
Natural Language Query Processing in
Multimedia Ontologies

Filiz Alaca Aygul1, Nihan Kesim Cicekli2 and Ilyas Cicekli3

1Turkish Scientific and Technological Research Council (TUBITAK), Ankara, Turkey
2Department Department of Computer Engineering, METU, Ankara, Turkey

3Department of Computer Engineering, Hacettepe University, Ankara, Turkey

filiz.alaca@iltaren.tubitak.gov.tr, nihan@ceng.metu.edu.tr, ilyas@cs.hacettepe.edu.tr

Keywords: Natural Language Querying, Spatio-Temporal Querying, MPEG-7 Ontology, SPARQL

Abstract: In this paper a natural language query interface is developed for semantic and spatio-temporal querying of
MPEG-7 based domain ontologies. The underlying ontology is created by attaching domain ontologies to
the core Rhizomik MPEG-7 ontology. The user can pose concept, complex concept, spatial, temporal,
object trajectory and directional trajectory queries. Furthermore, the system handles the negative meaning in
the user query. When the user enters a natural language query, it is parsed with the link parser. According to
query type, the objects, attributes, spatial relation, temporal relation, trajectory relation, time filter and time
information are extracted from the parser output by using predefined information extraction rules. After the
information extraction, SPARQL queries are generated, and executed against the ontology by using an RDF
API. The results are used to calculate spatial, temporal, and trajectory relations between objects. The results
satisfying the required relations are displayed in a tabular format and the user can navigate through the
multimedia content.

1 INTRODUCTION

Due to the increasing diversity and volume of
multimedia data, the problem of storing and
querying the semantic content of such data has
attracted the attention of a considerable amount of
research work (Donderler, Saykol, Ulusoy and
Gudukbay, 2003; Koprulu, Cicekli and Yazici, 2004;
Ren, Singh, Singh and Zhu, 2009). MPEG-7
standard is proposed in order to standardize the
description of semantic contents of multimedia data.
Since it is implemented by XML-Schemas, it does
not have a reasoning capability. Also, its XML
based architecture prevents interoperability between
multimedia management systems. In order to
overcome these difficulties of MPEG-7 standard,
four MPEG-7 based multimedia ontologies,
represented in OWL, have been developed (Troncy,
Celma, Little, Garcia and Tsinaraki, 2007).

In order to query the contents of ontologies or
knowledge bases, there are some formal query
languages such as SPARQL (Prud’hommeaux and
Seaborne, 2008) and SeRQL (Broeskstra and
Kampman, 2003). Since these languages have a

quite complex syntax and require a good
understanding of both the underlying schema and the
language syntax, they are not preferred by the casual
end users. Five different methods have been
proposed to ease the query construction over
ontologies: keyword-based, graph-based, form-
based, view-based, and natural language based.

Users are mostly familiar with keyword-based
querying due to the popularity of search engines like
Google. SPARK (Zhou, Wang, Xiong, Wang and
Yu, 2007), Q2Semantic (Wang, Zhang, Liu, Tran
and Yu, 2008), SemSearch (Lei, Uren and Motta,
2006), and GuNQ (Bhatia, Gaharwar, Patnaik and
Sanyal, 2006) construct queries using keyword-
based methods. The common problem with these
methods is that they produce lots of results and it is
hard to choose the most relevant result. In the graph-
based methods (Russell, Smart, Braines and
Shadbolt, 2008; Borsje and Embregts, 2006), the
user constructs the SPARQL query by drawing an
RDF graph. This approach is not feasible for end
users either, because the user should be familiar with
the SPARQL syntax and the RDF Schema. Form-
based query interfaces are easy to use for end users.
The form displays the ontology entities in a user

friendly manner and the details of the underlying
ontology are hidden from the user. The query is
being generated while the user fills the form. This
approach is suitable for only small-scale ontologies
because a form should be created for each query
type. In view-based interfaces (Athanasis,
Christophides and Kotzinos, 2004; Catarci, Dongilli,
DiMascio, Franconi, Santucci and Tessaris, 2004;
Jarrar and Dikaiakos, 2008), the user can browse an
ontology and select the subjects, the properties and
the objects to generate the query. It can be a little
tricky and time-consuming for non-experienced
users. The most sophisticated method for querying
semantic data is natural language based querying
(Erozel, Cicekli and Cicekli, 2008; Kara, Sabuncu,
Akpinar, Alan, Cicekli and Alpaslan, 2010;
Kaufmann, Bernstein and Fischer, 2007; Tablan,
Damljanovic and Bontcheva, 2008).

