), T) is used to make sure that the agent is assigned to only
one of these activities.

5.3. Starting a workflow instance

The workflow manager is an interpreter to generate events that start and assign agents
to activities through the event generation rules. In order to start generating the events (and

 21

thus, start the execution of workflow instances), the manager needs to know what initiates
the workflow and also the initial state of the system. In our framework there must be an
external event to start the workflow. For instance, in an order processing workflow, the
initial event may be the submission of an order request form by the user. This initial event
must be defined in the workflow specification. In addition, all agents are in idle state at the
beginning.

In order to set all agents idle initially, we define an event, called free_agent(Ag),
whose effect is to initiate the idle property for all agents. This can be represented by the
rule:
 initiates(free_agent(Ag), idle(Ag)). (AxIT 10)

If we assume that the time is set to zero initially, we can set all agents idle with the
following rule:

 happens(free_agent(Ag), 0) ← agent(Ag). (AxH 7)

 The manager starts a workflow instance when an initial external event happens (e.g.
submit an order). When that starting external event is recorded, the manager schedules the
first activity of the workflow by inserting it into the worklists of all agents qualified to
perform that activity. Once the first activity is inserted into the worklists, the event
generation rules (AxH 1-6) will be activated so that it is assigned to the best qualifying
agent. The workflow manager will keep scheduling the next activity for each completed
activity using the execution dependency rules (AxS 1-8) and event generation rules (AxH
1-6) until the end of the workflow is reached (or until the current time). In order to start this
process, we write the following rule, so that when the initial event happens, the first
activity can be scheduled:

 initiates(Ev, waiting(Act, Ag, W, T)) ← (AxIT 11)
 initial_activity(Act), starts(Ev, W), happens(Ev, T),
 setEID(Act,W), qualified(Ag, Act, _).

The starting event is defined with the predicate starts. The predicate starts also generates a
unique workflow instance id W. Thus, this rule represents that when the event which starts
the workflow instance W happens at time T, the first activity of the workflow starts waiting
for all qualified agents. The predicate setEID sets the execution id of the initial activity of
the workflow instance to the workflow id W. The workflow manager will assign the first
activity to one of the agents through the rule AxH 6 in Section 5.2.

6. Implementation Issues

In this section we first discuss the computational aspects of the logical description given in
this paper. We then present a case study to illustrate the capabilities of the system.

6.1. Implementation of the theory

The theory can be implemented in several different ways. One approach is to write the
axioms more or less directly in Prolog. However as they stand, the general structure of the
search space that would be explored by SLDNF resolution is riddled with non-terminating

 22

loops and redundancy. Because the definition of holds_at includes calls to happens and the
definition of happens includes calls to holds_at, this can cause non-terminating loops.
Similarly, the definitions of happens, initiates and follows also include calls to happens that
can cause non-terminating loops.

The major reason of the problem of getting infinite loops is that, in the execution of
holds_at, after finding a relevant event, all events (past or possible future events) must be
searched again in order to show that there is no other event affecting the established
relation. This is because of the negation in the formulation of holds_at. Therefore we must
restrict the search space in such a way that only the past relevant events (i.e. events which
have occurred) should be searched.

We have overcome this problem by rewriting the axioms so that they are more suitable
for SLDNF resolution. We rewrite the clauses so that a Prolog interpreter can proceed
forwards in time from the earliest known event, maintaining a list of ongoing events. Since
we know the causality relation between the events (i.e. which events will occur after which
events), we can compute the entire history given the initial event(s). We proceed roughly in
a bottom-up manner: we compute what events the initial events cause in the history, then
compute what events these new events cause in the history, and so on.

In order to achieve this, we replace all calls to happens in the bodies of the rules for
holds_at, happens, initiates, and follows with calls to a new predicate called happened. The
happened predicate represents all events that are known to have happened in the history.
The history of happened events is populated by using happens rules level by level. With
these clauses, a Prolog interpreter proceeds forwards in time from the earliest event,
maintaining a list of all occurred events. For example, the new version of AxH 1 is
rewritten as follows:

happens(start(Act, Ag, W), T) ←
 happened(assign(Ag, Act, W), T).

