
GENERALIZATION OF PREDICATES WITH

STRING ARGUMENTS

A THESIS

SUBMITTED TO THE DEPARTMENT OF COMPUTER ENGINEERING

AND THE INSTITUTE OF ENGINEERING AND SCIENCE

OF BILKENT UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF SCIENCE

By

Göker Canıtezer

January, 2002

I certify that I have read this thesis and that in my opinion it is fully adequate, in scope

and in quality, as a thesis for the degree of Master of Science.

Advisor: Prof. H. Altay Güvenir

I certify that I have read this thesis and that in my opinion it is fully adequate, in scope

and in quality, as a thesis for the degree of Master of Science.

Co-Advisor: Asst. Prof. İlyas Çiçekli

I certify that I have read this thesis and that in my opinion it is fully adequate, in scope

and in quality, as a thesis for the degree of Master of Science.

Assoc. Prof. Tuğrul Dayar

I certify that I have read this thesis and that in my opinion it is fully adequate, in scope

and in quality, as a thesis for the degree of Master of Science.

Asst. Prof. Uğur Güdükbay

Approved for the Institute of Engineering and Science:

Prof. Mehmet Baray

Director of the Institute of Engineering and Science

iii

ABSTRACT

GENERALIZATION OF PREDICATES WITH STRING ARGUMENTS

Göker Canıtezer

M.S in Computer Engineering

Supervisors: Prof. H. Altay Güvenir,

Asst. Prof. İlyas Çiçekli

January, 2002

String/sequence generalization is used in many different areas such as machine

learning, example-based machine translation and DNA sequence alignment. In this

thesis, a method is proposed to find the generalizations of the predicates with string

arguments from the given examples. Trying to learn from examples is a very hard

problem in machine learning, since finding the global optimal point to stop

generalization is a difficult and time consuming process. All the work done until now is

about employing a heuristic to find the best solution. This work is one of them. In this

study, some restrictions applied by the SLGG (Specific Least General Generalization)

algorithm, which is developed to be used in an example-based machine translation

system, are relaxed to find the all possible alignments of two strings. Moreover, a

Euclidian distance like scoring mechanism is used to find the most specific

generalizations. Some of the generated templates are eliminated by four different

selection/filtering approaches to get a good solution set. Finally, the result set is

presented as a decision list, which provides the handling of exceptional cases.

Keywords: generalization, slgg, sequence alignment

iv

ÖZET

KARAKTER DİZİSİ ARGÜMANLI ÖNERGELERİN GENELLEŞTİRİLMESİ

Göker Canıtezer

Yüksek Lisans, Bilgisayar Mühendisliği

Tez Yöneticileri: Prof. Dr. H. Altay Güvenir,

Yrd. Doç. Dr. İlyas Çiçekli

Ocak, 2002

Karakter dizilerinin genelleştirilmesi, makine öğrenimi, örnek tabanlı otomatik çeviri,

DNA sırası hizalama gibi pek çok alanda kullanılmaktadır. Bu tezde, verilen

örneklerden oluşan karakter dizisi parametreli yüklemlerin genelleştirilmiş hallerini

bulan bir yöntem sunulmaktadır. Verilen örneklerden öğrenmeye çalışmak gerçekten

zor bir problemdir, çünkü genelleştirmeyi durdurmak için global optimum noktayı

bulmak zor ve zaman alıcı bir işlemdir. Şu ana kadar yapılan bütün işler, en iyi çözümü

bulmak için kullanılan deneme-yanılma yöntemleridir. Bu çalışma da onlardan birisidir.

Bu projede, iki karakter dizisinin mümkün olan bütün hizalanmalarını bulmak için

ÖEGG (Özel Enaz Genel Genelleştirme) algoritmasında uygulanan bazı kısıtlamalar

kaldırılmıştır. Ek olarak, en özel genelleştirmeleri bulmak için Euclid uzaklığına benzer

bir puanlandırma mekanizması kullanılmıştır. Üretilen kalıplarlardan bazıları dört farklı

seçim/eleme yöntemi ile elenmiştir. Son olarak, sonuç kümesi karar listesi halinde

sunularak, istisnai durumların yakalanması sağlanmıştır.

