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Abstract. The event calculus is a logic programming formalism for representing events and their 
effects especially in database applications. This paper proposes the event calculus as a logic-based 
methodology for the specification and execution of workflows. It is shown that the control flow graph 
of a workflow specification can be expressed as a set of logical formulas and the event calculus can 
be used to specify the role of a workflow manager through a set of rules for the execution 
dependencies of activities. The proposed framework for a workflow manager maintains a history of 
events to control the execution of activities. The events are instructions to the workflow manager to 
coordinate the execution of activities. Based on the already occurred events, the workflow manager 
triggers new events to schedule new activities in accordance with the control flow graph of the 
workflow. The net effect is an alternative approach for defining a workflow engine whose operational 
semantics is naturally integrated with the operational semantics of a deductive database. Within this 
framework it is possible to model sequential and concurrent activities with or without 
synchronization. It is also possible to model agent assignment and execution of concurrent workflow 
instances. The paper, thus, contributes a logical perspective to the task of developing formalization 
for the workflow management systems. 
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1.   Introduction 

A workflow is a collection of cooperating, coordinated activities designed to 
accomplish a completely or partially automated process. An activity in a workflow is 
performed by an agent that can be a human, a device or a program. A workflow 
management system provides support for modeling, executing and monitoring the activities 
in a workflow. There are many commercial products to model and execute workflows 
[1,3,22,34] and  there have been many formal models proposed for the analysis and 
reasoning about the workflows [9,16,17,26]. The most common frameworks for specifying 
workflows are graph-based, event-condition-action rules, and logic-based methods. 

Graph-based approaches provide a good way to visualize the overall flow of control, 
where nodes are associated with activities and edges with control or data flow between 
activities. Petri nets and state charts are graph-based general-purpose process specification 
formalisms that have been applied to workflow specifications [23,31]. Event-condition-
action rules have been widely used in active databases and they have been adopted in the 
specification of workflows as well [5,12]. However, their expressive power is not as 
general as control flow graphs. Logic-based formalisms, on the other hand, use the power 
of declarative semantics of logic to specify the properties of workflows and the operational 
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semantics of logical systems to model the execution of workflows. Logic-based approaches 
mostly deal with the verification of workflows with global constraints [2,24].  

We believe that logic-based methods have the benefit of well-defined declarative 
semantics and well-studied computational models.  In this paper we also propose a logic-
based framework for the specification and execution of workflows. We use a logic 
programming approach for the specification of control flow graphs, execution 
dependencies between activities and scheduling of activities within a workflow. The paper 
formalizes some important properties of workflow systems. These properties include the 
specification of main types of flow controls, such as sequential, concurrent, alternative and 
iterative execution of activities. The paper also presents deductive rules for scheduling 
activities and assigning agents to perform these activities. As another important issue, the 
paper deals with the execution of concurrent workflow instances. Other issues such as 
representing the transactional properties of workflows, or temporal constraints (global 
constraints) between workflow activities are out of the scope of this paper.  

The proposed approach is based on the Kowalski and Sergot’s Event Calculus [18]. 
Event Calculus, abbreviated as EC, is a simple temporal formalism designed to model 
situations characterized by a set of events, whose occurrences have the effect of initiating 
or terminating the validity of determined properties. Given a description of when these 
events take place and of the properties they affect, EC is able to determine the maximal 
validity intervals over which a property holds uninterruptedly. The EC uses a polynomial 
algorithm for the verification or calculation of the maximal validity intervals and its axioms 
can easily be implemented as a logic program [6].  

EC provides mechanisms for storing and querying the history of all known events. 
Once the event occurrences until time t are known, the state of the system can be computed 
at any point of time until t. In order to be able to model the invocation of activities in a 
workflow, we need to be able to represent that certain type of event invariably follows a 
certain other type of event, or that a certain type of event occurs when some property holds. 
In our framework events are treated as triggers that denote the start or end times of 
activities. We also consider a set of external events, which might be recorded by the 
activities themselves or by the user externally. Once we know the history of all events 
either explicitly recorded or automatically generated by the system, the modeling of 
workflow execution becomes the computation of new events from the history and thus 
executing new activities until the end of the workflow is reached. The most important 
result made possible by this approach is the definition of the operational semantics of event 
detection, condition verification and activity scheduling in terms of a well-defined 
semantics, which can be computed by that of a deductive system and queries.  

The paper presents a simple scheduling algorithm in which it is possible to model 
agents as separate entities and assign agents to certain activities based on their cost. The 
workflow manager is designed to choose the best agent to perform the next scheduled 
activity among all available agents qualified to do that activity. The representation of 
events, activities and agents in this framework makes it also possible to model the 
execution of concurrent workflow instances over a single workflow specification. 

The main contribution of the paper is to present the use of event calculus approach in 
the formalization of an important set of properties of workflow systems.  The approach 
allows the user to specify sequential and concurrent execution of activities; conditional 
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transitions between activities; and also iteration of activities. The given specification can be 
executed by means of some deductive rules and queries. The proposed framework has been 
easily implemented as a logic program. It can be used as a quick tool in the simulation, and 
testing of experimental workflows. It can be used to analyze the behavior of workflows for 
different control flows with different number of agents and workflow instances. It may also 
serve the need for querying some piece of information in the process history. Or it may 
serve the need for querying the history of the workflow to analyze and assess the 
efficiency, accuracy and the timeliness of the activities by deriving the state of the 
workflow at any time in the past.   

To the best of our knowledge, we are not aware of any other logic-based formalism in 
which it is possible to specify all the activity execution routings that we support in this 
paper and to execute concurrent workflow instances with appropriate agent assignments 
within the same uniform framework. In the preliminary versions of this paper [15,16], we 
propose an outline of the use of the event calculus as a basis for complex workflow 
specifications where concurrent activities, agents and concurrent workflow instances can 
be modeled. However many of the axioms were application specific and a large set of rules 
must be written to capture the different aspects of the workflow at hand. In this paper we 
overcome these difficulties by proposing general rules that will be applicable to any 
workflow specification that includes the set of activity dependencies covered by our 
formalism.  

The rest of the paper is organized as follows. Section 2 summarizes the basics of the 
event calculus by presenting the major axioms that are used in this paper. Section 3 
discusses control flow graphs, relationship between events and activities, and also proposes 
a naming convention to uniquely identify events and activities to support concurrent 
workflow instances. Section 4 presents the rules for the local execution dependencies of 
sequential, concurrent, alternative and iterative activities in a workflow. The functionality 
of the workflow manager is described in Section 5 by presenting rules to start and end 
activities and assign agents to activities in concurrent workflow instances. The 
computational issues are discussed in Section 6 which also describes the implementation of 
the proposed framework. Section 7 presents a conceptual architecture of a workflow 
management system for a more realistic implementation of the framework. Section 8 
discusses the related work by comparing them with the proposed approach in this paper. 
The paper is concluded by summarizing the features of the proposed framework and 
possible future extensions in Section 9. 

2.   Event Calculus 

The event calculus is a logic programming formalism for representing events and their 
effects, especially in database applications [18].  A number of event calculus dialects have 
been presented since the original paper [13,14,25]. The one described here is based on a 
later simplified version presented in [19]. In contrast with the definition in [19], two 
assumptions are made in this version of the event calculus: The events have no extended 
duration, and the properties that events initiate, hold in the period initiated by the event and 
contain the said event. These assumptions simplify the formulation and implementation of 
the event calculus, but, otherwise nothing essential depends on them.   
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The event calculus is based on general axioms concerning notions of events, properties 
and the periods of time for which the properties hold. The events initiate and/or terminate 
periods of time in which a property holds. As events occur in the domain of the application, 
the general axioms imply new properties that hold true in the new state of the world being 
modeled, and infer the termination of properties that no longer hold true from the previous 
state.  

The main axiom (also called the persistence axiom) used by the event calculus to infer 
that a property holds true at a time is described as follows1: 

 holds_at(P, T) ←  
  happens(E, T1) , T1 ≤  T , initiates(E, P), not broken(P, T1, T). 

Here, the predicate holds_at(P, T) represents that property P holds at time T; the predicate 
happens(E, T) represents that the event E occurs at time T; the predicate initiates(E, P)  
represents that the event E initiates a period of time during which the property P holds; and 
the predicate  broken(P, T1, T2) represents that the property P ceases to hold between T1 
and T2 (inclusive) due to an event which terminates it. The time points are ordered by the 
usual comparative operators. The not operator is interpreted as negation-as-failure. The use 
of negation-as-failure gives a form of default persistence into the future. Thus, the 
persistence axiom states that once a property P is initiated by an event E at time T1, it holds 
for an open period of time containing time point T1 (i.e. [T1, T) ), unless there is another 
event happened at some point of time after T1, that breaks the persistence of property P.  

Other axioms used in the body of this axiom are defined as follows. The axiom for 
happens(E, T )  is usually defined as an extensional predicate symbol that records the 
happening of the event E at time point T. A particular course of events that occur in the real 
world being modeled is represented with a set of such extensional predicates. The axiom 
for broken(P, T1, T2) is defined by the following clause: 

 broken(P, T1, T2) ← 
   happens(E, T), terminates(E, P), T1 ≤ T ≤ T2. 