Likewise, all occurrences of the predicate happens in the bodies of rules AxH (2-7),
AxS (1-8), and AxIT (1-11) are replaced with the predicate happened. The new definition
of holds_at is now given as follows:

 holds_at(State, Time) ←
 initiates(Ev, State), happened(Ev, T1),
 T1 ≤ Time, not broken(State, T1, Time).

 broken(State, T1, T2) ←
 terminates(Ev, State), happened(Ev, T), T1 ≤ T ≤ T2.

Instead of searching all events, the new definition searches only the past events which
are known to have occurred already (i.e. represented by the happened relation). These
new axioms can be directly translated into a Prolog program. After all the events in the
system are generated, it is possible to ask queries of the form
 ? - holds_at(State, t1).

to find out the state of the system at a time t1 after the given initial event.

 23

T ← 0;
happenedDB ← { };
while (T < now) {
 do {
 happenedDBChanged ← false;
 for (each happens rule HRi in set of axioms AxH (1-7)) {
 if ((the event Evi in the head of HRi can happen at time T

 depending on the happened events in happenedDB) and
(happened(Evi,T) has not been recorded in happenedDB)) {

 happenedDB ← happenedDB ∪ { happened(Evi,T) } ;
 happenedDBChanged ← true;

 }
 }
 } while (happenedDBChanged);
 T ← T + 1;
}

Fig. 7. Algorithm to find happened events

The algorithm in Fig. 7 explains the behavior of the Prolog interpreter to find all
happened events and record them in an extensional database of history of events. All
happened events are found level by level. First, we find all happened events at time 0, then
at time 1, and so on. The outer loop in the algorithm quits when all possible events are
generated and recorded in the history. The inner do-while loop finds all happened events at
time T. The innermost for-loop checks whether each of possible events described by the
axioms for happens (AxH 1-7) can happen at time T depending on the conditions induced
by the already happened events in the happened database. This algorithm and all axioms
presented in this paper are implemented in Prolog and tested in the simulation of some
prototype workflow systems.

6.2. Case Study

We illustrate the use of the axioms presented so far with a case study. Consider an
order processing system shown in Figure 8. Activity a1 takes the order. Activity a2
processes the order by updating the inventory. Activities a3 and a4 then start concurrently.
Activity a3 removes the product from the warehouse and packages the item. Activity a4
performs the billing function. After both activities are completed, activity a5 arranges
shipping by initiating either activity a6 or activity a7. Finally when the delivery is
successful, the database is updated to indicate that the order has been fulfilled.

In order to model and manage the execution of this workflow in our framework first
the workflow graph definition must be given using the predicates shown in Table 1. Thus
the example workflow is translated into the following:

initial_activity(act(order_collection, EID)).
sequential(act(order_collection, EID), act(order_processing, EID)).
and_split(act(order_processing, EID), [act(package,EID), act(billing,EID)]).
and_join([act(package,EID), act(billing,EID)], act(arrange_shipping,EID)).

 24

xor_split(act(arrange_shipping,EID), [(act(by_air,EID),selection(EID,air)),
 (act(surface_mail, EID),selection(EID,surface))]).
xor_join([act(by_air,EID),act(surface_mail, EID)],act(archive,EID)).
final_activity(act(archive,EID)).

The list of qualified agents must be given with their timing constraints. In our prototype
implementation, the agent information is defined as follows:

qualified(agent1,act(order_collection,_),1).
qualified(agent2,act(order_processing,_),2).
qualified(agent3,act(order_processing,_),5).
qualified(agent4,act(billing,_),1).
qualified(agent5,act(package,_),8).
qualified(agent6,act(arrange_shipping,_),2).
qualified(agent7,act(by_air,_),2).
qualified(agent8,act(by_surface,_),1).
qualified(agent6,act(archive,_),3).

In this example we assume that activities a1, a2, a4, a5 and a8 are computer programs

that execute in fixed period of time. Activities package, by_air, and surface_mail are
varying time activities. These activities need human interference, thus their termination
need some external event such as waiting for the user to enter some data. For instance,
activity package needs the operator to input data that the packaging is finished. The actual
shipment of the package (by air or surface mail) is done by a person, thus the completion of
this activity must be recorded by an input and this is considered as an external event. In
order to simulate the end of varying time activities, the external events that finish those
activities must be given to be used by the axiom AxH 4.

end_event(act(package,EID), finish_packing(EID)).
end_event(act(by_air,EID), sent(EID)).
end_event(act(surface_mail,EID), sent(EID)).

