
Induction of Logical Relations Based on Specific
Generalization of Strings

Yasin Uzun
Dept. of Computer Engineering

Bilkent University
06800 Bilkent Ankara, TURKEY
Email: yasinu@cs.bilkent.edu.tr

Ilyas Cicekli
Dept. of Computer Engineering

Bilkent University
06800 Bilkent Ankara, TURKEY

Email: ilyas@cs.bilkent.edu.tr

Abstract—Learning logical relations from examples expressed
as first order facts has been studied extensively by the Inductive
Logic Programming research. Learning with positive-only data
may cause over generalization of examples leading to inconsistent
resulting hypotheses. A learning heuristic inferring specific gen-
eralization of strings based on unique match sequences is shown
to be capable of learning predicates with string arguments. This
paper describes an inductive learner based on the idea of specific
generalization of strings, and the given clauses are generalized
by considering the background knowledge.

I. INTRODUCTION

Inductive Logic Programming, shortly ILP, is a relatively
new research area that is between Machine Learning and Logic
Programming, and inherits the techniques and theories from
both disciplines. The aim of ILP research is to learn logic pro-
grams, given examples and background knowledge expressed
in Horn clause logic, which correctly define a single concept
or multiple related concepts. The learned logic programs are
usually expressed in Prolog syntax and declarative property of
logic programs is the main source of efficiency of ILP.

Common approach in state-of the art ILP paradigm is to
produce general clauses from positive examples and restrict
their coverage by the help of negative examples. In domains
where there is positive-only data, the systems may not be
able to learn the concepts correctly because of the absence of
negative examples. The problem is so substantial and common
that, Progol system [5] is designed to work in a different mode
when there is only positive data.

One application area of ILP is learning predicates having
string arguments, which can occur in many domains such
as Grammar Learning and Machine Translation. The bottom-
up method Least General Generalization proposed in [2]
may cause overgeneralization in the clause generation in the
absence of negative examples. In [1], a specific generalization
(SG) of two strings is proposed to reduce overgeneralization.
To compute SG, unique match sequence, which is a sequence
of similarities and differences, is found in the initial step and
followed by the generalization by replacing differences with
variables.

Although [1] proposes a heuristic for generalization of
strings, it is far from being an ILP system because of lack
of background knowledge processing. The purpose of the re-
search that is materialized in this paper was to develop an ILP

system based on the specific generalization idea. We achieved
this purpose by extending the specific generalization algorithm
taking the background clauses into consideration. We showed
that the system works effectively in several example domains.

The rest of this paper is organized as follows. Specific
generalization of strings, proposed in [1] is discussed in
Section 2. In Section 3, we explain the construction of an
inductive learner, which we name InGen, based on the specific
generalization heuristic outlined in Section 2. Experimental
results are given in Section 4. Section 5 concludes the paper
with future directions to study.

II. STRING GENERALIZATION

A. Motivation

Learning by positive-only data is a difficult task in ILP
due to the possible overgeneralization caused by the lack of
restriction induced by negative examples. But in real-life, we
have many domains where we have only positive examples
such as Grammar Learning and Machine Translation. There
have been attempts [3], [4], [5] to propose a solution for
learning from positive-only data such as statistical techniques
using prior probabilities or closed world assumption. In closed
world assumption approach, every possible ground clause not
given in the positive example set is produced by the system
and labeled as negative.

Predicates defined on string arguments occur in many do-
mains such as Grammar Learning and Machine Translation.
In [1], the authors propose a solution for learning predicates
that have string arguments in domains having no negative
examples. The proposed methodology is based on the notion
of unique match sequence, which is based on similarities
(subsequences occurring in both strings) and differences (sub-
sequences differing among strings) of two strings. The unique
match sequence is generalized using Plotkin’s LGG schema.

Suppose we have two positive examples with predicate
endsWith in Prolog notation, where lists represent strings:
endsWith([a,b], [x,y]).
endsWith([c,d,b], [w,z,y]).