That is, the persistence of the property P is broken at time point T2 if a distinct event E that 
happened at time T between T1 and T2 terminates the persistence of P. Here the predicate 
terminates(E, P) represents that the event E terminates any ongoing period during which 
property P holds. 

Finally the axioms for initiates and terminates are specific to the application at hand. 
The problem domain is captured by a set of initiates and terminates clauses. For instance, 
the following rule describes the effect of an event of promoting an employee: 

initiates(E, rank(Employee, Title)) ← 
  event(E), act(E, promote), actor(E, Employee), role(E,Title). 

Here the property rank(Employee, Title) denotes a property in the application’s database 
that starts to hold after the occurrence of the event E. The details of the event specification 
can be given as a set of binary predicates (semantic networks) as described in [18].  

                                                 
1 The usual convention of using uppercase letters to represent logical variables is followed throughout 
the paper. 
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When an employee leaves the job, the property rank(Employee, Title) ceases to hold. 
This is described by the following rule in which the anonymous variable underscore in 
logic programming is used in place of Title, since the title value is not used in the body of 
the rule: 

 terminates(E, rank(Employee, _ )) ← 
 event(E), act(E, lay_off), actor(E, Employee). 

EC is defined as the collection of all types of axioms described above. Once the event 
occurrences until time t are known, the state of the system can be computed at any point of 
time until t using the holds_at predicate. The event occurrences are recorded as an 
extensional database and snapshots of the database state can be derived at any time using 
this history of events.We can extend the EC by adding the definition of other predicates 
such as holds_for(Property, TimePeriod) to find out the period of time for which a property 
holds: 

 holds_for(P, T1, T2) ← 
 happens(E1, T1), initiates(E1, P), happens(E2, T2), 
 terminates(E2, P), not broken(P, T1, T2). 

Alternatively, as in [11] we can define holdsNow(Property) to point implicitly to the 
current state, under the assumption that Now can be initiated with the time point that 
corresponds to the system clock at invocation time. 

 holdsNow(Property) ← 
  clock(Now), holds_at(Property, Now). 

In [11], the event calculus is used to formalize a large set of syntactic and semantic 
aspects of active databases. The approach to the formalization is centered on the idea of 
using a history as defined in the EC, to define event occurrences, database states, and 
actions on these.  A history is a particular form of an extensional database containing 
representations of event occurrences. The authors show how the history is used with the 
event calculus to give rise to a sequence of extensional databases in the application. 
Broadly, event and condition specifications are given a Datalog-related operational 
semantics, while action specifications denote the addition of new axioms to the logical 
theory that is the representation of the history.  

In this paper, we show how the event calculus can be used in the specification and the 
execution of workflows. That is, we show not only the activation of event-condition-action 
rules but also other forms of activity invocations. A workflow process definition contains a 
collection of activities and the order of activity invocations or conditions under which 
activities must be invoked (i.e. control flow) and also data flow between the activities.  
This paper proposes a formalization of workflow process definitions and their executions 
within the framework of the event calculus. In the proposed approach, events denote the 
start and end time points of activities and the state of the workflow is described by 
properties. Thus, events will be used to specify the control flow and the effects of the 
events are used to describe the data flow within the workflow. 
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3.   Workflow Concepts  

In this section we briefly provide the definitions of basic concepts of workflow 
systems that are used throughout the paper. Then, the basic concepts of workflow systems 
are associated with the constructs of the event calculus.  

3.1.  Basic Definitions 

A workflow is a process involving the coordinated execution of multiple activities 
performed by different processing entities. Examples of workflows are processing of 
purchase orders over the Internet, processing of insurance claims, mail routing in an office 
etc. An activity (task) defines some work to be done. Examples of tasks include updating a 
database, generating a bill, mailing a form. An agent is a processing entity that performs 
the activities. An agent may be a person, a hardware device or a software system (e.g. a 
mailer, an application program, a database management system). Human tasks include 
interacting with computers such as providing input commands. A workflow instance is an 
enactment of a workflow. It is possible that several instances of a workflow can run 
concurrently. For example, a workflow manager can execute several processing orders at 
the same time. 

Specification (or design) of a workflow involves describing those aspects of its 
constituent activities and the agents that execute them. It also defines the relationships 
among activities and their execution requirements. Execution of the multiple activities by 
different agents may be controlled by a human coordinator or by a software system called a 
workflow management system. In this paper we are interested in designing a workflow 
manager within the framework of the event calculus. For this purpose we first discuss the 
specification of workflows in a logical framework. We then provide the rules to specify the 
execution requirements of workflows.  

3.2.  Specification of Workflows 

The Workflow Management Coalition (WfMC) defines a reference model that 
describes the major components and interfaces within a workflow architecture [35]. In a 
workflow, activities are related to one another via flow control conditions (transition 
information). It is possible to design workflow with many different transition patterns [33]. 
Accordingly we identify the following basic routings among the activities: 

1. Sequential: Activities are executed in sequence (i.e. one activity is followed by the 
next activity.) 

2. Parallel: Two or more activities are executed in parallel. Two building blocks are 
identified: (a) AND-split and (b) AND-join. AND-split enables two or more 
activities to be executed concurrently after another activity has been completed. 
The AND-join synchronizes the parallel flows, one activity starts only after all 
activities in the join have been completed. 

3. Conditional: One of the alternative activities is executed. In order to model a 
choice among two or more alternatives two blocks can be used: (a) XOR-split and 
(b) XOR-join. In XOR-split, based on a condition check, only one of several 
branches is chosen. In XOR-join it is assumed that none of the alternative 
branches is ever executed in parallel. 
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4. Iteration: It may sometimes be necessary to execute an activity or a set of 
activities multiple times. 

Among the most common frameworks for specifying workflows, control flow graphs 
are most appropriate for showing the execution dependencies of the activities in a 
workflow. It provides a good way to visualize the overall flow of control. In a control flow 
graph the vertices identify the names of activities. The edges represent the successor 
relation on the activities. A typical graph specifies the initial and the final activities in a 
workflow, the subsequent activities for each activity in the graph, and whether all of these 
subsequent activities must be executed concurrently, or it is sufficient to execute only one 
branch depending on a condition.  
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Fig. 1. An example control flow graph 
 

Fig. 1 illustrates a control flow graph where the activity a is the initial task, and i is the 
final activity. After the activity a, the subsequent activities b, c and d are executed 
concurrently, which is indicated with the “AND” label. Activity e can only start after 
activities b, c, and d are completed. After the activity e is completed the activity f can start. 
The splitting branch labeled as “XOR” indicates that when activity f is finished, there is a 
choice of executing g or h.  By the definition of XOR-split, only one of the conditions 
cond1 or cond2 will be true, and either activity g or activity h will start executing depending 
on which condition holds. The conditions are based on workflow control data and apply to 
the current state of the workflow. The conditions can depend on some logical status, or 
output generated by some prior activity in the workflow, or on the value of some external 
variable (e.g. time). Activity i is enabled immediately after either one of the activities g or 
h is completed.  

As a real example, the control graph shown in Fig. 1 can be viewed as the workflow of 
paper reviewing process. When a paper is submitted electronically (external event), the 
workflow starts with the initial activity a, say select reviewers. The agent of this activity is 
a person (the editor). Once three reviewers are selected the paper is distributed to the 
reviewers and the reviewers (person agents) review the paper concurrently (the concurrent 
activities b,c,d). The subsequent activity e, say combine reviews is activated only when 
three reviews are completed. The agent of this activity can be a computer program which 
notifies the editor via email. Then the next activity f of decision making is done by the 
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Table 1. Successor relationships between activities 

Predicate Description 
initial_activity(A) A is the first activity in the workflow 
sequential(A1,A2) A2 follows A1 unconditionally 
and_split(A,L) A is followed by a list of activities L 
xor_split(A,ActCondPairs) A is followed by Ai in ActCondPairs if condition Condi is true 
and_join(L, A) A starts after all the list L of activities complete 
xor_join(L, A) A starts after one of the list L of activities completes 
final_activity(A) A is the last activity in the workflow 

 

editor and a decision of reject or accept will be made. If the decision is accept the next 
activity g will be prepare an accept letter. If the decision is reject the next activity h will be 
prepare a reject letter. Only one of the alternatives will be executed. Finally, the review is 
forwarded to the author of the paper (activity i).  

3.2.1.  Control flow graph described as a set of logical formulas 

A given control flow graph can be represented as a set of predicates in first-order 
logic. In this paper, we consider five different successor relations between activities. We 
represent these relations with separate predicate symbols which are described in Table 1. 
For instance, the workflow depicted in Fig. 1 can be described by a set of predicates as 
follows: 

initial_activity(a). 
and_split(a,[b,c,d]). 
and_join([b,c,d], e). 
sequential(e, f). 
xor_split(f, [(g, cond1), (h, cond2)] ). 
xor_join([g,h],i). 
final_activity(i). 

This example does not include an iterative execution structure. The specification of 
iteration is described in Section 4.4 separately. 

This set of predicates maps the formal structure of the control flow graph directly into 
a set of logic formulas. The actual execution order of activities is determined by the 
workflow manager. The workflow manager uses execution dependency rules to determine 
which activity needs to be scheduled next. The execution dependency rules are various 
scheduling preconditions and they are described as axioms within the framework of the 
event calculus (see section 4, axioms AxS 1-8). However before introducing the axioms for 
execution dependencies, we first describe the relationship between activities in a workflow 
and the events in the event calculus. 