Anahtar Kelimeler: genelleştirme, öegg, sıra hizalama

v

Acknowledgement

I would like to express my deepest gratitude to Asst. Prof. İlyas Çiçekli for his

supervision, guidance, suggestions and invaluable encouragement throughout the

development of this thesis.

I would like to thank to committee members for reading this thesis and their

comments.

I would like to thank to all my friends for their encouragement and logistic

support.

I have to thank my boss Dr. Semih Çetin, head of cyberSoft and Dr. Mesut

Göktepe, project manager for their continuous support during my MS studies.

I would like to thank to my parents, my grandmother and grandfather and all

other relatives who believe in me and support me.

vi

To My Family

vii

Contents

1 Introduction ... 1

1.1 Sequence Alignment ... 2

1.2 Decision Lists.. 3

1.3 Translation Templates... 4

1.4 String Generalization .. 5

2 Related Work... 7

2.1 Sequence Alignment ... 7

2.2 Confidence Factor Assignment ... 9

2.3 Generalization ... 9

2.3.1 FOIL... 9

2.3.2 GOLEM.. 10

2.3.3 FOIDL.. 11

3 Generalization of Predicates with String Arguments .. 13

3.1 Optimal Match Sequence .. 13

3.2 Generalization Process/Generating Templates ... 17

3.2.1 Generalization with n-arity predicates ... 19

3.3 Scoring and Sorting... 22

3.3.1 Fragmentation score for single-arity predicates... 23

3.3.2 Confidence factor/ Coverage score .. 25

3.4 Selection Sets .. 31

3.4.1 Selection with fragmentation score.. 33

3.4.2 Selection with coverage score.. 34

3.4.3 Selection with total score ... 36

3.4.4 Selection set with coverage score 1.0 .. 38

4 Implementation ... 39

4.1 Alignment Module .. 39

4.1.1 Algorithm to find optimal match sequences .. 40

4.2 Assigning Score to Templates... 42

viii

4.2.1 Constraint checker.. 43

4.3 Decision List Construction.. 43

4.4 Working of The Program .. 44

5 Applications ... 48

5.1 Applications with Single Arity.. 48

5.1.1 DNA sequence alignment .. 48

5.2 Experiments with 2-Arity.. 50

5.2.1 Past tense learning.. 50

5.2.2 Learning translation templates ... 53

6 Conclusion and Future Work .. 58

References .. 641

Appendices ... 64

A Data Structures.. 64

B Example Sets .. 69

C Mid-level Output for Past Tense Learning ... 71

ix

List of Figures

4.1 General architecture ...40

4.2 Alignment algorithm ..41

4.3 Decision list generation..44

x

List of Tables

3.1 Calculated scores for example 3.12 ..28

3.2 Generated templates for some past tense examples ..33

3.3 Generated templates sorted by coverage score ...36

3.4 Generated templates sorted by total score...37

CHAPTER 1: INTRODUCTION 1

Chapter 1

INTRODUCTION

The string generalization problem is a subtopic of machine learning (ML), and inductive

logic programming (ILP). Like many other real world problems there are many

examples and learning from these examples is going between specialization

(memorizing examples) and total generalization (learning nothing).

Most of the approaches in ILP try to find the optimal solution, which means covering all

the positive examples and not covering the negative examples. If there is noisy data, this

becomes more difficult. There are two methods to overcome this problem. The first one

is trying to generate negative examples and using them to specialize. The second one is

beginning from the most specialized condition try to generalize up to some point, where

all the positive examples are covered.