Although these two predicates share the common property that
first argument is a list ends with b, and second argument is a
list ends with y, GOLEM [6], which also uses LGG schema,
overgeneralizes this pair with result:

endsWith([A,B|C],[D,E|F]).
which accepts all endsWith predicates with list pair having
length at least two as input. The output of Progol [7], which
is based on similar principles with GOLEM is:
endsWith([a,b], [x,y]).
endsWith([c,d,b], [w,z,y]).

which overfits on the examples and covers nothing more.
The string generalization technique proposed in [1] learns the
following clause with the same example pair:
endsWith(L1,L2) :-

append(X,[b],L1), append(Y,[y],L2).
which accepts clauses with predicate endsWith, and the last
elements of the first and second arguments are b and y.
respectively.

B. Preliminaries

The mentioned methodology makes generalizations by pro-
cessing similarities and differences of strings. A match se-
quence is the sequence of similarities and differences be-
tween two strings. Informally, a similarity between two
strings is common subsequence of symbols and a differences
are the subsequences between similarities. For a string pair
(abcd, abe); ab is the similarity and (cd, e) represents the
difference.

Although the string pair (abcd, ecfg) has a single match
sequence (ab, e)c(d, f), the pair (abc, dbebf) has two match
sequences (a, d)b(c, ebf) and (a, dbe)b(c, f) since b appears
twice in the second string.

In the article, a specific case of a match sequence, the
notion of unique match sequence is defined with two additional
restrictions on a match sequence:

• Symbols occurring in similarities and differences consti-
tute two disjoint sets. This rule enforces that, a symbol
occurring in one of the similarities can not occur in any
difference.

• Symbols of first and second constituents of differences
constitute two disjoint sets. This rule enforces that, com-
mon symbols can only occur in similarities.

These two restrictions together provide that only string pairs
whose common symbols occur the same number of times in
the same order can have a unique match sequence. Some
examples that can clarify the notion of unique match sequence
are:

• UMS(abceb, fgbhb) = (a,fg)b(ce,h)b.
• UMS(ab, ab) = ab.
• UMS(abc, xyz) = (abc, xyz).
• UMS(abcb, dbebf) = (a,d)b(c,e)b(ε,f).
• UMS(abc, abdb) = φ.
• UMS(ab, ba) = φ.

The authors introduce the notions of separable and sepa-
ration differences are to provide further capturing of similar
patterns. In short, difference (D1, D2) is said to be separable
by difference (d1, d2) if d1 and d2 occur the same number of
times and greater than zero in D1 and D2, respectively. We
say that a difference (D1, D2) is divided by another difference

if (ums(α1,α2) does not exist)
There is no possible generalization

else
SIofUMS ← ums(α1, α2)
while (there is a MUSD that separates

SIofUMS with factor ≥ 2)
SIofUMS ← separation(SIofUMS, MUSD)

SG ← InverseSubsitute(SIofUMS)

Fig. 1. Finding Specific Generalization

(d1, d2) with separation factor n where n is the number of
times d1 occurs in D1 and d2 occurs in D2.

For instance, the difference (aba,cdc) is separable by differ-
ence (a,c) with factor 2. However, the difference (aba,cd) is
not separable by difference (a,c) since a occurs twice in the
first constituent while c occurs in the second constituent only
once.

Separation of a difference (D1, D2) with
separation difference (d1, d2) is the sequence
(α1, β1)(d1, d2)(α2, β2)(d1, d2) . . . (d1, d2)(αn, βn), where
D1 consists of the sequence α1d1α2d1 . . . d1αn and D2

consists of the sequence β1d2β2d2 . . . d2βn, and empty
differences are dropped. separation of a match sequence with
a difference is the sequence of similarities and separation of
all differences with that difference.

In the framework terminology, the separation differences
that separate all the differences in that match sequence and
increase the number of differences more than once after the
separation of a difference are discriminated as useful. As an
instance of this concept, while (a,b) is a useful separation
difference for match sequence (ac,bde)g(a,b) since the total
number of differences which occur more than once increases
from 0 to 2 after the separation, (ab,d) it is not a useful sepa-
ration difference for this difference since the same parameter
does not increase after the separation.