In addition, for each external event, its occurrence time must be recorded with a
happened clause. The workflow is initiated by an external event which is the submission
of an order request form. Every time this event is entered to the system a new workflow
instance is started. The following rule is used to specify the initialization of a workflow
instance:

a4

a1

Order
Collection

Order
Processing

Package

a2

AND split

Arrange
Shipping

a5

a3

By
Air

a7

a8

a6

Archive

Surface
mail surface

air

XOR split

Billing

Fig. 8 Order Processing Workflow

 25

 starts(Ev, Wno) :-
 ext_event(Ev),
 Ev = submit(OID, CustID, CName, Caddress, ProductID, Qty),
 Wno = OID.

where external event submit includes the information about the customer, product and
order. The order id (OID) is assumed to be unique for each order, and therefore it is used as
the workflow instance id (which is equivalent to the EID). The time of this submit event
should also be recorded by a happened clause. Note that we simplified event
representations to simple atomic terms. In a real application the details of events can be
specified using several binary predicates [18].

The workflow specification for the given graph is now complete. In addition we have
the axioms presented in this paper: AxS 1-8, AxIT 1-11, AxH 1-7. The external events to
initiate the workflow instances, to end varying activities must be input to the system at
various points in time. Then, the deductive framework allows us to query the system in
different ways. Some possible queries are:

?- happened(Ev, T). % list all events in the history
?- holds_at(active(Act,Ag,W), now). % list all currently active tasks
?- holds_at(idle(Ag), t). % list idle agents at some time t
?- holds_at(waiting(Act,Ag,W,_), t). % worklists of all agents at some time t
?- holds_for(assigned(Act,Ag,W),P) % working periods for all agents

Thus, given a set of predicates for a workflow graph specification, external events and
qualified agents, the axioms that are presented in this paper can be used to answer queries
such as finding out the system state at a specific time, or the period of time for which a
certain property holds (e.g. how long an agent remains idle). By querying the history of
events the actual order and occurrence times of all activities can be derived.

7. Architecture

The main concern of this paper is to present a new class of logic-based workflow systems
based on the notion of a history that underlies the event calculus. Nevertheless, we describe
a conceptual architecture to indicate how the logic-based workflow management system
might be used at the implementation level. The proposed architecture is similar to the
history-centered active database architecture of [11]. The main contribution of their
architecture is to provide a logic-based integration of deductive databases and active
databases. In their architecture, history serves to determine database states and it underlies
the definition of event detection, condition verification and action execution.

We propose to extend the history–centered active database architecture of [11] by
incorporating the workflow manager, which is responsible for scheduling the activities and
assigning the agents. Fig. 9 depicts the components of our conceptual architecture for a
logic-based workflow system.

The workflow state is described as a deductive database. The records of event
occurrences are considered to be an extensional database, called the history. The intentional
database includes the event calculus rules, workflow specification and activity execution
dependency rules, and workflow execution rules. The set of known events and the set of

 26

Activities

Event Calculus
Axioms

Section 1.01
History

Event Occurences
(System triggered

and external
events)

Workflow
Manager

(interpreter)
Database

Workflow Specification
(AxS 1-8)

Workflow
Execution Rules
(AxIT 1-11 and

AxH 1-7)

Environment

 events

consequence
Condition
verification by
holds_at

events
executes

Fig. 9. Conceptual architecture of a workflow management system in the
Event Calculus Framework

possible workflow states are immediately characterized in terms of the set of all logical
consequences of this deductive database.

Conceptually speaking the database states need not be independently stored, since they
follow logically from the history. The history only needs appending event occurrences to,
in order to record that some event has happened in the modeled reality.

A typical cycle in this architecture can be described as follows. The environment
notifies the system the start of a new workflow instance by appending an external event
that initiates the workflow. Since the set of known events (i.e. history) now includes at least
one event, the interpreter reacts to this change by scheduling the first activity in the
workflow. The first activity is placed to the worklists of qualified agent(s). The agent
assignment rules will be used to assign the best agent to the activity. When the end of the
first activity is recorded in the history, the interpreter uses the execution dependency rules
and agent assignment rules to start the next activity. Meanwhile, the environment may
record the beginning of another workflow instance, or the executed activities may insert
new (external) events to the history. The interpreter proceeds to coordinate the activities by
reacting these new happenings until a saturation state is reached in which all known events
have been derived.