Inductive logic programming is an important subtopic of machine learning, which is

used for the induction of Prolog programs from examples in the presence of background

knowledge [1, 2]. Since first-order logic is very expressive, relational and recursive

concepts that cannot be represented in the attribute/value representations assumed by

most machine learning algorithms can be learned by ILP methods. ILP methods have

been successfully used in important applications such as predicting protein secondary

structure [3], automating the construction of natural language parsers [4] and in small

programs for sorting and list manipulation.

In order to explain the related topics easily in the following chapters, some background

information will be helpful about sequence alignment, decision lists, translation

templates and string generalization. Thus, the first section is about sequence alignment,

its types and used algorithms. The second section explains the history and the

advantages of decision lists. Information about translation templates is given in the third

section and finally in the fourth section introductory information about string

generalization used in this work is given.

CHAPTER 1: INTRODUCTION 2

1.1 Sequence alignment

Sequence alignment is one of the most important tools in molecular biology. It has been

used extensively in discovering and understanding the functional and evolutionary

relationships among genes and proteins [5, 6]. There are two classes of alignment

algorithms: algorithms without allowing gaps in alignments, e.g., BLAST and FASTA

[6, 7], and algorithms with gaps, e.g., the Needleman-Wunsh algorithm [6], and the

Smith-Waterman algorithm [8]. The simpler gapless alignment as it was implemented in

the original BLAST [7, 9] is very fast and is widely used in large-scale database

searches, since the results depend only weakly on the choice of the scoring systems

[10], and the statistical significance of the results is well-characterized [1, 2, 3].

However, in order to detect weakly homologous sequences, gaps have to be allowed in

an alignment [4] which leads to the more sophisticated Smith-Waterman algorithm [5].

Main difficulty for any alignment is the selection of scoring schemes/parameters. In a

generic sequence matching problem, a score is assigned to each alignment of given

sequences, based on the total number of matches, mismatches, gaps, etc. Maximization

of this score defines an optimal alignment [6].

In addition to alignment methods between two sequences, multiple sequence alignment

is another fundamental and most challenging problem in computational molecular

biology [6]. It plays an essential role in the solution of many problems such as searching

for highly conserved subregions among a set of biological sequences and finding the

evolutionary history of a family of species from their molecular sequences [11].

An important approach to multiple sequence alignment is the tree alignment method.

The biological interpretation of the model is that the given tree represents the

evolutionary history which has created the molecular (DNA, RNA or amino acid)

sequence written at the leaves of the tree. The leaf sequences represent the existing

organisms today, and the internal nodes of the tree are the ancestral organisms that may

have existed [11].

The tree alignment problem is known to be NP-HARD [12]. Many heuristic algorithms

have been proposed in the literature [13, 14] and some approximation algorithms with

guaranteed relative error bounds have been reported. Thus, the more accurate the

algorithm is, the more time it consumes [11].

CHAPTER 1: INTRODUCTION 3

As it can be guessed, there are many different approaches to find the alignments of

molecular sequences. Some of them use local similarity matrices, e.g., PAM and

BLOSUM [15]. Some others use dynamic programming to find the highest scoring

global alignment in the presence of gaps [5]. Some kind of shortest path algorithms and

sequence graphs are used for some heuristics to find tree alignments [15].

1.2 Decision Lists

Decision lists are first introduced by Rivest in 1987 [16] as a new technique for

representing concepts. In [16], decision lists are used for strict generalization of concept

representation techniques, e.g., k-CNF, k-DNF, kDT. A decision list may be thought of

as an extended “if-then-elseif-…-else” rule. In other words, a decision list is defining

the general pattern with exceptions. The exceptions correspond to the early items in the

decision list, whereas the more general patterns correspond to the later items [16].

Rivest used decision lists for learning boolean functions. First usage of decision lists for

inductive logic programming is done by Mooney and Califf [17]. In this paper, it is

expressed that some ILP techniques make some important assumptions that restricts

their application, such as:

1. Background knowledge is provided in extensional form as a set of

ground literals.

2. Explicit negative examples of the target predicate are available.

3. The target program is expressed in “pure” prolog where clause-order is

irrelevant and procedural operators such as cut (!) are disallowed.