For a match sequence to be separated, the authors describe
the most useful separation difference as the one among useful
separation differences that separates the match sequence with
the greatest factor. If there are more than one useful separation
differences separating with the greatest factor n, the separation
of the match sequence with most useful separation difference
should be still separable by the other differences with factor
n.

There can be many useful separation differences for a match
sequence but there is at most one most useful separation
difference. For instance, the most useful separation difference
for match sequence (cac,bdb)g(cf,bg) is (c,b) with separation
factor 3. For match sequence (ab,c) g(ab,c), there is no most
useful separation difference, because neither of (a,c) and (b,c)
has the superiority over the other.

C. Methodology

1) Finding Specific Generalization: : The specific gener-
alization of strings α1 and α2 is computed (if exists) by
the algorithm in Figure 1. Once unique match sequence of
the string pair is found (if there is), the best (not always

most) specific instance of the sequence is computed first.
In this algorithm, the specific instance of a match sequence
is computed by dividing the match sequence iteratively by
the most useful separation difference. The iterations continue
until none of the useful separation differences can be favored
among others. The inverse substitution step is the operation of
replacing differences with variables, with the restriction that
same differences correspond to same variables in the result.

As an instance that shows how specific generalization
works, consider the generalization of a string pair abcdfc and
abghefg. The common subsequences of these strings are ab
and f. Therefore the unique match sequence of the pair is
ab(cd,ghc)f(c,g). For this match sequence, (c,g) is the most
useful separation difference with separation factor 2. The
separation of the sequence with this difference gives the new
sequence: ab(c,g)(d,he)f(c,g). Since there is no most useful
separation difference for this new sequence, we conclude that
ab(c,g)(d,he)f(c,g) is the most specific instance for the gener-
alization of the string pair. Applying the inverse substitution
process, we get the generalized string abXYfX as the result of
the specific generalization procedure.

A generalized string is a sequence of characters and vari-
ables such as abX, which represents all strings starting with
ab. The generalized set GS of a generalized string is all
the possible strings that are represented by that string. For
instance, GS(abX) = All strings starting with ab.

2) Generalizing Predicates: : The proposed method for
generalizing predicates is a coverage procedure based on
specific generalization of strings. Every generalization rule
includes append predicate implicitly in their bodies. For in-
stance, a predicate definition noted as p(Xa) corresponds to
p(L) :- append(X,[a],L)

in Prolog notation.
Two clauses having string arguments are generalized using

specific generalization of their arguments if exists. The gener-
alization of two strings α1, α2 is their specific generalization,
if their specific generalization exists, and it is not a (most
general) single variable X.

Assume that S is a set of ground strings α1, α2, . . . , αn.
EG(α) represents set of ground strings represented by α,
where α is a ground or generalized string. To construct the
generalized set GEN(S) for a set of strings S, generalizations
of all string pairs are computed and put into GEN(S). In
the second step, among the generalizations that cover the
same examples, the more specific one is kept and the other
is removed from the set. Next, the generalizations whose
coverage sets are subset of coverage of another generalization
are removed from the set. Lastly, if there are generalizations
such that all the examples that it covers are also covered by
another subset, they are removed from the generalization set.
Then S is initialized to GEN(S) and the whole procedure is
repeated until there is no possible generalization that can be
computed.

To illustrate how the algorithm works, consider the exam-
ple clause set {p(ba), p(cda), p(a), p(aa), p(faga)}. Firstly,
GEN(S) is initialized to the set of arguments S =

GEN(S) ba cda a aa faga
Ex. used {1} {2} {3} {4} {5}
EG set {1} {2} {3} {4} {5}

a. After Initialization Step

GEN(S) Xa XaYa ba cda a aa faga
Ex. used {1, 2, 3} {4, 5} {1} {2} {3} {4} {5}
EG set {1, 2, 3, 4, 5} {4, 5} {1} {2} {3} {4} {5}

b. After First Iteration

GEN(S) Xa
Exs {1, 2, 3}
EG {1, 2, 3, 4, 5}

c. Final Result

TABLE I
GENERALIZATION OF STRINGS ba, cda, a, aa, faga

{ba, cda, a, aa, faga} as in Table I.a. In first iteration, Xa,
which is the specific generalization of ba, cda, a; and XaYa,
which is the specific generalization of aa, faga are added
to GEN(S) as in Table I.b. Since EG(ba), EG(cda), EG(a),
EG(aa), EG(faga) and EG(XaYa) are all subsets of EG(Xa),
they are removed from the generalization set and generalized
clause set will consist of a single clause in the end, which is
p(Xa) as in Table I.c.