 
 
 

 8



3.2.2.  Events and Activities 

In the event calculus, events have no duration. The occurrences of events are 
considered as instantaneous happenings that are recorded in the database. Activities in a 
workflow, however, have duration. Agents need time to carry out their tasks. The period of 
time necessary to complete an activity can be either fixed or varying depending on the 
nature of the activity. For instance if the activity involves a mechanical task its duration 
may be fixed. However if the activity is performed by a human the duration of the activity 
can be varying. In workflow systems, a workflow specification is generally not concerned 
with the details of the internal operations of the activities, but rather with the way the 
activities are sequenced. A workflow manager is concerned only with those aspects of an 
activity that are externally visible on the workflow level. Thus for a workflow manager, an 
activity can be in one of the possible execution states (such as initial, executing, committed 
etc.) and state transitions are enabled in terms of externally observable events, such as start 
and commit. In our framework each activity is initiated by an event and its termination is 
regarded as another event that records the completion of that activity. Thus each activity A 
has a starting event start(A) and an ending event end(A). Once we know the times of these 
events, the duration of the activity can be derived easily. The relationship between the 
activities and events is described in Fig. 2. Notice that, between these two special events, 
the activity is in execution state and the internal operation of the activity is unknown to the 
workflow manager. We do not model the internal behavior of the activities in the event 
calculus. 

Activities are executed by agents. The workflow manager assigns activities to agents 
and agents execute the activities. The workflow manager maintains the states of activities 
by recording their starting and ending times. The starting time of the activity corresponds 
to the time of its start event which is triggered by the workflow manager. The ending time 
of the activity corresponds to its end event which is sent by the agent to the workflow 
manager. If it is a fixed duration activity (e.g. agent is a hardware device and performs an 
automatic task), the end event will be sent by the agent within a predefined period of time. 
If the duration of the activity varies, then its execution time period may depend on some 
conditions or occurrences of some external events. The conditions that describe the end of 
the activity may be produced by the agent performing the activity. For instance, the activity 
may be a computer program and it may finish only when the user of the program fills in 
and submits a form. Such an input can be considered as an external event. Then the agent 

activity a 

start(a)  
at time T1

end(a)  
at time T2

time line 

Fig. 2.  Events start and end activities. 
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will terminate its execution by sending end activity event to the workflow manager. The 
execution duration of an activity is therefore application dependent and the activity must be 
designed to inform the workflow manager of its completion.  

In this paper we view the activities as independent modules executed by proper agents 
and the implementation details of activities are out of the scope of this paper. We consider 
only their interfaces with the workflow manager in terms of their starting time, ending time 
and any relevant data that they generate to affect the workflow execution. In the event 
calculus, the interaction of activities with the workflow manager is simulated by the use of 
axioms AxH 3 and AxH 4 that are presented in Section 5.2.1.    

3.2.3. Concurrent workflow instances and naming conventions 

One of the objectives of this paper is to express the execution of concurrent workflow 
instances over the same workflow specification. For instance, if the workflow describes the 
activities in an order processing application, there may be more than one order being 
processed at the same time. In order to be able to model such concurrent instances of a 
given workflow and the execution of the same activities for different workflow instances, 
we use a special naming convention.  

Each workflow instance is given a unique name (identity). This unique identity is an 
atomic term and it can be generated by the system when the workflow instance is started. 
Since each activity is executed at different times for different workflow instances, their 
names must be associated with an execution id to identify each of these executions. In its 
simplest form, this execution id will be the workflow instance id. For example, an 
execution of activity e in Fig. 1, in a workflow instance w1 can be represented by the term 
act(e,w1), and when it is completed it can trigger the execution of the activity f with the 
same workflow id, i.e. act(f,w1).   

In a workflow specification, one may also use iteration of activities in the specification 
of a workflow. An activity in an iteration block can be executed more than once, and each 
execution of that activity should be uniquely identified. The block name together with an 
iteration number can be used to uniquely identify each execution of an activity in the 
iteration block. This means that the naming convention should be general enough to 
express the different executions of the same activity in different iterations. 

In order to be able to successfully address these issues, we use the following naming 
convention for identifying the different executions of activities: Each activity execution is 
represented by a term act(ActName,EID) where ActName is the name of the activity given 
by the user at the specification, and EID is the execution id of the activity generated by the 
system. An execution id EID of an activity is defined as follows: 
i. EID can be an atomic term, which is simply the workflow instance id. In this case, the 

activity execution is identified with the activity name and the workflow instance id 
only. 

ii. In case of specifying the execution of an activity within an iteration block, EID can be 
a functional term of the form b(ParentEID,BlockName,IterationNo) where ParentEID 
is the execution identity of the activity after which this iteration block is started, 
BlockName is the name of the iteration block, and  IterationNo represents the iteration 
number for that block. The use of ParentEID allows us to uniquely identify the 
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executions of activities at any nesting level in the iteration blocks, as described in 
Section 4.4.  

For example, the workflow in Fig. 1 is actually translated into the following predicates in 
our framework, using the naming conventions described here: 

initial_activity(act(a,EID)). 
and_split(act(a,EID), [act(b,EID), act(c,EID), act(d,EID)]). 
and_join([act(b,EID), act(c,EID), act(d,EID)], act(e,EID)). 
sequential(act(e,EID), act(f,EID)). 
xor_split(act(f,EID),[(act(g,EID), cond1), (act(h,EID), cond2)]. 
xor_join([act(g,EID), act(h,EID)], act(i,EID)). 
final_activity(act(i,EID)). 

We need to identify the event occurrences uniquely too. In a workflow system, each 
activity is carried out by an agent and several agents may qualify to execute one activity. 
The same activity may be executed by different agents in different instances of the 
workflow. Thus, agent assignment is another consideration in naming the events. We use 
the following naming convention in describing the events that start and end an activity: The 
starting event for an activity A that is to be carried out by the agent Ag in a workflow 
instance W is described as start(A,Ag,W), and the ending event is identified as 
end(A,Ag,W). The workflow instance id is already included in the naming of the activity, 
however it is separately held in the naming of events too, because it simplifies the rules that 
we describe below.  

4.  Execution Dependencies of Activities 

This section presents a logic-based formalization for the execution dependencies of 
activities in a workflow. The execution order of activities depends on the successor relation 
among activities, and conditions that are currently satisfied on the system state. Since we 
support the execution of multiple workflow instances, we include the workflow number in 
establishing the local execution dependencies between the activities within the same 
workflow instance. 

The execution dependencies between the activities are described by rules for defining 
the four argument predicate follows. The semantics of a formula in the form: 
follows(Act1,Act2,W,T) represents the fact that, Act2 follows Act1 in the workflow instance 
W at time T.  In the following subsections we present the rules for the predicate follows for 
each successor relation that we consider in this paper. These rules, mainly, describe the 
scheduling preconditions of activities and therefore they are named as axioms for 
scheduling (AxS in short). 

4.1.  Sequential Activities  

Fig. 3 shows a graphical representation of sequential routing of activities. When 
activity ai finishes, the next activity aj can start unconditionally. For sequential activities, 
we can write the following execution dependency rule: 

 follows(Act1, Act2, W, T) ← (AxS 1) 
  sequential(Act1, Act2), happens(end(Act1, _, W), T). 
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i.e. Act2 follows Act1 in a workflow instance W at a time T when Act1 finishes in that 
workflow instance W at the time T. The anonymous variable underscore is used in place of 
the agent name to denote that the rule is valid for any agent. 
 

ai aj 
 
 
 
 Fig. 3. Activity aj  starts when ai finishes. 

4.2.  AND-split and AND-join 

In a workflow, activities after an AND-split are scheduled to be executed concurrently. 
Fig. 4.a illustrates an AND-split. When the activity ai finishes, activities a1, a2, … an can 
start concurrently. Fig. 4.b illustrates AND-join. Here the activity aj can start when all the 
preceding activities b1, b2, … bm finish. 

 
 a1 b1

ai aj

a2

an

b2

bm

ANDAND 

 
 
 
 
 
 
 
 
 
 

Fig. 4. a) AND-split b) AND-join  
 

When the end of activity ai is recorded, all subsequent activities are scheduled. 
Similarly, the activity aj can be scheduled only when the ending events of all its 
predecessor activities are recorded. Thus we represent the execution dependency of an 
AND-split with the following rule: 

 follows(Act1, Act2, W, T) ← (AxS 2) 
  and_split(Act1, ActList), happens(end(Act1, _, W), T), member(Act2, ActList). 

Here, predicate member will be true when Act2 is a member of the activity list ActList 
in AND-split. The rule expresses the fact that every member of this list must follow the 
activity at the branch.  

The following rule is used to represent the execution of an AND-join of activities: 

follows(Act1, Act2, W, T) ← (AxS 3) 
 and_join(ActList, Act2), 
 findActEndTimePairs(ActList, W, ActEndTimePairs), 
 actWithMaxEndTime(ActEndTimePairs, Act1, T). 
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The rule uses the predicate findActEndTimePairs that holds when all predecessor activities 
in ActList are completed in a workflow instance W. If this predicate holds, 
ActEndTimePairs will be the list of all predecessor activities together with their ending 
times. Then the predicate actWithMaxEndTime picks the predecessor activity with the 
latest ending time.  In Fig. 4.b, activity aj must wait for the completion of all predecessor 
activities b1 .. bm. The last conjunct in this rule ensures that aj is scheduled at the time of the 
last ending activity among activities b1,…,bm. The definitions of predicates 
findActEndTimePairs and actWithMaxEndTime are given in the appendix. 