However, each of these assumptions brings significant limitations. One of the

limitations that is relevant to us is [18]:

“- Concise representation of many concepts requires the use of clause-

ordering and/or cuts.”

Mooney finds solution to these problems by introducing FOIDL (First Order Inductive

Decision List). In FOIDL, a learned program can be represented as a first-order decision

list, an ordered set of clauses each ending with a cut. This representation is very useful

for problems that are best represented as general rules with specific exceptions [17].

When answering an output query, the cuts simply eliminate all but the first answer

produced when trying the clauses in order. In the original algorithm of [16], rules are

CHAPTER 1: INTRODUCTION 4

learned in the order they appear in the final decision list, e.g., new rules are appended to

the end of the list as they are learned. However, [19] argues for learning decision lists in

the reverse order since most preference functions tend to learn more general rules first.

These are best positioned as default cases towards the end. FOIDL learns an ordered

sequence of clauses in reverse order, resulting in a program which produces only the

first output generated by the first satisfied clause. In our work, order of learning is not

important since the learned clauses are sorted with respect to their specialization

(fragmentation) score.

1.3 Translation Templates

In the translation process, providing the correspondences between the source and the

target language is a very difficult task in exemplar-based machine translation. Although,

manual encoding of the translation rules has been achieved by Kitano [20], when the

corpus is large; it becomes a complicated and error-prone task. Therefore, [21, 22] offer

a technique in which the problem is taken as a machine learning task. Exemplars are

stored in the form of templates that are generalized exemplars. The templates are

learned by using translation examples and finding the correspondences between the

patterns in the source and target languages. The heuristic of the translation template

learning (TTL) [23] algorithm can be summarized as follows: given to translation pairs,

if there are some similarities (differences) in the source language, then the

corresponding sentences in the target language must have similar (different) parts, and

they must be translations of the similar (different) parts of the sentences in the source

language. Certain parts are replaced with variables to get a template, which is a

generalized exemplar, by this method.

There are two types of translation templates: similarity translation template and

difference translation template. In similarity translation templates, differences are

replaced with variables, and in difference translation templates vice versa. TTL

algorithm cannot learn anything if the number of similarities or differences in the match

sequences are not equal [21].

In the first implementation, templates produced by STTL and DTTL are ordered

according to the number of terminals in the source language [21, 22, 23]. The

translation is a bi-directional process, so templates are ordered according to both

languages. Since this criterion is not sufficient for large systems, [23] added confidence

factor assignment in which each rule and some rule combinations are assigned weights.

CHAPTER 1: INTRODUCTION 5

In our work templates are assigned fragmentation and coverage scores. Coverage score

may be thought of as a confidence factor.

1.4 String Generalization

String generalization is an important topic since it can be used in pattern matching,

natural language processing, especially in Example-Based Machine Translation

(EBMT) and genetics. By using string generalization, we aim to find rules about the

orders and structures of sub-strings or character sequences of that language (natural or

not, the alphabet of the language may include any symbol).

There are some generalization techniques. One of them is Plotkin’s [24, 25] relative

least general generalization (RLGG) technique, which is used by many ILP systems

[26]. In [27] a new generalization technique, specific least general generalization, is

introduced. SLGG is more powerful for finding the optimum generalized template [27].

For example, the GOLEM system uses RLGG schema and generalizes two clauses:

p([b,a]).

p([c,d,a]).

by creating p([A,B|C]) as the generalized clause. The generated clause covers the two

given clauses but it can be noticed that it is an over generalization, since there are

common parts, which is [a] in this example, that should have been captured by the

generalization algorithm. Moreover, this common part is at the end of these lists. This

should be captured too. In [30, 31, 36], to generalize two clause examples of a single-

arity predicate with string arguments, SLGG of two strings is used. For the example

above, SLGG technique generalizes as the following:

p(L) :- append(L1,[a],L).

by assuming that append predicate is in the background knowledge.