8. Related Work and Discussion

A considerable amount of work has been done on formalizing workflow systems across the
fields of computer supported cooperative work and advanced transaction models. This
section gives a brief overview of formal specification methods used in products and
research prototypes of workflow systems and compares our framework with other
proposals. We also summarize a related research area, namely web service composition,
and discuss the application of our proposed framework in the semantic web.

 27

8.1. Net-based methods

Petri-nets and state and activity charts are net-based methods, which have a formal
foundation. When a graphical visualization of workflow specifications is the top priority,
state and activity charts and Petri nets are good choices. State and activity charts have
originally been developed for software engineering applications, especially for specifying
reactive systems, but they have been also used as a formal tool for workflow specifications.
In [23] it is shown that state and activity charts can be used for the specification of
workflows, verification of workflow properties and the distributed execution of workflows.
Although most execution dependencies can be formally specified in this framework,
iterative execution of activities is not modeled. Although concurrent activities within a
workflow can be executed through a partitioning algorithm, it is not clear how concurrent
instances of the same workflow are executed.

Petri nets are general purpose process specification formalisms. Petri net variants are
widely used as a workflow modeling technique [31,32,33]. A workflow process specified
in terms of a Petri net has a clear and precise definition, because the formal semantics of
the classical Petri net and its enhancements (color, time, hierarchy). Petri nets have also
the advantage of the availability of many analysis techniques. Our work differs from the
Petri net approach radically since Petri nets are graphical and sate-based whereas our
approach is declarative and event-based. Our aim is to show the use of the event calculus as
a workflow modeling specification and execution tool in a logic programming framework.

8.2. Logic-based methods

These methods attempt to establish a formal specification model with a well-defined
semantics to be used in the analysis and reasoning about workflows. In [9,24], Concurrent
Transaction Logic (CTR) is used as the language for specifying, analyzing and scheduling
of workflows. In this framework, both local and global properties can be represented as
CTR formulas and reasoning can be done with the use of the proof theory and the
semantics of this logic. Like in all logic programming systems the proof theory of CTR is
also a run-time environment for executing workflows. Within their framework, it is
possible to represent control flow graphs with transition conditions, triggers, concurrent
execution of activities and a set of temporal constraints. The proposed system does not
cover the specification of loops and iteration of activities and they do not address the
problem of agent assignment and concurrent instances of workflows. They are mainly
concerned with the development of an algorithm for consistency checking of workflows
and for their property verification. The algorithm compiles global constraints on workflow
execution into the control flow graph. This compile technique also helps optimize the run-
time scheduling of workflow events. In our framework, we do not study specification and
verification of global (and temporal) constraints on workflow activities. Instead we
concentrate on the representation of different routings of activities (including loops and
iteration), agent assignment and concurrent workflow instances within a logic
programming framework. Instead of proposing a new logic and its proof theory, we use the
well-known SLD-NF procedure, which makes our framework simpler.

Another logic-based approach is presented in [2]. They propose treating workflows as
a collection of cooperative agents and use recent results on reasoning about actions to

 28

formalize correctness of a workflow. They also discuss the automatic verification and
construction of reactive condition-action rules that specify the workflow control. The
workflow specification is defined as a conditional program where each transition is
described as a sequential transition with condition. In other words, each possible path
execution depends on the explicit specification of conjunction of conditions. (In [17], a
more direct way of the mapping of different routings of activities to action description
language C is shown). The main purpose is to use this framework as a formal tool for
testing the correctness of a workflow. It can also be used to explore the behavior of “what-
if” scenarios during the construction of ad-hoc workflows. Our framework can be used for
the same purposes. In addition, we can represent more complex workflows, concurrent
processes and several candidate agents to perform a single task. Testing different versions
of the workflow specification with different number of agents can be more easily done to
explore what-if scenarios in our framework.

8.3. Algebraic methods

Process algebras have been considered but not widely known in the field of workflow
management. In [10] the specification language, which is based on process algebra, is
extended towards workflow management. The main drawback of process algebras is that
they are often not intuitive and hard to understand.