4.3.  XOR-split and XOR-join 

In an XOR-split only one of the alternative activities is executed depending on the 
evaluated condition. The important point here is that only one of the conditions should hold 
true at the time of the decision in order to guarantee that only one execution path is chosen.  
 
 

Fig. 5. a) XOR-split b)XOR-join 

an

ai aj

a1

a2

b1

b2

bm

XORXOR 

condn 

cond2

cond1
 
 
 
 
 
 
 
 
 
 
 
 
  In an XOR-split (Fig. 5.a), when the activity ai ends, one of the activities a1, a2, ..., an 
can start depending on the condition satisfied at that time. The conditions may be a state 
check (i.e. a holds_at predicate) to verify that some property holds either in the underlying 
database or in the workflow state.  

 follows(Act1, Act2, W, T) ← (AxS 4) 
 xor_split(Act1, ActCondPairs), happens(end(Act1, _, W), T1),  
  member((Act2,Cond2), ActCondPairs), 
 initiates(Ev, Cond2), happens(Ev, T2), max([T1,T2], T) , 
 holds_at(Cond2, T) . 

Here we assume that one of the conditions at the split should evaluate to true. If none of the 
conditions hold then none of the execution paths can be chosen. The idea is to consider 
each alternate path one-by-one and check if its condition is true. This is achieved by the 
predicate member which is used to retrieve activity-condition pairs one by one from the list 
of activities in the XOR-split. The picked activity Act2 will be scheduled in a workflow 
instance W at time T only if T is the later of the two time points: (i) the ending time of Act1, 
and (ii) the time of the event that initiates the condition Cond2 for Act2. We must also 
check that Cond2 still holds at time T.   
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In an XOR-join (Fig. 5.b) if any one of the incoming activities is finished, the activity 
at the join can start executing. Given that no parallel execution of alternative threads can 
occur, this pattern corresponds to a simple merge. Thus we represent the XOR-join by the 
following rule:  

 follows(Act1, Act2, W, T) ← (AxS 5) 
  xor_join(ActList, Act2), findOneActEndTimePair(ActList, W, Act1, T). 

The rule uses the predicate findOneActEndTimePair which holds when one of predecessor 
activities in ActList is completed in a workflow instance W. If this predicate holds, Act1 
will be the completed predecessor activity and T will be its ending time. Thus, the 
subsequent activity is scheduled at time T of the first ending activity. The definition of 
predicate findOneActEndTimePair is given in the appendix.

4.4.  Iteration 

In some workflow applications it might be necessary to execute a group of activities 
one or more times. The number of times these activities are executed may depend on some 
workflow state, or it can be a fixed number. Fig. 6 sketches a control flow graph which 
includes such a loop structure. The graph illustrates a post-condition checking loop 
structure. That is, the activities a1 to an are executed at least once, then the iteration 
condition is checked. While the condition holds, the activities are executed again. The 
activities a1 through an can be arranged in any of the transition types that we have 
discussed above. 

4.4.1.  Specification of the loop structure 

In our framework, the body of the loop structure is considered as a block and each 
block is given a unique name. We use the predicate serial in the specification of the 
workflow, in order to describe that a block follows an activity, or a block is followed by an 
activity. Each block has an initial and final activity. Since the activities within the block are 
executed several times within a workflow instance, each execution must be identified 
uniquely within the history of events. For this purpose, we use the naming conventions for 
the activities described in Section 3.2.3 for the loop structures while translating the 
iteration into a set of logic formulas. Each execution of an activity in a loop is identified 

block: b1 

am

loopcond 

Yes 

No 
a1 an

a0

Fig. 6. Activities a1 to an are executed while the condition is true. 
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with a term of the form: 

act(ActName,b(ParentID, BlockName, IterationNo)) 

where ActName is the user defined name for the activity, and b(ParentID, BlockName, 
IterationNo) is the execution id of this activity. For instance, the activity a1 is represented 
with the term act(a1, b(w1 ,b1, I)), where w1 is the workflow-id of the workflow instance 
which starts the iteration block b1, and I represents the iteration number during execution. 
Thus, the specification of block b1 in Fig. 6 includes the following formulas: 

serial(act(a0, EID), block(b1,EID)). 
serial(block(b1,EID), act(am,EID), loopcond). 
initial(block(b1,EID), act(a1,b(EID, b1, I)). 
final(block(b1,EID), act(an, b(EID, b1, I))). 

The set of logical formulas above for the iteration block b1 indicates that after the 
activity a0 with an execution id EID, the iteration block b1 with the same execution id EID 
will start. The activity am will start with the same execution id (EID) after the block b1 if 
the condition loopcond does not hold at the time when the last activity of this block is 
completed. If the execution id of the block is w1, the execution ids of all activities in this 
block will be b(w1, b1, I). The predicates used for the representation of blocks in a 
workflow graph are listed in Table 2.  The control flow structures between activities within 
the block are still described with the predicates that we introduced in Table 1 using the 
naming conventions described in Section 3.2.3. For instance, a sequential transition 
between two activities, say a1 and a2, in the block is described as: 

sequential(act(a1,EID), act(a2, EID)). 

Since EID’s carry the block name and the iteration number, activity a2 in block b1 follows 
a1 at every iteration sequentially.  
 

Table 2. Predicates to represent blocks 

Predicate Description 
initial(B, Act) Act is the first activity in block B  
serial(Act, B) Block B is subsequent to activity Act 
serial(B, Act, Cond) Subsequent to block B is activity Act with the loop condition Cond 
final(B, Act) Act is the last activity in block B 

4.4.2.  Rules for the execution dependency of a block 

In the following we introduce three rules to describe the execution dependency of a 
block in a workflow in our framework. The first rule is used to start the first activity in a 
block with iteration number 1: 

 follows(Act1, InitAct, W, T) ← (AxS 6) 
 serial(Act1, B), happens(end(Act1, _, W), T), 
 initial(B, InitAct), setIterationNo(InitAct,1). 
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The rule states that, after activity Act1, the next activity is the initial activity InitAct of 
block B if block B is in sequence with activity Act1 in the workflow W at time T. The 
iteration number for the initial activity InitAct is set to 1 since this is going to be its first 
execution in the current workflow instance (see the appendix for the definition of the 
predicate setIterationNo). The next rule represents the case of exiting the block: 

 follows(FnlAct, Act2, W, T) ← (AxS 7) 
  serial(B, Act2, Cond), final(B, FnlAct), 

 happens(end(FnlAct, _, W), T), not holds_at(Cond, T). 

The rule states that in a workflow instance W, the next activity after the final activity of a 
block is activity Act2, if the block is followed by activity Act2 and the loop condition does 
not hold at the time of the final activity is completed. Finally, we describe the iteration of 
the activities in the block with the following rule: 

 follows(FnlAct, InitAct, W, T) ← (AxS 8) 
  initial(B, InitAct), final(B, FnlAct), serial(B, _, Cond), 
  happens(end(FnlAct, _, W), T), holds_at(Cond, T), getIterationNo(FnlAct, I), 
  J = I + 1, setIterationNo(InitAct, J). 

This rule states that if the final activity of a block with the iteration number I is completed 
in the workflow W at time T, the initial activity of that block can start with iteration number 
I +1 if the loop condition holds at time T (see the appendix for the definition of the 
predicate getIterationNo). 

We assume that the condition of a loop can be initiated and terminated by either 
external events or system-generated events for activities. In this section we described the 
specification of a post-condition checking loop structure. However, it is possible to 
describe pre-condition checking loop structures in a similar fashion. 

The naming convention used in identifying the execution of activities within a block 
allows us to represent nested loop structures in a control flow graph too. The execution id 
of an activity in the nested block will carry the execution id of the activities in its outer 
loop (parent block). Thus an activity in an inner loop will be initiated with an id which 
includes the id of this parent block activities. This allows us to uniquely identify the 
execution of the activities in the inner loop(s). For instance, assuming that there is another 
block, say b2, defined inside block b1 in Fig. 6, the execution id of an activity in block b2 
in a workflow instance w1 will be: b(b(w1, b1, I), b2, J). Here b(w1,b1,I) is the execution 
id of the activity in the parent block b1 after which b2 is started and I  represents the 
correct iteration number during execution; b2 is the current block name, and J is the 
iteration within the inner loop. This nesting of execution ids through the parent id makes it 
possible to nest several loop structures within the same workflow. 

The specifications and rules for the iterative structures that we discussed in this section 
can be extended to represent sub-workflows in a workflow. A sub-workflow can be viewed 
as a block with a unique name. A sub-workflow can start after an activity of the workflow 
instance, and when that sub-workflow is completed another activity in that workflow 
instance can start. Each activity in a sub-workflow instance can be uniquely identified with 
the unique name assigned to that sub-workflow instance and the unique name assigned to 
the instance of the workflow that started that sub-workflow instance. The naming 
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activity is in active state with that agent. We describe these two states of an agent with two 
predicates: idle(Agent) and assigned(Agent, Activity, W). The state of the agent may be 
changed by two events: assign(Agent, Activity, W) and release(Agent, Activity, W). 