The predicates with multiple string arguments can be gen-
eralized in the same way with a little modification. The
argument sequence can be treated as a single string separated
with a special symbol such as ‘:’, which must not occur
as any part of the input. For instance, two example clauses
such as, p(a,bac) and p(d,fde) can be treated as p(a:bac)
and p(d:fde) and the resulting generalization is p(X:YXZ),
which corresponds to p(X,YXZ). Therefore the methodology
also finds the interdependencies between arguments of a single
predicate.

III. INTEGRATION OF BACKGROUND KNOWLEDGE

As pointed out in the initial section, the aim of the research
documented in this paper is to develop an inductive learning
system for domains with positive-only data, using the idea of
string generalization proposed in [1]. For this purpose, initially,
we define the concept language that our system will work
with. The second point that has been worked is to extend
the technique to consider arbitrary first-order background
predicates.

A. Language

Studies on attribute-value learning paradigms suffer from
the lack of a standard language and notation. Inductive learn-
ing systems take their power from the declarativeness of the
language they use, and Prolog is accepted almost the standard
for these systems. The methodology described in this section
also takes the input in Prolog notation, but the language is
restricted form of Prolog. The example set and background
knowledge consist of function-free ground literals without
bodies, which correspond to real-life facts. All the examples
in the given set must have the same predicate as we aim to
build an empirical single predicate learner, but background

knowledge may include several types of predicates. In this
context, a sample example set may be:

daughter(sibel, ahmet). daughter(sibel, zehra).
Background knowledge may be:

parent(zehra, sibel). parent(ahmet, sibel).
The output hypotheses consist of function-free Horn clauses
such as:

daughter(sibel, X) : −parent(X, sibel).

B. Generalization

We generalize input examples by considering all symbolic
arguments as a singleton list, and argument boundaries are
specified by the special symbol ‘:’. Therefore usage of this
symbol as a separate token is not allowed in the input and
background knowledge set. This rule does not restrict the
language, since a midlevel input can be generated by another
token that does not occur in the input and post-process the
output to reverse the replacement. So, the impact of preprocess
is as follows:

p([a], [b], [a, c]) is converted into p([a, :, b, :, a, c]).
p([d], [b], [d, e]) is converted into p([d, :, b, :, d, e]).

From this point on, we treat each token in our system as a
single symbol. That is, tokens correspond to characters, and
lists correspond to strings in string generalization framework
proposed in [1].

Having the argument of each example converted into a
single list, we investigate the existence of unique match
sequence for each pair of these lists. For a pair, if there is not
a unique match sequence, we say that there is not any possible
generalization for this pair. Otherwise, we compute the unique
match sequence and search for its most useful separation
difference as defined in Section II-B. If there is not such a
difference, the specific instance is the match sequence itself.
If there is a most useful separation difference, the most specific
instance is computed using the specific instance algorithm in
Figure 1 in Section II-C.

The generalization algorithm can be summarized as Fig-
ure 2. This algorithm generalizes two examples with respect
to background knowledge. The algorithm returns a set of
generalized clauses, and each generalized clause in the set
at least covers the example clauses used in the generalization
process. The selection criteria to create a hypotheses set which
cover all given examples is described in Section 3.3. The
algorithm in Figure 2 first finds the specific instance of the
unique match sequence of the arguments of the examples.
Then, it creates a generalized clause template from this specific
instance. The generalized clause templates are specialized
by appending body literals with the help of background
predicates. A background predicate is added as a body literal
if a difference in a generalized clause template is covered
by an argument position of that background predicate. A
difference (dl, dr) is covered by a background predicate if d l

and dr appear in a same argument position of that background
predicate. Specialization process continues as long as there is
a difference which is not covered by a body literal.