In [26], an event algebra is presented for specifying and scheduling workflows. In this
event algebra activity execution dependencies can be declaratively expressed and these
dependencies are symbolically processed to determine which events occur and when. This
algebra can model most features of control flow graphs, but it is not sufficient to express
transition conditions attached to edges.

8.4. Event-Condition-Action Rules

Event-Condition-Action Rules, shortly termed ECA rules, are used in active database
systems and have been used in defining workflows [5]. ECA rules, are used to specify the
control flow between activities. However, this specification is not as general as control
flow graphs. They are not sufficiently expressive to represent all possible routings among
activities. The graphical visualization of ECA rules is not easy either. Large sets of ECA
rules are hard to handle and verify. Also, some workflow properties such as loops and sub-
workflows cannot be represented in this approach.

In [11], a logic-based approach is presented for the integration of deductive and active
databases. Although this work does not consider workflows at all, it is still very closely
related to our framework, because event calculus is used to define event occurrences,
database states and actions on these. The formalization of an active and deductive database
is built on the idea of a history-centered architecture. In this architecture, the component
data store is a deductive database, where the extensional database keeps the history (i.e. set
of event occurrences) and the semantics of event detection, condition verification and
action execution are defined in terms of querying and updating deductive database.
Although this work and our framework seem to have a lot in common, the objectives are
different. In [11], the main objective is to present a logic-based approach to the
formalization of a large set of syntactic and semantic aspects of active databases. There is

 29

no notion of defining a workflow or coordination of activities to accomplish a certain task.
Therefore, issues like activity scheduling, agent assignment, concurrent execution of
activities or workflow instances are not addressed. The only similarity is our architecture
which is actually an extension of the architecture proposed in [11].

8.5. Web Services

A currently much related research area is web services and their composition. The literature
on web services and the semantic web is abundant [29]. Therefore the need for a more
rigorous formal foundation is widely discussed.

Web services are platform and language independent software components that can be
invoked on the web to fulfill some goals. The composition problem for web services is to
figure out how a set of given services could be invoked to complete a given task. A number
of flow languages have emerged for web services, such as WSFL [20], XLANG [30],
BPEL4WS [8]. The composition of the flow is still manually obtained [27]. It is argued
that automatic web service composition can be seen as a planning problem where given a
domain description of the available services and user goals, the planner generates a flow
(plan) [21,28]. In [21] the Golog logic programming framework is used to generate service
compositions (plans) for goals based on plan templates. Golog builds on top of the situation
calculus by providing a set of extralogical constructs for assembling primitive actions into
complex actions. In [28], a heuristic search planner is used to solve the planning problem
created from the description of the available web services and the requirement of the
composite service. The resulting plan can be generated in any web service composition
language and executed by the corresponding flow execution engine.

Event calculus has been used in planning [25]. Planning in the event calculus, is an
abductive reasoning process through resolution theorem prover. Given the domain
knowledge (i.e. a set of initiates and terminates axioms), event calculus axioms and the
conjunction of holds_at(X, t) formulae, where t is the time point, we are interested in, the
event calculus planner generates the set of events that lead to the specified state at time t.
We argue that our current framework can be adapted to web service composition problem
by viewing the flow of activities as a plan generation problem. The activities will represent
web services and events which start activities will correspond to messages received to
invoke web services. Flow constructs that we presented in this paper will be used to specify
the flow of service composition. In order to model the fact that there might be several web
services to perform the same task, we can extend the concept of agents to represent the
candidate web services. The current framework must be extended with a service discovery
mechanism to select the best agent depending on the preconditions of the desired goal. This
needs to be further studied.

9. Conclusions and Future Directions

This paper demonstrates the use of the event calculus to describe the specification and
execution of activities in a workflow. The main axioms of the event calculus are integrated
with a set of activity execution dependency rules and a set of agent assignment rules for the
formalization of workflow systems. It is shown that major types of activity routings in a
workflow (namely sequential, concurrent, conditional and iterative) can be expressed in a

 30

declarative way. It is also illustrated that agent assignments and concurrent workflow
instances can be modeled within the framework of the event calculus. In addition, a
conceptual architecture of a workflow management system is presented as a basis for a
more realistic implementation of this logic-based approach. For a quick simulation of a
workflow, the user needs merely to specify the atomic formulas to describe the control
flow graph and if there are any, the external events and their possible effects on the
underlying database. The rest of the workflow management is done by the rules presented
in this paper.