In addition to the time dependent description of the workflow state, there are also static 
properties of the workflow. The agent definitions, the activities for which they are 
qualified, the cost of each agent for each activity are static properties of the workflow and 
they are defined in the workflow specification. For simplicity, we assume that the cost of 
an agent is the amount of time that an agent requires to perform an assigned activity. In 
order to represent the relationship between the activities and agents we use the predicate 
qualified(Ag, Act, Cost) which is true when it takes Cost units of time for an agent Ag to 
finish the activity Act. 

The time-dependent states for activities and agents together with the events causing the 
transitions between these states are summarized in Table 3 and Table 4 respectively. The 
time dependent states of activities and agents are initiated and terminated by events 
occurring in the workflow system. The third columns in the tables show these events. The 
axioms of the event calculus will be used in reasoning with these events and their effects. 
In the following we present the rules to describe how these events cause state transitions 
and these rules are named as axioms for initiates/terminates (AxIT in short) for reference 
purposes. 

An activity becomes active in a workflow instance when its starting event is recorded 
in the database.  An event recording the end of an activity sets up a completed state for that 
activity, terminating its active state. Thus we write, 

initiates(start(Act, Ag, W), active(Act, Ag, W)). (AxIT 1) 

initiates(end(Act, Ag, W), completed(Act, Ag, W)). (AxIT 2) 

terminates(end(Act, Ag, W), active(Act, Ag, W)). (AxIT 3) 

When an activity starts being executed by an agent, the agent is not idle any more and 
it is assigned to that activity until it finishes the activity. When the activity is finished, the 
agent is released and it is ready to execute the next activity. Thus, we write the following 
rules: 

terminates(assign(Ag, _, _), idle(Ag)).  (AxIT 4) 

initiates(assign(Ag, Act, W), assigned(Ag, Act, W)).  (AxIT 5) 

When an agent finishes its task and it is released, it becomes idle. If the worklist of the 
agent is empty, the agent remains in the idle state. If there are one or more activities 
waiting for that agent in the agent’s worklist, the agent is assigned to the next activity in its 
worklist. The assignment of the agent to the next activity is described in Section 5.2.2 (see 
axioms AxH 5 and AxH 6). Here, we present the rules that describe the effects of the event 
release on the system state. 

State of Agent Meanin
idle(Ag) Agent A

assigned(Act, Ag, W) Agent 
Act in w

 

Table 4. States of agents 
g Initiating event 
g is idle release(Ag, Act, W) 

Ag is carrying out the activity 
orkflow instance W 

assign(Ag, Act, W) 
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 initiates(release(Ag, _, _), idle(Ag)) . (AxIT 6) 

 terminates(release(Ag, Act, W), assigned(Ag, Act, W)) . (AxIT 7) 

The use of the property waiting(Act, Agent, W, T) is twofold. First, it is used to 
represent the state of an activity. Second it is used to represent the worklists of agents. An  
is released when it completes an activity and the subsequent activity is enabled by the 
workflow manager (using the axioms AxS 1-8). The subsequent activity is inserted to the 
worklists of all agents qualified to do that activity. The following axiom is describing this 
behavior: 

 initiates(release(Ag1,Act1,W), waiting(Act2, Ag2, W, T)) ← (AxIT 8) 
  follows(Act1, Act2, W, T), qualified(Ag2, Act2, _ ). 

The rule states that when an agent Ag1 is released from an activity Act1 in a workflow W at 
time T1, the subsequent activity Act2 is made waiting for all qualified agents in the 
workflow instance W, with the timestamp T.  

When an activity is assigned to an agent, the activity is no longer in waiting state. It is 
removed from all worklists: 

 terminates(assign(_, Act, W), waiting(Act, _, W, _ )).  (AxIT 9) 

This rule has the effect of removing the activity from all worklists, because it is used to 
terminate the property waiting(Act, _, W, _) which represents the set of all agents that the 
activity Act in workflow instance W has been waiting. 

5.2.  Workflow Execution 

A critical issue in workflow management is the assignment of activities to appropriate 
agents in order to execute the workflow. Many different scheduling and optimizing 
algorithms may be proposed for this purpose. In this paper, we formalize a simple agent 
assignment algorithm. The activity is assigned to the best agent among all available agents 
qualified to perform that activity. The best agent is determined by comparing the estimated 
costs of the candidate agents. When an agent pulls the activity from its worklist, the 
activity is removed from the worklists of all other agents too (see axiom AxIT 9). Choosing 
always the best available agent may not result in an optimized execution of the workflow, 
however, optimizing the execution of a workflow is out of the scope of this paper.  

In this section, we first present the rules to start the execution of activities and to 
record the end of activities. We, then, present the rules for actually assigning tasks to 
agents and rules to release agents. The rules listed below, describe the generation of new 
events to trigger the desired functionalities. They are used to record new event occurrences 
in the history through the predicate happens. Therefore we name these rules as axioms for 
happens (AxH in short).    

5.2.1.  Rules for triggering events 

The execution of an activity can start only when an agent is assigned to that activity. 
As soon as the agent is assigned, the starting event of the activity is generated, which is 
described by the following rule: 

 19



 happens(start(Act, Ag, W), T) ← (AxH 1) 
  happens(assign(Ag, Act, W), T). 

This rules states that when the event of assigning the agent Ag to activity Act in workflow 
instance W happens, the starting event of activity Act happens at the same time. The event 
assign(Ag, Act, W) is generated by the workflow manager as described in Section 5.2.2 (see 
axioms AxH 5 and 6).  

When an activity is completed, the ending event of the activity is recorded and the 
agent that completed the activity is released. This is represented by the following rule: 

 happens(release(Ag, Act, W), T) ← (AxH 2) 
  happens(end(Act, Ag, W), T). 

In a real workflow, the end of an activity would be sent to the workflow manager by 
the agent performing that activity, and the end of that activity is saved in the database.  
Some activities may be completed in a fixed amount of time. For some other activities, the 
duration may not be predicted; the end of the activity may depend on the occurrence of an 
external event. The application must include rules to determine the end of the activity. In 
our framework, in order to simulate the execution of fixed time and varying time activities 
we write rules AxH 3 and AxH 4. In AxH 3 we assume that the time required for a fixed 
duration activity is determined by the assigned agent. Thus, we write the following rule for 
fixed-time activities: 

 happens(end(Act, Ag, W), T) ← (AxH 3) 
  happens(start(Act, Ag, W), Ts), fixed_activity(Act),  

qualified(Ag, Act, Td), T = Ts + Td. 

That is, the agent Ag finishes the activity Act in Td time units after the starting event of the 
activity. For varying time activities, we assume that an external event (e.g. a user input) is 
waited to finish the activity. The end of the activity depends on the time required by the 
assigned agent and the time of the occurrence of the external event. The end of the activity 
is described as the time whichever happens later.  

 happens(end(Act, Ag, W), T) ← (AxH 4) 
 happens(start(Act, Ag, W), Ts), varying_activity(Act), end_event(Act, ExtEvent), 
 happens(ExtEvent, Te), qualified(Ag, Act, Td), Tf is Ts + Td, max([Te, Tf], T). 

5.2.2.  Rules for assigning agents to activities 

The scheduled activities wait in the worklists of the qualified agents. An agent keeps 
checking its worklist when it is idle or when it is released after the completion of an 
activity. If worklist is not empty, the agent pulls the activity that has been waiting for the 
longest time from the list. The following rule describes the assignment of an agent to the 
longest waiting activity as soon as it is released from another activity. 

 happens(assign(Ag, Act, W), T) ← (AxH 5) 
  happens(release(Ag, _, _), T), holds_at(waiting(Act, Ag, W, T1), T),, 
  holds_at(idle(Ag),T), not waiting_longer(Act, Ag, T1, T),  
  not better_agent(Ag, Act, T). 
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If there are two or more activities waiting for the agent with the same timestamp, the 
conjunct holds_at(idle(Ag), T)) in the body of the rule guarantees that we assign the agent 
to only one of these waiting activities. This condition will be true before any assignment, 
but it will not hold at the time immediately after the first assignment. 

The rule for waiting_longer checks for any other activity in the worklist of the agent 
that has been waiting longer than this activity. It looks up the system state at time T to find 
out which activities are waiting for this agent and compares their timestamps: 

 waiting_longer(Act, Ag, T1, T) ← 
 holds_at(waiting(Act2, Ag, W, T2), T), Act ≠ Act2, T2 < T1. 

The check for better_agent is necessary in order not to assign the same task to different 
agents. Since one or more qualified agents may be available at the same time, we make 
sure that the activity is assigned to one of them (the best available one) only. The rule for 
better_agent checks if there are other less costly agents qualified for the activity. If two 
agents have the same cost, the first considered one is selected. 

 better_agent(Ag1, Act, T) ← 
  qualified(Ag1, Act, C1), qualified(Ag2, Act, C2), C2 < C1, 
  holds_at(idle(Ag2), T).  