If the system only learns the given examples, which means memorizes the examples, it

is the most specialized point. If it accepts all examples, it is the total generalization

point, which means learning nothing. Thus, our algorithm should find the optimal

stopping point between the total generalization point and the most specialized point. For

example we have two strings such as:

CHAPTER 1: INTRODUCTION 6

I will come home later

He will come later

After the generalization of these strings, we should learn the template [28], generalized

form of the strings:

X will come Y later

This template means that our language has a structure that has two variables X, Y and a

constant string “will come __ later”. A similar work was done by Cicekli [29], but it has

restrictions called minimal match sequence. For example, the minimal match sequence

of the strings abcbd and ebfbg will be (a, e)b(c, f)b(d, g). But, strings abcbd and ebf

cannot have a minimal match sequence because b occurs twice in the first string and b

occurs only once in the second string [29, 30].

So our new algorithm should not omit these two strings, abcbd and ebf. Since there are

two b’s in the first string which match to the b in the second string we can learn two

different templates that are (a,e)b(cbd,f) and (abc,e)b(d,f). Reader will notice that the

structures of templates are same XbY, which can be combined into one template. If the

strings abbcd and abc were used, ab(b,ε)c(d, ε) and a(b, ε)bc(d, ε) templates would be

generated. Since the structures of these two are different we cannot combine them.

When we generate more than one template another problem arises. Which one is more

valuable/correct? At this point our heuristic comes in and gives more points to the least

fragmented template. abaabcd and abcd are strings and generated templates in the order

of value are (aba, ε)abcd, a(baa,ε)bcd, (ab,ε)a(a,ε)bcd, ab(aab,ε)cd.

After generating templates, they are sorted in the order of most specialized to most

generalized. This is similar to the decision list of FOIDL.

The remaining chapters are organized as follows. Chapter 2 is about related work, such

as, FOIDL, sequence alignment and confidence factor assignment. Chapter 3 provides

information on string generalization algorithm, scoring/sorting, selection sets.

Applications in different domains can be found in Chapter 4, architecture and the

implementation in Chapter 5 and finally conclusion and future work in Chapter 6.

CHAPTER 2: RELATED WORK 7

Chapter 2

Related Work

String generalization process is related with many different areas of machine learning,

since each level of generalization process deals with different algorithms and

approaches. In this chapter, related work about these different levels and justification of

our method can be found.

Generalization of predicates with string arguments has three main sub-processes. These

are alignment, scoring and decision list generation. From the point of performance,

alignment process is the bottleneck of the problem, since alignment problem is known

to be NP-HARD [12]. Because of this, in this work we did not tried to hardly optimize

the performance of the program. If it works in a reasonable time with reasonable

amount of data it is enough for us, because the main goal of this project is finding an

approach that generalize predicates with string arguments in an optimal level. Some

approaches about optimization of aligning strings and/or character sequences can be

found in Section 2.1. Scoring of generated templates is very important, since it affects

the result set and the performance of the final work. Information about previously used

heuristics for scoring is in Section 2.2. As it is stated in Chapter 1, a first-order decision

list is very useful for problems that are best represented as general rules with specific

exceptions [17]. Section 2.3 is about the decision lists and FOIDL. Finally, the last

section is about the methods we used in this work.

2.1 Sequence Alignment

In Chapter 1, it is stated that there are many different approaches to find the alignments

of the molecular sequences. Some of them use local similarity matrices, e.g., PAM and

BLOSUM [31]. Some others use dynamic programming to find the highest scoring

global alignment in the presence of gaps [5]. Some kind of shortest path algorithms and

sequence graphs are used for some heuristics to find tree alignments [15].