The proposed logic-based approach can be used as a quick tool in prototyping
applications and/or simulations of workflows. Due to its additional temporal dimension, it
provides facilities for querying the history of all activities, thus providing opportunities to
analyze the execution of the workflows. It can be used as an easy tool to simulate and
verify the execution of a prototype workflow system. The workflow might be executed
with different number of agents and assignments. The behavior of the workflow can be
analyzed by querying the history of events and the snapshots of the workflow state at
different times.

In this paper we did not consider the workflows where some activities do not terminate
successfully. Some of the activities can abort and therefore they need to be compensated or
some kind of exception handling mechanism must be applied. As a future work, the set of
execution dependency rules can be extended to cover such control flows. These extensions
do not require substantial changes to the proposed architecture. Broadly speaking, what
needs to be done is to define additional scheduling rules to the set of axioms AxS, so that
when an activity does not end, the execution is diverted to another route of activities, which
will be used either to abort the workflow or compensate the failed activity.

Other extensions are possible to the implementation of the system to ease its use. For
instance a graphical tool might be integrated to the architecture to provide the user with the
facility of drawing the control-flow graph of the workflow. Then another application might
map this graph into a set of atomic formulas presented in this paper automatically.

The paper presents a simple agent assignment algorithm where each activity is
assigned to the best (i.e. the least costly) available agent by the scheduler. This simplistic
view of agent assignment might be changed to implement more sophisticated algorithms in
order to test the behavior of a certain workflow so that the execution can be optimized.
This and other optimization problems for the execution of workflows are open problems.
Likewise, addition of global constraints and reasoning with them using the axioms of event
calculus is another interesting research topic.

Workflow has moved inexorably towards Web services in the last two years. Web
services provided by various organizations can be inter-connected in order to implement
business collaborations, leading to composite web services. The composition of the web
services is still manually obtained. The semantic web community draws on AI planning for
automatically composing services [21]. The notion of event calculus can also be viewed as
an opportunity to take advantage of the latest developments in web services. Modern
workflow engines will be asynchronous, with the process enactment driven by the arbitrary
arrival of messages from different sources. Event calculus could be a way to specify and
reason about web composition where the actual process model is not known.

 31

Appendix

The appendix presents the definitions of the auxiliary predicates that have been used in
this paper. The definitions are presented as Prolog-style rules.

The 3-argument predicate findActEndTimePairs (used in AxS 3) finds the ending times
of all predecessor activities in an AND-join. The third argument is a list of (activity, ending
time) pairs if all the incoming activities have completed their executions.

findActEndTimePairs(ActList, W, ActTimePairs) ←
 findall((Act, EndTime),

 (member(Act, ActList), happens(end(Act, _, W), EndTime)),
ActTimePairs),

length(ActList, ActListLen), length(ActTimePairs, ActTimePairsLen),
ActListLen = ActTimePairsLen.

The 3-argument predicate actWithMaxEndTime (used in AxS 3) simply calls its 4-
argument definition in order to find the maximum ending time in the list of (activity,
ending time) pairs. The subsequent activity in an AND-join can start execution only if all
incoming activities are completed. Therefore the maximum ending time is found to
determine the starting time of the subsequent activity.

actWithMaxEndTime([FirstPair | ActEndTimePairs], Act, EndTime) ←
 actWithMaxEndTime(ActEndTimePairs, FirstPair, Act, EndTime).

actWithMaxEndTime([], (Act, EndTime), Act, EndTime).
actWithMaxEndTime([CurrPair | Rest], CurrMax, Act, EndTime) ←

 CurrPair = (Act1, T1), CurrMax = (Act2, T2), T1 > T2,
 actWithMaxEndTime(Rest, CurrPair, Act, EndTime).

actWithMaxEndTime([CurrPair | Rest], CurrMax, Act, EndTime) ←
 CurrPair = (Act1, T1), CurrMax = (Act2, T2), T1 ≤ T2,
 actWithMaxEndTime(Rest, CurrMax, Act, EndTime).