As long as the worklist of an agent is empty, the agent stays in the idle state. However, 
when an activity is inserted into its worklist, it is assigned to the activity if there is no better 
agent to do that activity. An activity may be placed into the worklist of an agent at any 
time. As discussed in Section 5.1, the property waiting is initiated for an activity when the 
workflow manager determines that activity to be the subsequent activity (see AxIT 8). The 
agent checks its worklist at every time point that it is released from an activity (see AxH 5). 
If there is no activity in its worklist, it continues to be idle. There must be a way of 
triggering the agent to check its worklist when it is idle. This is achieved by the following 
rule, which triggers the event assign every time an activity is placed into an empty worklist 
of an idle agent: 

 happens(assign(Ag, Act, W), T) ← (AxH 6) 
  initiates(_, waiting(Act, Ag, W, T)), holds_at(waiting(Act, Ag, W,T), T), 
  holds_at(idle(Ag), T), not better_agent(Ag, Act, T). 

Here, the condition initiates( _, waiting(Act, Ag, W, T)) is necessary to find the time point T 
at which the activity is placed into the worklist. The anonymous variable represents any 
event that may initiate the property waiting. As soon as such an event happens, the idle 
agent is assigned to the waiting activity.  There may be one or more activities that have 
been inserted to the worklist of an agent at the same time when the agent is in idle state. 
The conjunct holds_at(idle(Ag), T) is used to make sure that the agent is assigned to only 
one of these activities. 

5.3.  Starting a workflow instance 

The workflow manager is an interpreter to generate events that start and assign agents 
to activities through the event generation rules. In order to start generating the events (and 
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thus, start the execution of workflow instances), the manager needs to know what initiates 
the workflow and also the initial state of the system. In our framework there must be an 
external event to start the workflow. For instance, in an order processing workflow, the 
initial event may be the submission of an order request form by the user. This initial event 
must be defined in the workflow specification. In addition, all agents are in idle state at the 
beginning.  

In order to set all agents idle initially, we define an event, called free_agent(Ag), 
whose effect is to initiate the idle property for all agents. This can be represented by the 
rule: 
 initiates(free_agent(Ag), idle(Ag)).  (AxIT 10) 

If we assume that the time is set to zero initially, we can set all agents idle with the 
following rule: 

 happens(free_agent(Ag), 0) ← agent(Ag). (AxH 7) 

 The manager starts a workflow instance when an initial external event happens (e.g. 
submit an order). When that starting external event is recorded, the manager schedules the 
first activity of the workflow by inserting it into the worklists of all agents qualified to 
perform that activity.  Once the first activity is inserted into the worklists, the event 
generation rules (AxH 1-6) will be activated so that it is assigned to the best qualifying 
agent. The workflow manager will keep scheduling the next activity for each completed 
activity using the execution dependency rules (AxS 1-8) and event generation rules (AxH 
1-6) until the end of the workflow is reached (or until the current time). In order to start this 
process, we write the following rule, so that when the initial event happens, the first 
activity can be scheduled: 

 initiates(Ev, waiting(Act, Ag, W, T)) ← (AxIT 11) 
  initial_activity(Act), starts(Ev, W), happens(Ev, T), 
  setEID(Act,W), qualified(Ag, Act, _). 

The starting event is defined with the predicate starts. The predicate starts also generates a 
unique workflow instance id W. Thus, this rule represents that when the event which starts 
the workflow instance W happens at time T, the first activity of the workflow starts waiting 
for all qualified agents. The predicate setEID sets the execution id of the initial activity of 
the workflow instance to the workflow id W. The workflow manager will assign the first 
activity to one of the agents through the rule AxH 6 in Section 5.2.  

6.  Implementation Issues  

In this section we first discuss the computational aspects of the logical description given in 
this paper. We then present a case study to illustrate the capabilities of the system. 

6.1.  Implementation of the theory 

The theory can be implemented in several different ways. One approach is to write the 
axioms more or less directly in Prolog. However as they stand, the general structure of the 
search space that would be explored by SLDNF resolution is riddled with non-terminating 
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loops and redundancy.  Because the definition of holds_at includes calls to happens and the 
definition of happens includes calls to holds_at, this can cause non-terminating loops. 
Similarly, the definitions of happens, initiates and follows also include calls to happens that 
can cause non-terminating loops. 

The major reason of the problem of getting infinite loops is that, in the execution of 
holds_at, after finding a relevant event, all events (past or possible future events) must be 
searched again in order to show that there is no other event affecting the established 
relation. This is because of the negation in the formulation of holds_at. Therefore we must 
restrict the search space in such a way that only the past relevant events (i.e. events which 
have occurred) should be searched.  

We have overcome this problem by rewriting the axioms so that they are more suitable 
for SLDNF resolution. We rewrite the clauses so that a Prolog interpreter can proceed 
forwards in time from the earliest known event, maintaining a list of ongoing events. Since 
we know the causality relation between the events (i.e. which events will occur after which 
events), we can compute the entire history given the initial event(s). We proceed roughly in 
a bottom-up manner: we compute what events the initial events cause in the history, then 
compute what events these new events cause in the history, and so on.  

In order to achieve this, we replace all calls to happens in the bodies of the rules for 
holds_at, happens, initiates, and follows with calls to a new predicate called happened. The 
happened predicate represents all events that are known to have happened in the history. 
The history of happened events is populated by using happens rules level by level. With 
these clauses, a Prolog interpreter proceeds forwards in time from the earliest event, 
maintaining a list of all occurred events.  For example, the new version of AxH 1 is 
rewritten as follows: 

happens(start(Act, Ag, W), T) ← 
 happened(assign(Ag, Act, W), T). 

Likewise, all occurrences of the predicate happens in the bodies of rules AxH (2-7), 
AxS (1-8), and AxIT (1-11) are replaced with the predicate happened. The new definition 
of holds_at is now given as follows: 

  holds_at(State, Time) ←  
   initiates(Ev, State), happened(Ev, T1),   
   T1 ≤ Time, not broken(State, T1, Time). 

  broken(State, T1, T2)  ← 
   terminates(Ev, State), happened(Ev, T), T1 ≤ T ≤  T2. 

Instead of searching all events, the new definition searches only the past events which 
are known to have occurred already (i.e. represented by the happened relation). These 
new axioms can be directly translated into a Prolog program. After all the events in the 
system are generated, it is possible to ask queries of the form 
 ? - holds_at(State, t1). 

to find out the state of the system at a time t1 after the given initial event. 
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T  ←  0; 
happenedDB  ←  { }; 
while ( T < now ) { 
 do { 
 happenedDBChanged ←  false; 
 for (each happens rule HRi in set of axioms AxH (1-7) ) { 
  if ( ( the event Evi in the head  of HRi can happen at time T  

  depending on the happened events in happenedDB )  and  
(  happened(Evi,T) has not been recorded in happenedDB ) ) { 

 happenedDB ←  happenedDB ∪ { happened(Evi,T) } ; 
 happenedDBChanged ←  true; 

  } 
 } 
 } while (happenedDBChanged); 
 T ← T + 1; 
} 

Fig. 7. Algorithm to find happened events

The algorithm in Fig. 7 explains the behavior of the Prolog interpreter to find all 
happened events and record them in an extensional database of history of events.  All 
happened events are found level by level. First, we find all happened events at time 0, then 
at time 1, and so on. The outer loop in the algorithm quits when all possible events are 
generated and recorded in the history.  The inner do-while loop finds all happened events at 
time T. The innermost for-loop checks whether each of possible events described by the 
axioms for happens (AxH 1-7) can happen at time T depending on the conditions induced 
by the already happened events in the happened database. This algorithm and all axioms 
presented in this paper are implemented in Prolog and tested in the simulation of some 
prototype workflow systems. 

6.2.  Case Study 

We illustrate the use of the axioms presented so far with a case study. Consider an 
order processing system shown in Figure 8. Activity a1 takes the order. Activity a2 
processes the order by updating the inventory. Activities a3 and a4 then start concurrently. 
Activity a3 removes the product from the warehouse and packages the item. Activity a4 
performs the billing function. After both activities are completed, activity a5 arranges 
shipping by initiating either activity a6 or activity a7. Finally when the delivery is 
successful, the database is updated to indicate that the order has been fulfilled. 

In order to model and manage the execution of this workflow in our framework first 
the workflow graph definition must be given using the predicates shown in Table 1. Thus 
the example workflow is translated into the following: 

 
initial_activity(act(order_collection, EID)). 
sequential(act(order_collection, EID), act(order_processing, EID)). 
and_split(act(order_processing, EID), [act(package,EID), act(billing,EID)]). 
and_join([act(package,EID), act(billing,EID)], act(arrange_shipping,EID)). 
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xor_split(act(arrange_shipping,EID), [(act(by_air,EID),selection(EID,air)), 
                    (act(surface_mail, EID),selection(EID,surface))] ). 
xor_join([act(by_air,EID),act(surface_mail, EID)],act(archive,EID)). 
final_activity(act(archive,EID)). 
 
The list of qualified agents must be given with their timing constraints. In our prototype 
implementation, the agent information is defined as follows: 
 

qualified(agent1,act(order_collection,_),1). 
qualified(agent2,act(order_processing,_),2). 
qualified(agent3,act(order_processing,_),5). 
qualified(agent4,act(billing,_),1). 
qualified(agent5,act(package,_),8). 
qualified(agent6,act(arrange_shipping,_),2). 
qualified(agent7,act(by_air,_),2). 
qualified(agent8,act(by_surface,_),1). 
qualified(agent6,act(archive,_),3). 