CHAPTER 2: RELATED WORK 8

In computational biology there are two types of alignment problem, i.e., gapless and

gapped. Gapless alignment looks for similarities between two sequences α=a1a2…aN

and β=b1b2…bM of length N and M respectively. M and N are nearly equal. The letters

ai and bj are taken from an alphabet of size c. A local gapless alignment, A, of these two

sequences consists two substrings; first substring ai-l+1…ai-1ai of length l of sequence α
and the second substring bi-l+1…bj-1bj of sequence β of the same length of the first

substring, l. Each such alignment is assigned a score. And the global optimal score is

calculated by using dynamic programming [5, 32]. Although this approach is fast

enough to find the alignments of sequences, alignment and scoring concepts in this

approach do not meet our requirements.

In gapped alignment, a possible alignment A still consists of two substrings of the

original sequences α and β. But now, these subsequences GATGC and GCTC may be

aligned as GATGC and GCT-C using one gap. In Smith-Waterman local alignment,

each such alignment A is assigned a score according to S[A] = Σ Sa,b - δNg where the sum

is taken over all pairs of aligned letters, Ng is the total number of gaps in the alignment,

and δ is an additional scoring parameter, the “gap cost”.

Example 2.1: We can see the differences of gapless and gapped alignments in this

example. Let us assume that our sequences are GATGC and GCTC. Gapless alignment

algorithm aligns as

GATGC

GCTC

* *

G and T is found as the similar part. Gapped alignment algorithm aligns as

GATGC

GCT-C

* * *

Note that gapped alignment finds three similar points (G, T, C), although gapless

alignment finds two similar points. On the other hand, our algorithm finds all possible

alignments, but the most valuable one for us is:

GATGC--

CHAPTER 2: RELATED WORK 9

---GCTC

**

Since it is less fragmented than the others.

2.2 Confidence Factor Assignment

Although, in most of the machine learning applications, we can find a kind of scoring

scheme, in this chapter assigning confidence factor to the learned templates by the TTL

algorithm is the main topic.

In [21] says that the algorithm orders the templates according to their specificities.

Specificity is defined as: “Given two templates, the one that has a higher number of

terminals is more specific than the other.” Note that, the specificity is defined according

to the source language. For two-way translation, the templates are ordered once for each

language as source.

Oz and Cicekli in [32] says that ordering according to the number of terminals of the

templates is not sufficient for large systems. So they added a confidence factor

assignment process in which each rule and some rule combinations are assigned

weights. This process has three parts: Confidence factor assignment to facts, rules and

rule combinations. Again in this approach confidence factors are assigned for left to

right translation and right to left translation separately.

Ratio of the number of correctly covered source and target examples over total number

of sources covered by source template gives the confidence factor of a fact or rule. For

rules this is the partial confidence factor and during translation confidence factors of

these rules are multiplied to find the real confidence factor. To find the confidence

factor of the rule combinations a kind of Euclidian distance is used. Length of

differences and similarities are used as dimensions [23].

2.3 GENERALIZATION

2.3.1 FOIL

In a nutshell, FOIL is a system for learning function-free Horn clause definitions of a

relation in terms of itself and other relations. The program is actually slightly more

flexible since it can learn several relations in sequence, allows negated literals in the

definitions (using standard Prolog semantics), and can employ certain constants in the

CHAPTER 2: RELATED WORK 10

definitions it produces. FOIL's input consists of information about the relations, one of

which (the target relation) is to be defined by a Horn clause program. For each relation,

it is given a set of tuples of constants that belong to the relation. For the target relation,

it might also be given tuples that are known not to belong to the relation; alternatively,

the closed world assumption may be invoked to state that no tuples, other than those

specified, belong to the target relation. Tuples known to be in the target relation will be

referred to as positive tuples and those not in the relation as negative tuples. The

learning task is then to find a set of clauses for the target relation that accounts for all

the positive tuples while not covering any of the negative tuples [33].

The basic approach used by FOIL is an AQ-like covering algorithm [34]. It starts with a

training set containing all positive and negative tuples, constructs a function-free Horn

clause to “explain” some of the positive tuples, removes the covered positive tuples

from the training set, and continues with the search for the next clause. When clauses

covering all the positive tuples have been found, they are reviewed to eliminate any

redundant clauses and reordered so that any recursive clauses come after the non-

recursive base cases [33].