The 3-argument predicate findOneActEndTimePair (used in AxS 5) finds the
predecessor activity that has been completed in an XOR-join, with its ending time. It
simply checks each activity in the XOR-join with the predicate member to see whether it
has been finished.

findOneActEndTimePair(ActList, W, Act, EndTime) ←
 member(Act, ActList), happens(end(Act, _, W), EndTime).

The predicate setIterationNo (see AxS 6) is used to generate the execution id of an
activity in a block in the next iteration. The functional term representing the execution id of
an activity includes the workflow instance number, block name and the iteration number.
Therefore this predicate simply changes the third argument of the functional term
representing the execution id. The user should note that IterationNo is an unbound variable
when this predicate is invoked.

setIterationNo(Act, N) ←
 Act = act(_, b(_, _ , IterationNo)), IterationNo = N.

 32

Similary, the predicate getIterationNo (see AxS 6) is used to extract the iteration
number in the execution id of a given activity.

getIterationNo(Act, IterationNo) ←
 Act = act(_, b(_, _ , IterationNo)).

References
[1] G. Alonso, C. Mohan, WFMS: The next generation of distributed processing tools, in: S. Jajodia

and L. Kerschberg (Eds.) Advanced Transaction Models and Architectures, Kluwer Academic
Publishers, 1997, pp. 35-62.

[2] C. Baral, J. Lobo, G. Trajcevski, Formalizing and reasoning about the requirements
specifications of workflow systems, International Journal of Intelligent Information Systems
10(4) (2001) 483-507.

[3] D. Barbara, S. Mehrotra, M. Rusinkiewicz, INCAs: Managing dynamic workflows in distributed
environments, Journal of Database Management 7(1) (1996) 5-15.

[4] C. Bettini, X. Wang, S. Jajodia, Temporal reasoning in workflow systems, Distributed and
Parallel Databases 11(3) (2002) 269-306.

[5] C. Bussler, S. Jablonski, Implementing agent coordination for workflow management systems
using active database systems, in: Proceedings of Fourth International Workshop on Research
Issues in Data Engineering, Houston, 1994, pp. 53-59.

[6] I. Cervesato, M. Franceschet, A. Montanari, A guided tour through some extensions of the event
calculus, Computational Intelligence 16(2) (2000) 307-347.

[7] E. Christensen, F. Curbera, G. Meredith, S. Weerawarana, Web services description language
(WSDL) 1.1., Available from <http://www.w3.org/TR/wsdl>.

[8] Business process execution language for web services version 1.1, Available from <http://www-
128.ibm.com/developerworks/library/specification/ws-bpel>.

[9] H. Davulcu, M. Kifer, C.R. Ramakrishnan, I.V. Ramakrishnan, Logic based modeling and
analysis of workflows, in: Proceedings of ACM Symposium on Principles of Database Systems,
Seattle, Washington, ACM Press, 1998, pp. 25-33.

[10] S.J. Even, F.J. Faase, R.A. de By, Language features for cooperation in an object-oriented
database environment, International Journal of Cooperative Information Systems 5(4) (1996)
469-500.

[11] A. A. Fernandez, M. H. Williams, N.W. Paton, A logic-based integration of active and deductive
databases, New Generation Computing 15 (1997) 205-244.

[12] A. Geppert, M. Kradolfer, D. Tombros, Realization of cooperative agents using an active object-
oriented database system, in: Proceedings of the Second International Workshop on Rules in
Database Systems (RIDS), Athens, Greece, 1995, pp. 327–341.

[13] F. N. Kesim, M. Sergot, A logic programming framework for modelling temporal objects, IEEE
Transactions on Knowledge and Data Engineering 8(5) (1996) 724-741.

[14] F. N. Kesim, M. Sergot, Implementing an object-oriented deductive database using temporal
reasoning, Journal of Database Management 7(4) (1996) 21-34.

[15] N. Kesim-Cicekli, A temporal reasoning approach to model workflow activities, in: R.Y. Pinter,
S. Tsur (Eds.), Proceedings of NGITS’99, LNCS, vol. 1649, Springer-Verlag, Berlin, 1999, pp.
256-266.