In this paper, a natural language interface is
presented for querying ontologies which contain
multimedia data. The underlying ontology is created
by attaching domain ontologies to the core Rhizomik
MPEG-7 ontology (García and Celma, 2005). The
ontology is used to represent the semantic content of
a video file. For each object in the ontology, the
frame intervals during which the object is seen in the
video, and the minimum bounding rectangles which
specify the position of the objects are annotated. By
using the natural language interface, the user can
pose concept, complex concept (objects connected to
each other with an “AND” or “OR” connector),
spatial, temporal, object trajectory and directional
trajectory queries. The contributions of this paper
can be summarized as follows:
 The main contribution of this paper is a natural

language (English) query interface for concept,
spatio-temporal and trajectory queries over the
MPEG-7 based domain ontologies.

 The proposed solution is a generic solution in
which any domain ontology can be queried
with this system.

 MPEG-7 based domain ontologies are used in
this study, as a result we benefit from the
reasoning mechanism and handle the semantic
interoperability problem. The user can pose
queries to the system without struggling with
the complex syntax of formal ontology query
languages.

 The details of the underlying ontology are
hidden from the user, which provides some
level of abstraction.

 The semantic objects can be queried with their
attributes.

 Complex concept querying is also provided.

The rest of the paper is organized as follows.
Section 2 introduces the system architecture and
Section 3 presents the supported query types
together with their internal representations. Section 4
discusses the mapping of queries to SPARQL
queries. Section 5 presents query processing by
discussing the execution of each query type. Section
6 concludes the paper with some remarks.

2 SYSTEM ARCHITECTURE

In this paper, a natural language querying interface
is presented for querying multimedia domain
ontologies which are attached to the core Rhizomik
MPEG-7 Ontology. The system accepts natural
language input from the user, parses it with the link
parser, generates the SPARQL query according to
the query type, and finally executes the query
against the ontology. The query results are processed
to calculate spatial, temporal and trajectory
relationships according to the type of the query. The
system architecture is presented in Figure 1.

Figure 1. System architecture for querying
multimedia domain ontologies.

NLP Query Form is the main user interface of
the application. It allows the user to select ontology
and a video. The user enters the natural language
query by using this form. The results of the executed
query are displayed in a tabular format. By double
clicking on a result, the user can view the video
fragment that corresponds to the selected result.

 Link Parser module is used to parse the natural
language input in order to produce the linkage
information of the input query.

Information Extractor module uses the output of
the link parser to construct an internal representation
of the query from its linkage information. According
to the query type, it extracts objects, attributes,
spatial relation, temporal relation, trajectory relation,
and time information from the query.

SPARQL Generator module is responsible for
creating the SPARQL queries from the internal
representation of the query by using SemWeb library
(Tauberer, 2010). When the ontology file is chosen
from the NLP Query Form user interface, it loads
the data from the ontology into the system. For
further use, it extracts the attributes in the ontology
which have restricted data values. It constitutes a
class list whose elements are the classes in the
ontology. An object property list and a data type
property list are also populated from the entries in
the ontology. While generating the SPARQL
queries, it checks if the query information exists in
the ontology by using the extracted information.

Query Executer module is used to execute the
generated SPARQL queries. It uses SemWeb library
(Tauberer, 2010) and executes the queries against
the ontology. Query results are processed according
to the query type for calculating spatial, temporal,
and trajectory relations. Finally, the results are
displayed in the NLP Query Form.

3 SUPPORTED QUERY TYPES

In the presented system, the user can query videos
which are annotated using domain ontologies
attached to the MPEG-7 ontology. The system
supports five types of queries: Concept, Complex
Concept, Spatial, Temporal, and Trajectory. Each of
the supported query types in the system has an
internal representation. When the natural language
input is parsed, its output is mapped to an internal
representation.

Concept Query: This query type is used in order to
retrieve frames containing objects of interest.
Moreover, objects can be queried by specifying one
or more attributes. In addition, negative meaning in
the NL input is also captured. Thus, users can view
the time intervals where the specified object does
not appear in the video. Some example concept
queries are given below:

Show all frames where a female is seen.
Return all frames where John Locke is seen.
Return scenes where a male is not seen..

The internal representation of a concept query is as
follows:

ConceptQuery:
Concept (ObjectName, AttributeList) ;
QueryStartTime ; QueryEndTime ;
IsNegationQuery ; VideoDuration

Concept is composed of ObjectName and
AttributeList. ObjectName is the name of the object
in the query such as “dog”, “car” and “John Locke”.
AttributeList contains the attributes of the object if
stated in the query sentence. The fields
QueryStartTime and QueryEndTime are used to
retrieve the concepts in the specified time interval. If
QueryStartTime and QueryEndTime are not shown
in the representation, then the query is not restricted
to a specific time interval, rather the whole video is
considered as the scope of the query.
IsNegationQuery is a boolean flag, which is set to
true if negative meaning exists in the NL input.
VideoDuration is the total duration of the video. It is
used to calculate the time intervals when the query is
a negation concept query.