Generalize(p(arg1), p(arg2))
if (uniqueMatchSequence(arg1, arg2)

does not exist) then
There is no possible generalization, and return

the empty set as result.
else {

ums ← uniqueMatchSequence(arg1, arg2),
SIofUMS ← specificInstance(ums)
genaralizedCls ← { p(SIofUMS) }
while (there is generalizedCl in generalizedCls

such that a difference of generalizedCl can
be covered by a background predicate and
that difference has not been already covered by
the background predicate in generalizedCl) {

Drop generalizedCl satisfying the loop condition
from generalizedCls

Let assume that the difference (l, r) has not been
previously covered in generalizedCl by a
background predicate q, and (l, r) can be covered
by the ith argument of q with two coverage results
q(l1, ..., li−1, l, li+1, ..., ln) and
q(r1, ..., ri−1, r, ri+1, ..., rn)

Copy generalizedCl into specializedCl
Add q((l1, r1), ..., (l, r), ..., (ln, rn)) into

the body of specializedCl
Add specializedCl into generalizedCls

}
Replace all differences in the generalized clauses in

generalizedCls with appropriate variables
Return generalizedCls

}

Fig. 2. Generalization algorithm of InGen

The unique match sequence of the arguments of initial
two examples given above is ([a] , [d]) [:, b, :] ([a, c] , [d, e]).
The most useful separation difference for this unique match
sequence is ([a] , [d]) with separation factor 2. Therefore we
separate the UMS with this separation difference and get
([a] , [d]) [:, b, :] ([a] , [d]) ([c] , [e]) as the result. Since there is
not a useful separation difference for this match sequence, we
conclude that it is the most specific instance and it can be used
in the generalization for this example pair. Thus, the gener-
alized clause template p(([a] , [d]) [:, b, :] ([a] , [d])([c] , [e])) is
put into the set of generalized clauses.

Background predicates are handled at this point, after
computing the specific instance. For each difference in the
most specific instance, we search a background predicate
that contains both left and right constituents in one of its
arguments, by using a breadth-first algorithm. If there is such
a predicate, we stop the search and reconstruct the initial
example pair and extend both of them using the clause that
provides coverage.

For instance, for the example clauses given above, assume
the background clauses are also provided as follows:

q([a], [f]). q([d], [g]). q([b], [a]). r([f]). r([g]). r([h]).

Examples Background Clauses
daughter(senay, mehmet). ⊕ parent(mehmet, senay). female(senay).
daughter(senay, fatma). ⊕ parent(fatma, senay). female(nese).
daughter(nese, halil). ⊕ parent(halil, nese). female(fatma).
daughter(nese, aylin). ⊕ parent(aylin, nese). female(aylin).

TABLE II
THE DAUGHTER EXAMPLE

In the background knowledge, we see that predicate q covers
both constituents of the difference ([a] , [d]) in the generalized
clause template p(([a] , [d]) [:, b, :] ([a] , [d]) ([c] , [e])), there-
fore we specialize this template as follows:

p(([a] , [d]) [:, b, :] ([a] , [d])([c] , [e])) : −
q(([a] , [d]) [:] ([f] , [g])).

When we repeat the same procedure for the new generalized
clause, we discover that the difference ([f] , [g]) is covered by
predicate r, and the new specialized clause is as follows:

p(([a] , [d]) [:, b, :] ([a] , [d])([c] , [e])) : −
q(([a] , [d]) [:] ([f] , [g])) & q(([f] , [g])).

Next, we see that there is no other difference that can be
coverable by a background predicate, therefore we stop spe-
cialization process.

The next issue is the generalization of found generalized
clause templates. In this step, similarities are kept as constants,
as performed in the specific generalization algorithm listed
in Figure 1 in Section II-C. Note that, if there are several
arguments, all ‘:’ symbols must occur as similarities, since
they occur the same number of times in each input list. The last
process in this step is to replace the differences with variables,
respecting the rule that the same differences are replaced with
the same variables. Therefore the generalization that will be
extracted for the example pair given above is:

p(X [:, b, :] X Y) : − q(X [:] Z) & q(Z).
that corresponds to the following Prolog clause:

p(X, b, L) : − append(X, Y, L), q(X, Z), r(Z).