Perfect definitions that exactly match the data are not always possible, particularly in

real-world situations where incorrect values and missing tuples are to be expected. To

get around this problem, FOIL uses encoding-length heuristics to limit the complexity

of clauses and programs. The final clauses may cover most (rather than none) of the

negative tuples [33, 35].

2.3.2 GOLEM

Top-down methods such as Shapiro’s MIS and Quinlan’s FOIL [35], search the

hypothesis space of clauses from the most general towards the most specific. MIS

employs a breadth-first search through successive levels of a “clause refinement” lattice,

considering progressively more complex clauses. To achieve greater efficiency

Quinlan’s FOIL greedily searches the same space guided by an information measure

similar to that used in ID3. This gains efficiency at the expense of completeness [36].

Bottom-up algorithms based on inverting resolution [37] also have problems related to

search strategies. In the framework of inverse resolution clauses are constructed by

progressively generalizing examples with respect to given background knowledge.

Search problems are incurred firstly since there may be many inverse resolvents at any

stage, and secondly because several inverse resolution steps may be necessary to

construct the required clause. Thus problems related to search hamper both top-down

CHAPTER 2: RELATED WORK 11

and bottom-up methods. In search based methods efficiency is gained only at the

expense of effectiveness [36].

Plotkin’s [38, 39] notion of relative least general generalization (rlgg) replaces search

by the process of constructing a unique clause which covers a given set of examples.

GOLEM is not interested in constructing a single clause which is the rlgg of positive

examples, but rather a set of hypothesized clauses of positive examples. This set of

hypothesized clauses cover all the positive examples and do not cover any negative

examples.

As it is stated in Chapter 1, GOLEM system uses RLGG schema and generalizes two

clauses:

p([b,a]).

p([c,d,a]).

by creating p([A,B|C]) as the generalized clause. Generated clause covers the two given

clauses but it can be noticed that it is an over generalization. Since there are common

parts, which is [a] in this example, should have been captured by the generalization

algorithm. Moreover, this common part is at the end of these lists, and this should be

captured too.

2.3.3 FOIDL

In [17] Mooney and Califf states that development of FOIDL was motivated by a failure

they observed when applying existing ILP methods to a particular problem, that of

learning the past tense of English verbs. They were unable to get reasonable results

from FOIL or GOLEM since they make important assumptions that restrict their

application, which are explained in Section 1.2. These assumptions bring significant

limitations since:

1. An adequate extensional representation of background knowledge is frequently

infinite or intractably large.

2. Explicit negative examples are frequently unavailable and an adequate set of

negative examples computed using a closed-world assumption is infinite or

intractably large.

3. Concise representation of many concepts requires the use of clause-ordering

and/or cuts.

CHAPTER 2: RELATED WORK 12

In FOIDL these limitations are overcame by the following properties:

1. Background knowledge is represented intentionally as a logic program.

2. No explicit negative examples are need to be supplied or constructed.

3. A learned program can be represented as a first-order decision list; an ordered

set of clauses each ending with a cut. This representation is very useful for

problems that are best represented as general rules with specific exceptions.

CHAPTER 3 :GENERALIZATION OF PREDICATES 13

Chapter 3

Generalization of Predicates with

String Arguments

In this chapter, a different approach for finding the generalized forms of the character

sequences/strings is proposed. Although, there are tools to generalize the given positive

data, we meet with the over generalization problem.

The main point of motivation of this work is extracting maximum information from a

bilingual corpus to use it in an EBMT system [21, 22]. Many methods have been used to

increase the performance of the translation system, and this work is one of them [23, 28,

32].

Following sections are about the algorithmic process to find the templates [22, 28]. We

start by finding the optimal match sequences of two strings and go on with

generalization process and converting optimal match sequences to SLGGs. Scoring and

sorting of the single-arity and n-arity templates is another important topic that is

described, and finally finding selection sets with different scoring mechanisms will be

explained in the following lines.