Complex Concept Query: Users can select more
than one object that are connected with an “AND” or
“OR” connector by using the complex concept
query. Thus, a complex concept query can be
thought as a collection of concept queries, along
with a connector. When handling the “AND”
connector in the query, the intersection of the results
for each concept query is found. If “OR” connector
is given in the NL query, the result is the union of
the results for each concept query. The negative
meaning is also captured in the complex concept
query. Examples of the complex concept query are
given below:

Retrieve all frames where Jack and Kate appear.
Show all frames where a male or a female is seen.
Return frames where Jack and Kate are not seen

The internal representation of a complex concept
query is as follows:

ComplexConceptQuery:
ListofConcepts ; Connector ;
QueryStartTime ; QueryEndTime
IsNegationQuery ; VideoDuration

ListofConcepts contains more than one concept and
Connector can be “AND” or “OR”.

Spatial Query: Spatial queries are used to query the
positions of objects relative to each other. A spatial
relation exists between two objects that appear in the
same frame interval. There are four positional
relations supported in the system: Left, Right, Above

and Below. An example of a spatial query is as
follows:

Return all objects that are on the left of the red car.

The internal representation of a spatial query is:

SpatialQuery:
FirstConcept(ObjectName,AttributeList) ;
SecondConcept(ObjectName,AttributeList) ;
SpatialRelation ;
QueryStartTime ; QueryEndTime

In spatial queries, the spatial relation between two
objects is queried. Therefore, there are two Concepts
and one SpatialRelation in the representation. Each
concept has an object name and can have any
number of attributes. SpatialRelation can be Left,
Right, Above or Below.

Temporal Query: Temporal queries are used to
query the relative appearances of objects in a time
sequence. There are two temporal relations
supported in the system: Before and After. Allen’s
interval algebra (Allen, 1983) is used to define the
semantics of these two temporal relations. For
example, Before relation holds between objects X
and Y, if the end time of object X is earlier than the
start time of object Y. Some examples of temporal
queries are as follows:

Show all frames where John appears after the car.
Return frames where a female appears at least 1
minute before a male.

The internal representation of this type of query is:

TemporalQuery :
FirstConcept(ObjectName,AttributeList) ;
SecondConcept(ObjectName,AttributeList) ;
TemporalRelation ;
QueryStartTime ; QueryEndTime ;
TFilter(FType,FAmount,Start,End,FInMin)

In temporal queries, the temporal relation between
two objects is queried. Therefore, there are two
Concepts and a TemporalRelation that can be
Before or After. TFilter is a time filter to restrict the
TemporalRelation and five types of the time filter
are supported: EXACT, LEAST, MOST, INTERVAL
and STANDARD. When FType is one of EXACT,
LEAST and MOST, then FAmount is used to define
the time restriction amount for the time filter, and
Start and End fields are not used. When the FType is
INTERVAL, then Start and End are used to define
the time interval without using FAmount. When
FType is STANDARD, FAmount, Start and End
fields are not used. FInMin specifies whether the
filter is in minutes or in seconds.

Trajectory Query: Trajectory queries are used to
query the paths of objects of interest. There are two
types of trajectory queries: Object trajectory and
Directional trajectory. In object trajectory, the paths
of the objects are queried. In directional trajectory,
the objects that go to the specified direction are
searched. The following are some examples of
trajectory queries:

Return the path of the dog.
Return all players who go to the east.

The internal representation of a trajectory query is:

TrajectoryQuery :
TrajectoryType ;
Concept(ObjectName,AttributeList) ;
Direction;
QueryStartTime ; QueryEndTime

TrajectoryType defines the type of the trajectory and
Direction can be one of East, West, North, South,
Northeast, Northwest, Southeast, and Southwest.

4 MAPPING QUERY TO SPARQL
QUERY

The backbone of the system is to correctly map a
query given in natural language to a SPARQL query.
The given query is parsed using LinkParser and the
linkage information for the words of the query is
returned as the parser output. In order to create the
internal representation of the query, predefined
information extraction rules are applied to the parser
output. In order to get data from the ontology,
SPARQL queries are generated from the extracted
representation of the query. This section explains
how to parse the natural language query and how to
extract internal representations from parser outputs.
The mapping of the extracted representations of
queries to SPARQL queries is also presented.

4.1. Parsing Natural Language Queries
and Extracting Query Representations

LinkParser is a light syntactic parser for English,
which builds relations between pairs of words in a
sentence (Sleator and Temperly, 1993). It constructs
the syntactic structure of a given sentence by
assigning links to word pairs. LinkParser uses a link
grammar which has a dictionary which consists of a
set of words and linking requirements for each word.
For example, a determiner, such as a, an, the,
requires a D connector to its right. A verb requires an
S connector to its left. Here, D and S are link types,

and a word can be the left or right connector of a
link type. A linkage is the set of links for a valid
sentence in the language.