 
In this example we assume that activities a1, a2, a4, a5 and a8 are computer programs 

that execute in fixed period of time. Activities package, by_air, and surface_mail are 
varying time activities. These activities need human interference, thus their termination 
need some external event such as waiting for the user to enter some data. For instance, 
activity package needs the operator to input data that the packaging is finished. The actual 
shipment of the package (by air or surface mail) is done by a person, thus the completion of 
this activity must be recorded by an input and this is considered as an external event. In 
order to simulate the end of varying time activities, the external events that finish those 
activities must be given to be used by the axiom AxH 4. 

end_event(act(package,EID), finish_packing(EID)). 
end_event(act(by_air,EID), sent(EID)). 
end_event(act(surface_mail,EID), sent(EID)). 

 
In addition, for each external event, its occurrence time must be recorded with a 
happened clause. The workflow is initiated by an external event which is the submission 
of an order request form. Every time this event is entered to the system a new workflow 
instance is started. The following rule is used to specify the initialization of a workflow 
instance:   
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Fig. 8 Order Processing Workflow 
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 starts(Ev, Wno) :- 
   ext_event(Ev), 
   Ev = submit(OID, CustID,  CName, Caddress, ProductID, Qty), 
  Wno = OID. 

where external event submit includes the information about the customer, product and 
order. The order id (OID) is assumed to be unique for each order, and therefore it is used as 
the workflow instance id (which is equivalent to the EID). The time of this submit event 
should also be recorded by a happened clause. Note that we simplified event 
representations to simple atomic terms. In a real application the details of events can be 
specified using several binary predicates [18]. 

The workflow specification for the given graph is now complete. In addition we have 
the axioms presented in this paper: AxS 1-8, AxIT 1-11, AxH 1-7. The external events to 
initiate the workflow instances, to end varying activities must be input to the system at 
various points in time. Then, the deductive framework allows us to query the system in 
different ways. Some possible queries are: 

?- happened(Ev, T). % list all events in the history  
?- holds_at(active(Act,Ag,W), now). % list all currently active tasks 
?- holds_at(idle(Ag), t). % list idle agents at some time t 
?- holds_at(waiting(Act,Ag,W,_), t). % worklists of all agents at some time t 
?- holds_for(assigned(Act,Ag,W),P) % working periods for all agents 

 
Thus, given a set of predicates for a workflow graph specification, external events and 
qualified agents, the axioms that are presented in this paper can be used to answer queries 
such as finding out the system state at a specific time, or the period of time for which a 
certain property holds (e.g. how long an agent remains idle). By querying the history of 
events the actual order and occurrence times of all activities can be derived. 

7.   Architecture  

The main concern of this paper is to present a new class of logic-based workflow systems 
based on the notion of a history that underlies the event calculus. Nevertheless, we describe 
a conceptual architecture to indicate how the logic-based workflow management system 
might be used at the implementation level. The proposed architecture is similar to the 
history-centered active database architecture of [11]. The main contribution of their 
architecture is to provide a logic-based integration of deductive databases and active 
databases.  In their architecture, history serves to determine database states and it underlies 
the definition of event detection, condition verification and action execution. 

We propose to extend the history–centered active database architecture of [11] by 
incorporating the workflow manager, which is responsible for scheduling the activities and 
assigning the agents. Fig. 9 depicts the components of our conceptual architecture for a 
logic-based workflow system.  

The workflow state is described as a deductive database. The records of event 
occurrences are considered to be an extensional database, called the history. The intentional 
database includes the event calculus rules, workflow specification and activity execution 
dependency rules, and workflow execution rules. The set of known events and the set of 
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possible workflow states are immediately characterized in terms of the set of all logical 
consequences of this deductive database.  

Conceptually speaking the database states need not be independently stored, since they 
follow logically from the history. The history only needs appending event occurrences to, 
in order to record that some event has happened in the modeled reality.  

A typical cycle in this architecture can be described as follows.  The environment 
notifies the system the start of a new workflow instance by appending an external event 
that initiates the workflow. Since the set of known events (i.e. history) now includes at least 
one event, the interpreter reacts to this change by scheduling the first activity in the 
workflow. The first activity is placed to the worklists of qualified agent(s). The agent 
assignment rules will be used to assign the best agent to the activity. When the end of the 
first activity is recorded in the history, the interpreter uses the execution dependency rules 
and agent assignment rules to start the next activity. Meanwhile, the environment may 
record the beginning of another workflow instance, or the executed activities may insert 
new (external) events to the history. The interpreter proceeds to coordinate the activities by 
reacting these new happenings until a saturation state is reached in which all known events 
have been derived. 

8.  Related Work and Discussion 

A considerable amount of work has been done on formalizing workflow systems across the 
fields of computer supported cooperative work and advanced transaction models. This 
section gives a brief overview of formal specification methods used in products and 
research prototypes of workflow systems and compares our framework with other 
proposals. We also summarize a related research area, namely web service composition, 
and discuss the application of our proposed framework in the semantic web.  
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8.1.  Net-based methods 

Petri-nets and state and activity charts are net-based methods, which have a formal 
foundation. When a graphical visualization of workflow specifications is the top priority, 
state and activity charts and Petri nets are good choices. State and activity charts have 
originally been developed for software engineering applications, especially for specifying 
reactive systems, but they have been also used as a formal tool for workflow specifications. 
In [23] it is shown that state and activity charts can be used for the specification of 
workflows, verification of workflow properties and the distributed execution of workflows. 
Although most execution dependencies can be formally specified in this framework, 
iterative execution of activities is not modeled. Although concurrent activities within a 
workflow can be executed through a partitioning algorithm, it is not clear how concurrent 
instances of the same workflow are executed.  

Petri nets are general purpose process specification formalisms. Petri net variants are 
widely used as a workflow modeling technique [31,32,33]. A workflow process specified 
in terms of a Petri net has a clear and precise definition, because the formal semantics of 
the classical Petri net and its enhancements (color, time, hierarchy).  Petri nets have also 
the advantage of the availability of many analysis techniques. Our work differs from the 
Petri net approach radically since Petri nets are graphical and sate-based whereas our 
approach is declarative and event-based. Our aim is to show the use of the event calculus as 
a workflow modeling specification and execution tool in a logic programming framework.  

8.2.  Logic-based methods 

These methods attempt to establish a formal specification model with a well-defined 
semantics to be used in the analysis and reasoning about workflows. In [9,24], Concurrent 
Transaction Logic (CTR) is used as the language for specifying, analyzing and scheduling 
of workflows. In this framework, both local and global properties can be represented as 
CTR formulas and reasoning can be done with the use of the proof theory and the 
semantics of this logic. Like in all logic programming systems the proof theory of CTR is 
also a run-time environment for executing workflows. Within their framework, it is 
possible to represent control flow graphs with transition conditions, triggers, concurrent 
execution of activities and a set of temporal constraints. The proposed system does not 
cover the specification of loops and iteration of activities and they do not address the 
problem of agent assignment and concurrent instances of workflows. They are mainly 
concerned with the development of an algorithm for consistency checking of workflows 
and for their property verification. The algorithm compiles global constraints on workflow 
execution into the control flow graph. This compile technique also helps optimize the run-
time scheduling of workflow events. In our framework, we do not study specification and 
verification of global (and temporal) constraints on workflow activities. Instead we 
concentrate on the representation of different routings of activities (including loops and 
iteration), agent assignment and concurrent workflow instances within a logic 
programming framework. Instead of proposing a new logic and its proof theory, we use the 
well-known SLD-NF procedure, which makes our framework simpler. 

Another logic-based approach is presented in [2]. They propose treating workflows as 
a collection of cooperative agents and use recent results on reasoning about actions to 
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formalize correctness of a workflow. They also discuss the automatic verification and 
construction of reactive condition-action rules that specify the workflow control. The 
workflow specification is defined as a conditional program where each transition is 
described as a sequential transition with condition. In other words, each possible path 
execution depends on the explicit specification of conjunction of conditions. (In [17], a 
more direct way of the mapping of different routings of activities to action description 
language C is shown). The main purpose is to use this framework as a formal tool for 
testing the correctness of a workflow. It can also be used to explore the behavior of “what-
if” scenarios during the construction of ad-hoc workflows. Our framework can be used for 
the same purposes. In addition, we can represent more complex workflows, concurrent 
processes and several candidate agents to perform a single task. Testing different versions 
of the workflow specification with different number of agents can be more easily done to 
explore what-if scenarios in our framework.  

8.3.  Algebraic methods 

Process algebras have been considered but not widely known in the field of workflow 
management. In [10] the specification language, which is based on process algebra, is 
extended towards workflow management. The main drawback of process algebras is that 
they are often not intuitive and hard to understand. 

In [26], an event algebra is presented for specifying and scheduling workflows. In this 
event algebra activity execution dependencies can be declaratively expressed and these 
dependencies are symbolically processed to determine which events occur and when. This 
algebra can model most features of control flow graphs, but it is not sufficient to express 
transition conditions attached to edges.  