C. Construction of the hypotheses

In our system, the hypotheses set consists of the general
clauses computed by generalization algorithm in Figure 2
and the examples themselves. The generalization algorithm
is executed for all example pairs, and all generated general-
ized clauses are put into the hypotheses set. From a set of
generalized clauses, we select the best clause with respect to
our selection criteria in order to put it into the hypotheses and
remove the examples covered by this clause. In the next step,
the clauses that do not cover any example are removed from
the clause set and the best clause from the remaining clause is
chosen. Disjunction of selected clauses build the hypotheses.
The iteration procedure continues until all the examples are
covered by the hypotheses.

To select the best clause to add into the hypothesis, various
criteria are applied for selection of best clause in the following
order:

1) The number of free variables, which are the variables
that appear only once in the body of a generalized clause.
The clauses having fewer free variables are preferred

Clause Free variables Background literals Covered examples
c1 0 1 2
c2 0 1 2
c3 0 2 4
c4 0 3 2

TABLE III
INPUT CLAUSES FOR LEARNING DAUGHTER RELATION

over the others, since we believe that greater number of
free variables lead to irrelevant clauses.

2) The number of examples that are covered by the clause.
The clauses that cover more examples are favored over
the others.

3) The number of body literals. The clauses having greater
number of background literals are favored over the
others, since we believe that each background literal
introduces further specialization and more specific gen-
eralizations.

To illustrate how our methodology works, consider the case
of learning daughter example, with instances of background
knowledge clauses, female and parent, as in Table II. The
initial clauses generated by InGen are:

c1 = daughter(senay, X0) : − parent(X0, senay).
c2 = daughter(nese, X0) : − parent(X0, nese).
c3 = daughter(X0, X1) : −

parent(X1, X0), female(X0).
c4 = daughter(X0, X1) : −

parent(X1, X0), female(X0), female(X1).
The value of the selection criteria for each of the clauses are
in Table III

Among the generated clauses, we observe that each of c1,
c2, c3, c4 does not include free variables. Since clause c3

covers all of the examples, it is selected into the hypotheses
set. Therefore the output hypothesis is:

H = {c3} =
{daughter(X0, X1) : − parent(X1, X0), female(X0).}

which is the correct description of the concept.
There may be cases where some examples are covered by

none of the generalized clauses. In such cases, the examples
which are not covered by any of the clauses are lastly added
to the hypotheses set to make the hypotheses complete with
respect to the given example set.

IV. EXPERIMENTATION

We evaluated the performance of our system with several
example sets. In this paper, we showed the performance of
ours system in two family relations, namely daughter and aunt,
and compared the generated results with two concurrent ILP
learners, Progol and FOIL. The results show that InGen is
somewhat competitive with these state-of-art systems.

For the learning daughter relation problem given in previous
section, in order to start learning, Progol system needs mode
and type declarations. That is, in addition to presentation of
inputs in Prolog notation, Progol requires:
modeh(1,daughter(+person,+person))?
modeb(*,parent(-person,+person))?
modeb(*,parent(+person,-person))?

Example set (All positive) Background Clauses
aunt(jane,henry). father(sam,henry). sister(jane,sam).
aunt(sally,jim). parent(sam,henry). sister(sally,sarah).
aunt(judy,jim). mother(sarah,jim). sister(judy,sarah).

parent(sarah,jim).

TABLE IV
INPUT CLAUSES FOR LEARNING AUNT RELATION

modeb(*,female(+person))?
as mode declaration and
person(nese).
person(ali).
person(senay). ...

as type declaration. However, even with this additional infor-
mation, the most specific clause produced by Progol for this
input set is:
daughter(A,B) :-
parent(B,A), parent(C,A), female(A).

and the output hypotheses produced is a single clause:
daughter(A,B) :- parent(B,A).

discarding the condition that A must be female, and is incon-
sistent. For the same input examples presented in a similar
way, FOIL gives the same result as output.