We investigate specific portions in the sentence,
such as objects, attributes, spatial relation, temporal
relation, trajectory relation, and time information. In
order to find these groups of words, the proper link
or link sequences are selected.

The aim of parsing the natural language query is
to extract the information being queried. In order to
achieve this, hand-crafted extraction rules are
defined according to the link information. Link types
and link orders are used to define a rule. An example
rule which is used to find the query type and its
object is given below:

i. Search for Cs link.
ii. If one of Ss, Sp, Spx links follows the Cs link,

and a Pv link follows one of these links, then
query is a concept query and the object is the
right word of the Cs link.

When a natural language query is entered, the
type of the query is found first by using rules. One
or more rules are defined for each query type. Then,
according to the query type, the corresponding rules
are used to map the input to the internal
representations defined for objects, attributes, spatial
relation, temporal relation, trajectory relation, and
time information. The output of the link parser is
searched for the links used in the rule. If all links in
the rule appear in the output of the parser with the
same order, and the output satisfies the constraints
defined in the rule, then the pattern is found. By
using the mapping information in the rule, the query
is mapped to the internal representation. Let us
explain the extraction process with an example. The
link parser output of the natural language query
“Show all frames where a red car is seen” is:

For this input, the query type is found by using

the rule given above. Since Cs link is followed by
an Ss link, and a Pv link follows the Ss link, the
query type is found as concept query. The object is
the right word of the Cs link, so it is “car”. It is seen
that, the noun “car” is a right connector of the link A.
The A link is a connector between pre-noun
adjectives and nouns. When the A link appears in the
output, it means that the left word of A link is an
attribute of the object. As a result, “red” is extracted

as the attribute of the “car”. Any number of
adjectives can be used before a noun and each of
them are connected to the noun with A link. The
internal representation of this query is.

ConceptQuery :
Concept : ObjectName = car

AttributeList = {red}

4.2. Mapping Query Representation to
SPARQL Query

In order to be able to execute the query on a given
ontology, the natural language input should be
mapped to a SPARQL query. After the internal
representation is extracted from the given sentence,
the internal representation is converted to SPARQL
query. The SPARQLGenerator module is
responsible for constructing SPARQL queries from
internal representations. Each concept in internal
representations is retrieved from the ontology. For
example, in TemporalQuery, there are two concepts,
and a SPARQL query is constructed for each
concept. Concept is a class that has an object name,
and an attribute list.

There are several important issues when creating
queries for concepts. First, an entity with the given
object name must exist in the ontology in order to
generate a SPARQL query. Otherwise, no SPARQL
query is generated. The queries are constructed
differently according to the type of the entity in the
ontology. If the type of the entity is a class, then a
triple should be added to the query which specifies
that the type of the object is the given class. For
example, if “human” is the concept to be queried
and it is defined as class in the ontology, then, the
following triple indicates that the type of the
variable “?object” is “human” class.
?object <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://www.sw-app.org/family#human>.

If the type of the entity is an instance, no need to
add the triple above. The instance name itself is used
instead of the variable “?object”. The query is
produced for the instance only. So, the information
about one instance exists in the result set. Whereas,
the result set of queries for class type includes
information about all instances of that class.

Mapping Attributes to SPARQL: The attributes are
mapped to SPARQL queries by using one of the
following three approaches.

First Approach: If the attribute name is specified in
the query text as in the sentence “Find the intervals
where a car with red color is seen”, the first

approach is used. The attribute name “color” and its
attribute value “red” are mentioned in the query. So,
we store both the attribute name and the value,
separated with a dash, in the attribute list. If the
“color” attribute and the “car” object are found in
the ontology, and the domain of the “color” attribute
is the “car” class, then following SPARQL text is
generated for the attribute.
?object <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://www.sw-app.org/family\#car>.
?object<http://www.sw-app.org/family#color>
"red"^^<http://www.w3.org/2001/XMLSchema\#string>.

If the “color” attribute and the “car” object are
found in the ontology, and the domain of “color”
attribute is one of the parent classes of the “car”
class, additional SPARQL text is generated for the
attribute. To illustrate, in the following code
segment, the “car” class is a subclass of the
“vehicle” class and the domain of the “color”
attribute is the “vehicle” class. Thus, the SPARQL
text below is used for the attribute.
<rdfs:Class rdf:about="http://www.sw-app.org/family#car">
<rdfs:subClassOf
 rdf:resource="http://www.sw-app.org/family#vehicle"/>
</rdfs:Class>
<owl:DatatypeProperty
 rdf:about="http://www.sw-app.org/family#color">
<rdfs:domain
 rdf:resource="http://www.sw-app.org/family#vehicle"/>
<rdfs:range rdf:resource=
 "http://www.w3.org/2001/XMLSchema#string"/>
</owl:DatatypeProperty>

Second Approach: The attribute name is not given in
the query text; rather the attribute value is extracted
from the sentence, and this attribute value is in the
restricted list of an attribute in the ontology. For
instance, assume that the given query is “Show all
frames where a red car appears”. Here, only the
attribute value “red” is given in the sentence. In
other words, we do not know the attribute name
whose value is specified to be “red”. Therefore, the
ontology must be searched to see if there is an
attribute which includes the value “red” in its data
range values. The data range values of an attribute
are specified in the ontology under the
<owl:DataRange> property. If such an attribute is
found, then the domain of the attribute is extracted.
If the domain matches with the class “car” (or one of
its super-classes), a SPARQL text is generated for
the attribute.