[16] N. Kesim-Cicekli, Y. Yildirim, Formalizing workflows using the event calculus, in: M. Ibrahim,
J. Kung, N. Revell (Eds.), The 11th International Workshop on Database and Expert Systems
Applications (DEXA'00), LNCS, vol. 1873, Springer-Verlag, Berlin, 2000, pp. 222-231.

 33

[17] P. Koksal, N.K. Cicekli, H. Toroslu, Specification of workflow processes using the action
description language C, in: AAAI Spring 2001 Symposium Series: Answer Set Programming,
Palo Alto, California, 2001, pp. 103-109.

[18] R.A. Kowalski, M. J. Sergot, A logic-based calculus of events, New Generation Computing 4
(1986) 67-95.

[19] R.A. Kowalski, Database updates in the event calculus, Journal of Logic Programming 12(1-2)
(1992) 121-146.

[20] F. Leymann, Web services flow language (WSFL 1.0), Available from
<http://www4.ibm.com/software/solutions/webservices/ pdf/WSFL.pdf>.

[21] S. McIlraith, T.C. Son, Adapting Golog for composition of semantic web services, in: D. Fensel,
F. Giunchiglia, D. McGuinness, M.-A. Williams (Eds.), Proceedings of the 8th International
Conference on Principles and Knowledge Representation and Reasoning (KR-02), 2002, pp.
482-496.

[22] J. A. Miller, D. Palaniswami, A. P. Sheth, K. Kochut, H. Singh, WebWork: METEOR 2 's web-
based workflow management system, Journal of Intelligent Information Systems 10(2) (1998)
185-215.

[23] P. Muth, D. Wodtke, J. Weissenfels, G. Weikum, A. K. Dittrich, Enterprise-wide workflow
management based on state and activity charts, in: A. Dogac, L. Kalinichenko, T. Özsu, A.
Sheth (Eds.), NATO ASI Series: Workflow Management Systems and Interoperability,
Springer Verlag, 1998, pp. 281-303.

[24] P. Senkul, M. Kifer, I. H. Toroslu, A logical framework for scheduling workflows under
resource allocation constraints, in: Proceedings of the 28th International Conference on Very
Large Data Bases (VLDB 2002), Hong Kong, China, 2002, pp. 694-705.

[25] M.P. Shanahan, An abductive event calculus planner, Journal of Logic Programming 44 (2000)
207–239.

[26] M.P. Singh, G. Meredith, C. Tomlinson, P.C. Attie, An event algebra for specifying and
scheduling workflows, in: Proceedings of the Fourth International Conference on Database
Systems on Advanced Applications (DASFAA’95), Singapore, 1995, pp. 53-60.

[27] B. Srivastava, J. Koehler, Web service composition-current solutions and open problems, in:
Proceedings of ICAPS 2003 Workshop on Planning for Web Services, 2003, pp. 28-35.

[28] B. Srivastava, Automatic web services composition using planning, in: Proceedings of
International Conference on Knowledge Based Computer Systems (KBCS-2002), Navi Mumbai,
India, 2002, pp. 467-477.

[29] S. Staab, Web services: been there, done that?, IEEE Intelligent Systems 18(1) (2003) 72-85.
[30] S. Thatte, XLANG: Web services for business process design, Available from

<http://www.gotdotnet.com/team/xml_wsspecs/xlang-c/default.htm>.
[31] W.M.P. van der Aalst, The application of petri nets to workflow management, The Journal of

Circuits, Systems and Computers 8(1) (1998) 21-66.
[32] W.M.P. van der Aalst, K.M. van Hee, Workflow management: models, methods, and systems,

MIT press, Cambridge, MA, 2002.
[33] W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski,. A.P. Barros,

Workflow patterns, Distributed and Parallel Databases 14(1) (2003) 5-51.
[34] H. Wachter, A. Reuter, The ConTract model, in: A.K. Elmagarmid (Ed.), Database Transaction

Models for Advanced Applications, Morgan Kaufmann, 1992, pp. 220-263.
[35] D. Hollingsworth, Workflow management coalition the workflow reference model, Available

from <http://www.wfmc.org/standards/docs/tc003v11.pdf>.

 34

	1. Introduction
	3.2.2. Events and Activities
	3.2.3. Concurrent workflow instances and naming conventions
	4. Execution Dependencies of Activities
	9. Conclusions and Future Directions
	Appendix
	References