8.4.  Event-Condition-Action Rules  

Event-Condition-Action Rules, shortly termed ECA rules, are used in active database 
systems and have been used in defining workflows [5]. ECA rules, are used to specify the 
control flow between activities. However, this specification is not as general as control 
flow graphs. They are not sufficiently expressive to represent all possible routings among 
activities. The graphical visualization of ECA rules is not easy either. Large sets of ECA 
rules are hard to handle and verify. Also, some workflow properties such as loops and sub-
workflows cannot be represented in this approach.  

In [11], a logic-based approach is presented for the integration of deductive and active 
databases. Although this work does not consider workflows at all, it is still very closely 
related to our framework, because event calculus is used to define event occurrences, 
database states and actions on these.  The formalization of an active and deductive database 
is built on the idea of a history-centered architecture. In this architecture, the component 
data store is a deductive database, where the extensional database keeps the history (i.e. set 
of event occurrences) and the semantics of event detection, condition verification and 
action execution are defined in terms of querying and updating deductive database. 
Although this work and our framework seem to have a lot in common, the objectives are 
different. In [11], the main objective is to present a logic-based approach to the 
formalization of a large set of syntactic and semantic aspects of active databases. There is 
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no notion of defining a workflow or coordination of activities to accomplish a certain task. 
Therefore, issues like activity scheduling, agent assignment, concurrent execution of 
activities or workflow instances are not addressed. The only similarity is our architecture 
which is actually an extension of the architecture proposed in [11].  

8.5.  Web Services 

A currently much related research area is web services and their composition. The literature 
on web services and the semantic web is abundant [29]. Therefore the need for a more 
rigorous formal foundation is widely discussed.  

Web services are platform and language independent software components that can be 
invoked on the web to fulfill some goals. The composition problem for web services is to 
figure out how a set of given services could be invoked to complete a given task. A number 
of flow languages have emerged for web services, such as WSFL [20], XLANG [30], 
BPEL4WS [8]. The composition of the flow is still manually obtained [27]. It is argued 
that automatic web service composition can be seen as a planning problem where given a 
domain description of the available services and user goals, the planner generates a flow 
(plan) [21,28]. In [21]  the Golog logic programming framework is used to generate service 
compositions (plans) for goals based on plan templates. Golog builds on top of the situation 
calculus by providing a set of extralogical constructs for assembling primitive actions into 
complex actions. In [28], a heuristic search planner is used to solve the planning problem 
created from the description of the available web services and the requirement of the 
composite service. The resulting plan can be generated in any web service composition 
language and executed by the corresponding flow execution engine. 

Event calculus has been used in planning [25]. Planning in the event calculus, is an 
abductive reasoning process through resolution theorem prover. Given the domain 
knowledge (i.e. a set of initiates and terminates axioms), event calculus axioms and the 
conjunction of holds_at(X, t) formulae, where t is the time point, we are interested in, the 
event calculus planner generates the set of events that lead to the specified state at time t.  
We argue that our current framework can be adapted to web service composition problem 
by viewing the flow of activities as a plan generation problem. The activities will represent 
web services and events which start activities will correspond to messages received to 
invoke web services. Flow constructs that we presented in this paper will be used to specify 
the flow of service composition. In order to model the fact that there might be several web 
services to perform the same task, we can extend the concept of agents to represent the 
candidate web services. The current framework must be extended with a service discovery 
mechanism to select the best agent depending on the preconditions of the desired goal. This 
needs to be further studied. 

9.   Conclusions and Future Directions 

This paper demonstrates the use of the event calculus to describe the specification and 
execution of activities in a workflow. The main axioms of the event calculus are integrated 
with a set of activity execution dependency rules and a set of agent assignment rules for the 
formalization of workflow systems. It is shown that major types of activity routings in a 
workflow (namely sequential, concurrent, conditional and iterative) can be expressed in a 
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declarative way. It is also illustrated that agent assignments and concurrent workflow 
instances can be modeled within the framework of the event calculus. In addition, a 
conceptual architecture of a workflow management system is presented as a basis for a 
more realistic implementation of this logic-based approach. For a quick simulation of a 
workflow, the user needs merely to specify the atomic formulas to describe the control 
flow graph and if there are any, the external events and their possible effects on the 
underlying database. The rest of the workflow management is done by the rules presented 
in this paper. 

The proposed logic-based approach can be used as a quick tool in prototyping 
applications and/or simulations of workflows. Due to its additional temporal dimension, it 
provides facilities for querying the history of all activities, thus providing opportunities to 
analyze the execution of the workflows. It can be used as an easy tool to simulate and 
verify the execution of a prototype workflow system. The workflow might be executed 
with different number of agents and assignments. The behavior of the workflow can be 
analyzed by querying the history of events and the snapshots of the workflow state at 
different times. 

In this paper we did not consider the workflows where some activities do not terminate 
successfully. Some of the activities can abort and therefore they need to be compensated or 
some kind of exception handling mechanism must be applied. As a future work, the set of 
execution dependency rules can be extended to cover such control flows. These extensions 
do not require substantial changes to the proposed architecture. Broadly speaking, what 
needs to be done is to define additional scheduling rules to the set of axioms AxS, so that 
when an activity does not end, the execution is diverted to another route of activities, which 
will be used either to abort the workflow or compensate the failed activity.  

Other extensions are possible to the implementation of the system to ease its use. For 
instance a graphical tool might be integrated to the architecture to provide the user with the 
facility of drawing the control-flow graph of the workflow. Then another application might 
map this graph into a set of atomic formulas presented in this paper automatically.  

The paper presents a simple agent assignment algorithm where each activity is 
assigned to the best (i.e. the least costly) available agent by the scheduler. This simplistic 
view of agent assignment might be changed to implement more sophisticated algorithms in 
order to test the behavior of a certain workflow so that the execution can be optimized. 
This and other optimization problems for the execution of workflows are open problems. 
Likewise, addition of global constraints and reasoning with them using the axioms of event 
calculus is another interesting research topic.  

Workflow has moved inexorably towards Web services in the last two years. Web 
services provided by various organizations can be inter-connected in order to implement 
business collaborations, leading to composite web services. The composition of the web 
services is still manually obtained. The semantic web community draws on AI planning for 
automatically composing services [21]. The notion of event calculus can also be viewed as 
an opportunity to take advantage of the latest developments in web services. Modern 
workflow engines will be asynchronous, with the process enactment driven by the arbitrary 
arrival of messages from different sources. Event calculus could be a way to specify and 
reason about web composition where the actual process model is not known. 
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Appendix 

The appendix presents the definitions of the auxiliary predicates that have been used in 
this paper. The definitions are presented as Prolog-style rules. 

The 3-argument predicate findActEndTimePairs (used in AxS 3) finds the ending times 
of all predecessor activities in an AND-join. The third argument is a list of (activity, ending 
time) pairs if all the incoming activities have completed their executions. 

findActEndTimePairs(ActList, W, ActTimePairs) ← 
 findall((Act, EndTime),  

            (member(Act, ActList), happens(end(Act, _, W), EndTime)),  
ActTimePairs), 

length(ActList, ActListLen), length(ActTimePairs, ActTimePairsLen), 
ActListLen = ActTimePairsLen. 

The 3-argument predicate actWithMaxEndTime (used in AxS 3) simply calls its 4-
argument definition in order to find the maximum ending time in the list of (activity, 
ending time) pairs. The subsequent activity in an AND-join can start execution only if all 
incoming activities are completed. Therefore the maximum ending time is found to 
determine the starting time of the subsequent activity. 

actWithMaxEndTime([FirstPair | ActEndTimePairs], Act, EndTime) ← 
 actWithMaxEndTime(ActEndTimePairs, FirstPair, Act, EndTime). 

actWithMaxEndTime([], (Act, EndTime), Act, EndTime). 
actWithMaxEndTime([CurrPair | Rest], CurrMax, Act, EndTime) ← 

 CurrPair = (Act1, T1), CurrMax = (Act2, T2), T1 > T2, 
 actWithMaxEndTime(Rest, CurrPair, Act, EndTime). 

actWithMaxEndTime([CurrPair | Rest], CurrMax, Act, EndTime) ← 
 CurrPair = (Act1, T1), CurrMax = (Act2, T2), T1 ≤ T2, 
 actWithMaxEndTime(Rest, CurrMax, Act, EndTime). 

The 3-argument predicate findOneActEndTimePair (used in AxS 5) finds the 
predecessor activity that has been completed in an XOR-join, with its ending time. It 
simply checks each activity in the XOR-join with the predicate member to see whether it 
has been finished.  

findOneActEndTimePair(ActList, W, Act, EndTime) ← 
  member(Act, ActList), happens(end(Act, _, W), EndTime). 

The predicate setIterationNo (see AxS 6) is used to generate the execution id of an 
activity in a block in the next iteration. The functional term representing the execution id of 
an activity includes the workflow instance number, block name and the iteration number. 
Therefore this predicate simply changes the third argument of the functional term 
representing the execution id.  The user should note that IterationNo is an unbound variable 
when this predicate is invoked. 

setIterationNo(Act, N) ← 
 Act = act(_,  b(_, _ ,  IterationNo)), IterationNo = N. 
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Similary, the predicate getIterationNo (see AxS 6) is used to extract the iteration 
number in the execution id of a given activity. 

getIterationNo(Act, IterationNo) ← 
 Act = act(_, b(_, _ , IterationNo)). 
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