Third Approach: The third approach is used when
the objects are described as triples in the ontology. A
triple is composed of a subject, a predicate, and an
object. An example triple is given below:

<car rdf:about="http://www.sw-app.org/family#BMW">
<color rdf:datatype=
 "http://www.w3.org/2001/XMLSchema#string">red
</color> </car>

If neither the attribute name nor data range
values are specified in the ontology, but the objects
are described with triples, then the triples are
searched to construct the SPARQL query. We
explain the third approach with the same example
query “Find all intervals where a red car is seen”.
Again, the attribute name is not given in the query
but an attribute value is extracted from the sentence.
This attribute value is searched in the triples in the
ontology. The attribute value “red” and the object
“car” are given in the sentence. Whenever an object
value matching “red” is found, the predicate of the
triple is used to find the domain of the attribute. In
the example, the predicate is “color”, so we will
investigate the domains of “color”. If the domain of
the “color” attribute is the “car” class or one of the
super-classes of the “car” class, then the predicate
value is used as the attribute name and the SPARQL
text is constructed for the attribute.

Mapping Time Information to SPARQL: If the start
and end times are given in the sentence, they will be
used to filter the results. The entities in the ontology
have SpatioTemporalLocator property, and it has
MediaIncrDuration and MediaRelIncrTimePoint
properties, which indicate the start time and duration
of the SpatioTemporalLocator property. By using
the start time and the duration of the entities, it
should be figured out which entities’ time interval
overlaps with the given time interval. The example
below shows how the time information is mapped to
the SPARQL query. The start and end variables are
start and end times that are extracted from the NL
input.
FILTER
 ((<http://www.w3.org/2001/XMLSchema#double>
(?startTime) +
<http://www.w3.org/2001/XMLSchema#double>
 (?duration)) >= start &&
<http://www.w3.org/2001/XMLSchema#double>
 (?startTime) <= end).

5 QUERY PROCESSING

In the proposed system, a user friendly GUI is
designed so that the user can enter NL input and can
view the query results from the GUI. The query
processing procedure includes creating SPARQL
queries from the NL input, executing the SPARQL
queries, and managing the query results.

The execution process changes depending on the
query type. For example, if the query type is
Concept or Trajectory, then only one SPARQL
query is executed. If the type of the query is
Temporal, two SPARQL queries are executed, and
their results along with the Temporal-RelationType
are used to identify which results satisfy the
temporal relationship. Then, the satisfying results
and the temporal relation are added to the query
result set.

5.1. Execution of Concept Query

The generated SPARQL query for a concept query is
executed against the ontology by using SemWeb
library. If no negative meaning is found in the query,
the results of the query execution are directly
displayed to the user. For instance, in Table 1, the
execution results of the query sentence “Show all
frames where a male is seen” are shown. The table
illustrates the males that appear in the video and the
time intervals in which they appear.

Table 1. The execution results of the concept query
“Show all frames where a male is seen”.

Jack 6.5 8.6
Jack 8.6 16.7
Hurley 14.0 39.5
Jin 39.5 48.7
Jin 48.2 57.3
Boone 72.5 74.7
Sawyer 78.0 86.4

Table 2. The inverse of the execution results of the
concept query in Table 1.

Male 0.0 6.5
Male 57.3 72.5
Male 74.7 78.0
Male 86.4 128.6

If negative meaning is captured in the NL input,
the inverse of the results of query execution must be
found. To illustrate, if the input is “Show all frames
where a male is not seen”, then the same SPARQL
query will be generated. Hence, the results of query
execution will be same as Table 1. However, since
negative meaning exists in the input, the inverse of
Table 1 is calculated as illustrated in Table 2.

5.2. Execution of Complex Concept Query

The complex concept query type includes more than
one object that are connected with an “AND” or
“OR” connector. Also, these objects can be
described with attributes. For complex concept
query type, the user input is mapped to the
ComplexConceptQuery internal representation. A
complex concept query can be thought as a
collection of concept queries, along with a connector
parameter. As a result, a SPARQL query is
generated for each concept query and each SPARQL
query is executed against the ontology individually.