For the same example, InGen does not need any type
or mode declaration. As mentioned in the previous chapter,
the output hypotheses generated by InGen for the daughter
example set is:
daughter(X0, X1) :-
parent(X1, X0), female(X0).

which is the correct description of the concept and shows that
InGen is able to find the correct concept description using only
examples and background clauses.

The aunt relation is generated and used by Muggleton to test
his system Progol. The example set consists of three positive
examples of the concept a person being aunt of another one,
and a background knowledge set that includes father, mother,
sister and parent relations that are related with the example
set. This example is more complex and has features that can
mislead an ILP system because a new variable (standing for the
parent) must be introduced to correctly describe the concept.

The example and background knowledge set are as in
Table IV. For this input, Progol can learn the relation:
aunt(A,B) :- parent(C,B), sister(A,C).

successfully. Furthermore Progol is capable of learning the
same fact using the non-ground background clauses:
parent(Parent,Child) :-
father(Parent,Child).

parent(Parent,Child) :-
mother(Parent,Child).

instead of:
parent(henry,sam). parent(jim,sarah).

which InGen is incapable of. FOIL was unable to answer for
this input. InGen produces the following clauses:
aunt(X0, X1) :-
sister(X0, X2), parent(X2, X1).

aunt(X0, jim) :- sister(X0, sarah).
The first clause takes its root from the generalization of the

first and second examples and the second clause takes its root
from the generalization of the last two. The output is:
aunt(X0, X1) :-
sister(X0, X2), parent(X2, X1).

which is complete and correctly describes the concept. The
first clause is preferred over the second since it covers all
three examples while the second clause covers the last two.

V. CONCLUSION

The research outlined in this paper is an initial attempt
to build an ILP system based on the specific generalization
of strings proposed in [1]. The main contribution was that,
usage of background knowledge for string generalization is
integrated. By considering the background predicates and
differences that covered by background predicates, the gener-
alized clauses are further specialized by adding body literals.

The experiments we performed demonstrate that the system
is an effective learner. It could successfully learn the family re-
lations such as daughter, aunt and granddaughter, a card game,
and possible grammatical structure of English sentences.

Although our system is capable of learning these concepts
successfully, it is not a perfect ILP system. There are several
potential directions to study to make our system better:

• The system is capable of learning function-free ground
clauses only. The concept description language may be
enlarged to cover functional and non-ground clauses.

• Our system is not capable of inventing new predicates,
which may be necessary for learning some concepts such
as sorting.

• The system should be tested with dataset having several
thousands of examples to test its effectiveness.

• Different clause selection criteria can be applied.

As a conclusion, this work is an initial attempt for building an
ILP system using specific generalization of strings and it can
serve as a basis for future research to construct an effective
learner using the same notion.

REFERENCES

[1] Cicekli, I. and Cicekli, N.K. Generalizing predicates with string argu-
ments. Applied Intelligence. (2005).

[2] Plotkin, G.D. Automatic methods of inductive inference. PhD. Thesis,
Edinburgh University. (1971).

[3] Dzeroski, S. Cussens, J., Manandhar S. An Introduction to Inductive
Logic Programming and Learning Language in Logic. Learning Language
in Logic. (2000).

[4] Mooney, R.J. and Califf M.E. Induction of First-Order Decision Lists:
Results on Learning the Past Tense of English Verbs. Journal Of Artificial
Intelligence Research. (1995).

[5] Muggleton, S. Learning from Positive Data. Machine Learning. (2001).
[6] Muggleton, S., Feng, C. Efficient Induction of Logic Programs. Proceed-

ings of the First Conference on Algorithmic Learning Theory. (1990)
[7] Muggleton, S. Inverse Entailment and Progol. New Generation Comput-

ing. (1995).
[8] Quinlan, J.R. Learning relations: comparison of a symbolic and a con-

nectionist approach. University of Sydney. (1989).
[9] Lavrac, N., Dzeroski, S. Inductive Logic Programming. Ellis Horwood.

(1994)
[10] Mitchell, T. M. Machine Learning. McGraw-Hill Sci-

ence/Engineering/Math. (1997)
[11] Lloyd, J.W. Foundations of Logic Programmming. Springer-Verlag.

(1984)