If the connector is an “AND” connector, the
intersection of the execution results of concept
queries is found. To find the intersection of two
result sets, each interval in the first result set is
compared with every interval in the second result
set. If a time interval overlaps with another time
interval, then the overlapping interval is found and
added to the intersection result. The overlapping
interval of two intervals is the common interval
region of those intervals.

If the connector is an “OR” connector, the result
is the union of the execution results of concept
queries. To find the union of two result sets, each
interval in the first result set is compared with every
interval in the second result set. If a time interval
overlaps with another time interval, then the union
of two intervals is found and added to the union
result.

If negative meaning exists in a complex concept
query, it will be handled separately in each of the
concept queries. Then, the union or the intersection
of the results of the concept queries will be found
depending on the connector type.

5.3. Execution of Spatial Query

There are two concepts and a spatial relation in
spatial queries. A SPARQL query is generated for
each concept. As a result, two SPARQL queries are
executed against the ontology. The results of the two
SPARQL queries are joined to see which result
couple satisfies the spatial relation. The first
condition to satisfy the spatial relation is the result
couple that must have an overlapping time interval.
If this condition holds, then the spatial relation
between two objects is calculated as explained later
in this section. The result set contains the objects
satisfying the spatial relation, the spatial relation
itself, start and end times of overlapping intervals
satisfying the spatial relation.

In order to find the spatial relation between two
objects, the center points of the rectangles covering

the objects are used. For instance, let A and B are
two objects, and they are represented with their
center points A(x1,y1) and B(x2,y2).

The left and right relation between two objects is
determined by using the center values in the x-axis.
The above and below relation between two objects is
determined by using the center values in the y-axis.

IF x1 < x2 THEN A LEFT B
ELSE IF x2 < x1 THEN A RIGHT B

IF y1 < y2 THEN A BELOW B
ELSE IF y2 < y1 THEN A ABOVE B

The calculations of spatial relationships are
simplified for the purposes of this paper. Actually
we need to deal with spatial relationships that
change over time.

5.4. Execution of Temporal Query

There are two concepts, a temporal relation and a
temporal time filter in temporal queries. A SPARQL
query is generated for each concept. As a result, two
SPARQL queries are executed against the ontology.
The results of the two SPARQL queries are joined to
see which result couple satisfies the temporal
relation and the time filter. The result set contains
the objects satisfying the temporal relation, the first
object’s start and end times, and the second object’s
start and end times.

Temporal relations between two objects are
calculated according to the appearance order of
objects. During calculation, Allen’s interval algebra
(Allen, 1983) is used. For instance, let A and B are
two objects. According to the Allen’s algebra,
Before relation holds between objects A and B, if the
end time of object A is earlier than the start time of
object B. After relation is inverse of Before.

In order to include a time filter in computing the
temporal relations, for each interval in the first result
set, we calculate a time interval according to the
filter information and the time interval of the result.
For each object in the first result set, every object of
the second result set is examined whether the second
object time interval overlaps with the calculated
interval. If these two intervals overlap, it means that
the two results satisfy the temporal relation with the
specified time filter values.

5.5. Execution of Trajectory Query

A SPARQL query is generated for the queried
concept and it is executed against the ontology. If
the trajectory type is object, then the paths of the
objects in the result set are calculated and displayed

to the user. If the trajectory type is directional, the
motion paths of the objects in the result set are
calculated and the results that satisfy the trajectory
direction are shown to the user.

When the query results are retrieved from the
ontology, an object frame list is formed. The list
consists of <object name, spatial location list> pairs.
If the user queries an ontological class, then more
than one object can be returned belonging to this
class. The list of spatial location holds the time
intervals and the regions that the object is seen. For
each object in the object frame list, its route is
calculated by using the spatial location list. In order
to be able to calculate the trajectories of objects, the
following conditions must be satisfied:

i. The successive time intervals should be adjacent.
If Ii and Ij be two successive time intervals, these
intervals are adjacent if the end time of Ij is one
more than the start time of Ii.

ii. The successive object regions should be
neighbor. Let R1 and R2 are two rectangles of
the regions in time intervals. R2 is a neighbor of
R1, if R1 intersects with R2 or R1 touches R2.

If the two conditions are satisfied, then the trajectory
direction is calculated by finding the angle between
the x-axis and the line that goes through the center
points of the two rectangles. This angle can have
values from - to .

5.6. Evaluation

While developing the natural language query
interface, we aim to provide a simple and easy to use
query interface for end users and save the users from
the burden of complex form-based interfaces. The
supported query types are designed to give the user
flexibility of stating queries by different sentence
structures.

To handle concept queries, the extraction rules
are defined to cover the wh-questions, subordinate
clauses and relative clauses. The user can query an
ontological class, an instance of a class, or a class
with an attribute. The rules that are designed to
capture the negative meanings in queries search
links which connects the word “not” to the
preceding auxiliaries and modals. Since we only
handle the sentences having the word “not” in its
word sequence to capture meanings, in order to
broaden the scope, new rules should be defined. For
example, if we want to handle the inputs including
negative meaning such as “Show all frames where
no man is seen”, new rules must be defined

depending on the link names and orders related with
the word “no”.

In order to handle complex concept query, the
rules that are defined for handling concept query are
used. In addition to these rules, the rules are used to
find the type of the query and links related with
connectors. In order to handle spatial query type, a
set of rules are defined and the number of rules is
affected by the number of spatial relations. We also
defined rules to handle temporal queries so that the
objects and the temporal relation can be found.
There are also a set of rules to extract the time filter
information. The rules are also designed to extract
trajectory query information. As a result, we have
approximately 50 rules in the system to understand
the user queries. These rules seem to be sufficient to
make semantic, spatio-temporal and trajectory
queries. However, if more rules are added, the
querying capability of the system will be enhanced.

The reason why we chose the link parser to parse
the user queries is that it can tolerate the errors in the
NL input to some extent. The link parser does not
require full understanding of the given sentence;
rather it assigns the syntactic structure to the portion
it understands. This feature of the link parser makes
our system more flexible, i.e. the system can accept
ill-formed NL queries too.

Our system is domain-independent. Using the
NL interface, users can query any videos such as TV
series, documentary videos, or personal videos as
long as they are annotated beforehand. Although the
vocabulary is not limited, the expressiveness of the
system is restricted by the rule set.

For now, the videos are manually annotated. As a
result, the system is not scalable for a realistic
application at this point. However, if the video
annotation is done automatically, the proposed
framework can be used effectively. This study is
conducted as a part of a research project. In the
scope of the project, an annotation module is
currently being developed for automatic face
detection and recognition. When our system is
integrated with the annotation module, faces will be
automatically annotated and semantically queried in
natural language.

6 CONCLUSION

In this paper we propose a natural language interface
for semantic and spatio-temporal querying of
multimedia based ontologies. The system offers a
user-friendly solution to the semantic content
retrieval from ontologies. Users do not need to know

the data schema of the ontology nor deal with the
complex syntax of formal query languages. They
can pose queries to any domain ontologies as long as
the ontologies are MPEG-7 based. Furthermore, the
use of MPEG-7 based domain ontologies enables the
reasoning mechanism.

By using the NL interface, the user can pose
concept, complex concept, spatial, temporal, object
trajectory and directional trajectory queries.
Furthermore, the system handles the negative
meaning in the user input. When the user enters an
NL input, it is parsed with the link parser. Specific
portions in the sentence, such as objects, attributes,
spatial relation, temporal relation, trajectory relation,
and time information, are being investigated
according to the query type. They are extracted from
the parser output by using predefined rules. After the
information extraction, SPARQL queries are
generated.

In order to generate a SPARQL query, an entity
with the given object name must exist in the
ontology. The queries are constructed differently
according to the type of the entity (class or instance)
in the ontology. The object attributes given in the
query text make queries more precise, so we have
focused attribute handling. For this purpose, three
different approaches are developed to map the
attributes to SPARQL. The generated queries are
executed against the ontology by using SemWeb
library which is an RDF API. Afterwards, the query
results are used to calculate spatial, temporal, and
trajectory relationships according to the query type.

As a future extension, event queries can be added
to the system. Thus, the user can query not only
objects but also events such as running, reading a
book, and driving a car. Moreover, we are planning
to handle compound queries, sentences connected
with an “AND” or “OR” connector, since they can
be more expressive and beneficial in semantic and
spatio-temporal querying of multimedia data.

The spatial and temporal relations that are
provided in this study are limited. If more spatial
relations such as near, far, inside, touch and disjoint
and temporal relations such as during, overlap,
meets, and between are added to the system, the
usability of NL query interface will be increased. In
this paper, the spatial, temporal, and trajectory
relations between the objects are calculated after the
results are retrieved from the ontology. In the future,
it can also be done with ontology rules or extension
functions. For example, the spatial relation “left” or
the temporal relation “before” can be defined with
rules or extension functions, and the objects
satisfying the relations will be retrieved from the

ontology. As a result, performance of two
approaches can be compared.

ACKNOWLEDGEMENTS

This work is partially supported by The Scientific
and Technical Council of Turkey Grant ‘‘TUBITAK
EEEAG-107E234”.

REFERENCES

Allen, J.F. (1983). Maintaining knowledge about temporal
intervals. Communications of the ACM. 21(11): 832-
843.

Athanasis, N., V. Christophides, and D. Kotzinos (2004).
Generating on the fly queries for the semantic web:
The ICS-FORTH graphical RQL interface (GRQL),
The Semantic Web – ISWC 2004, Lecture Notes in
Computer Science, Volume 3298/2004, pp. 486-501.

Bhatia, N., Gaharwar, P., Patnaik, P., and Sanyal, S.
(2006). GuNQ–A Semantic web engine with a
keyword based query approach. In Proceedings of
AAAI, Fall Symposium on Semantic Web for
Collaborative Knowledge Acquisition, Arlington, VA,
USA.

Borsje J., and Embregts, H. (2006). Graphical query
composition and natural language processing in an
RDF visualization interface, Erasmus School of
Economics and Business Economics, Vol. Bachelor.
Erasmus University, Rotterdam, 2006.

Broeskstra, J., and Kampman, A. (2003). SeRQL: A
second generation RDF query language. In
Proceedings of SWAD-Europe Workshop on Semantic
Web Storage and Retrieval, pp. 13–14.

Catarci, T., Dongilli, P., Di Mascio, T., Franconi, E.,
Santucci, G., and Tessaris, S. (2004) An ontology
based visual tool for query formulation support. In
Proceedings of 16th European Conference on
Artificial Intelligence (ECAI), Valencia, Spain, pp.
308.

Donderler, M.E., Saykol, E., Ulusoy, O., and Gudukbay,
U. (2003). BilVideo: A video database management
system. IEEE MultiMedia, 10(1), 66–70.

Erozel, G., Cicekli, N.K., and Cicekli, I. (2008). Natural
language querying for video databases. Information
Sciences, 178(12):2534–2552.

García, R. and Celma, O. (2005). Semantic Integration and
Retrieval of Multimedia Metadata. In Proceedings of
the Knowledge Markup and Semantic Annotation
Workshop, Semannot'05.

Jarrar, M., and Dikaiakos, M.D. (2008). MashQL: a query-
by-diagram topping SPARQL. In Proceedings of
ONISW, Napa Valley, California, USA.

Kara, S., Sabuncu, O., Akpınar, S., Alan, O., Cicekli,
N.K., and Alpaslan, F.N. (2010). An ontology-based
retrieval system using semantic indexing. In

Proceedings of the 1st Intl. Workshop on Data
Engineering meets the Semantic Web, in conjunction
with ICDE 2010, Long Beach CA, USA.

Kaufmann, E., Bernstein, A., and Fischer, L. (2007). NLP-
Reduce: A “naive” but domain independent natural
language interface for querying ontologies. In
Proceedings of the 4th European conference on The
Semantic Web (ESWC).

Koprulu, M., Cicekli, N.K., and Yazici, A. (2004). Spatio-
temporal querying in video databases, Information
Sciences, 160(1-4):131–152.

Lei, Y., Uren, V. and Motta, E. (2006). Semsearch: A
search engine for the semantic web. In Proceedings of
the 5th International Conference on Knowledge
Engineering and Managing Knowledge in a World of
Networks, Lecture Notes in Computer Science,
4248:238.

Prud’hommeaux, E., and Seaborne, A. (2008). SPARQL
query language for RDF. W3C recommendation,
http://www.w3.org/TR/rdf-sparql-query/.

Ren, W., Singh, S., Singh, M., and Zhu, Y.S. (2009).
State-of-the-art on spatio-temporal information-based
video retrieval. Pattern Recognition, 42(2):267–282.

Russell, A., Smart, P.R., Braines, D., and Shadbolt, N.R.
(2008). NITELIGHT: A graphical tool for semantic
query construction. In Proceedings of Semantic Web
User Interaction Workshop (SWUI 2008), Florence,
Italy, 2008.

Sleator, D., and Temperly, D. (1993). Parsing English with
a Link Grammar. In Proceedings of the Third
International Workshop on Parsing Technologies.

Tablan, V., Damljanovic, D., and Bontcheva, K. (2008). A
natural language query interface to structured
information. In Proceedings of the 5th European
Semantic Web Conference (ESWC 2008).

Tauberer, J. (2010). Semantic Web/RDF Library for
C#/.NET. Retrieved February 18, 2011, from
http://razor.occams.info/code/semweb/

Troncy, R., Celma O., Little S., Garcia R., and Tsinaraki
C. (2007). MPEG-7 based multimedia ontologies:
Interoperability support or interoperability issue. In
Proceedings of the 1st International Workshop on
Multimedia Annotation and Retrieval (MAReSO).

Wang, H., Zhang, K., Liu, Q., Tran, T., and Yu, Y. (2008).
Q2semantic: A lightweight keyword interface to
semantic search. In Proceedings of the 5th
International Semantic Web Conference (ESWC’08),
Lecture Notes in Computer Science, 5021:584.

Zhou, Q., Wang, C., Xiong, M., Wang, H., and Yu,
Y.(2007). Spark, Adapting keyword query to semantic
search. In proceedings of the 6th International and 2nd
Asian Semantic Web Conference
(ISWC2007+ASWC2007), Lecture Notes in Computer
Science, 4825:694.