3.1 Optimal Match Sequence

This part includes information about background information about similarity-

difference concept and match sequence string for generating templates.

Cicekli, describes similarity and difference in [29] as follows:

A similarity between α1 and α2, where α1 and α2 are two non-empty strings of

atoms, is a non-empty string β such that α1 = α1,1βα1,2 and α2 = α2,1βα2,2. A similarity

represents a similar part between two strings.

CHAPTER 3 :GENERALIZATION OF PREDICATES 14

A difference between α1 and α2 , where α1 and α2 are two non-empty strings of

atoms, is a pair of two strings (β1, β2) where β1 is a substring of α1 and β2 is a substring

of α2, the same atom cannot occur in both β1 and β2, and at least one of them is not

empty. A difference represents a pair of differing parts between two strings.

In [27] minimal match sequence is used to generate templates, but in this project

optimal match sequence is used. An optimal match sequence between two strings α1 and

α2 is a sequence of similarities and differences between α1 and α2 such that the

following conditions are satisfied by this match sequence:

1. Concatenation of similarities and the first constituents of differences must

be equal to α1.

2. Concatenation of similarities and the second constituents of differences

must be equal to α2.

3. An optimal match sequence should contain at least one similarity or one

difference.

4. A similarity cannot follow another similarity, and a difference cannot

follow another difference.

Reader may notice that 1st, 2nd and 4th conditions are same with the minimal match

sequence. Moreover, every minimal match sequence is an optimal match sequence but

every optimal match sequence is not a minimal match sequence.

To make clear; a few examples can be given:

Example 3.1:

α1 = abcd

α2 = acd

OMS = a(b,ε)cd

“a” and “cd” parts of the two strings are the same but α1 includes “b”, but α2

does not include any characters in the same position. Thus, difference part shows

“b” and “ε” (empty string).

Example 3.2: What happens if same character occurs more than once?

α1 = abcda

α2 = acd

CHAPTER 3 :GENERALIZATION OF PREDICATES 15

For these two strings we cannot represent them in one similarity

difference string, since α1 includes two “a”s. Both “a”s can match to the “a” in

the α2. Thus, we need two optimal match sequence:

OMS 1 = a(b, ε)cd(a, ε)

OMS 2 = (abcd, ε)a(ε, cd)

Example 3.3: Is the sequence of the characters important?

α1 = abcd

α2 = adc

Orders of the character sequences are really very important, since this

process is an alignment like process. Differences in the order changes the

alignment points, which causes different match sequences. Although, α1 and α2

includes same characters with the example 3.1, changing the order of “c” and

“d” in α2 causes different match sequences.

OMS 1 = a(bc, ε)d(ε, c)

OMS 2 = a(b, d)c(d, ε)

Example 3.4: Is “a(bc,cd)e” a valid optimal match sequence?

As explained in the beginning, “the same atom cannot occur in both β1

and β2”. Since “c” occurs both in β1 and β2 this is not a valid match sequence.

The meaning of this OMS is:

α1 = abce

α2 = acde

Thus, there is only one generatable optimal match sequence, which is

OMS = a(b, ε)c(ε, d)e

Many examples could be given about optimal match sequences, but these four examples

explain the most important characteristics of this concept. At this point, similar and

different parts between sequence alignment and the optimal match sequence can be

explained.

In sequence alignment process, two or more strings tried to be aligned. If the examples

above are used for sequence alignment, their results would be similar to the following

lines.

For Ex 1:

S1 = abcd,

S2 = a-cd

CHAPTER 3 :GENERALIZATION OF PREDICATES 16

* **

For Ex 2:

S1 = abcda

S2 = a-cd-

* **

or

S1 = abcda--

S2 = ----acd

*

For Ex 3:

S1 = abcd

S2 = adc-

* *

or

S1 = abcd-

S2 = a--dc

* *

(Examples with long sequences can be examined in Appendix B)

Generated sequence alignment results changes with the used algorithm and its

parameters [9]. Some algorithms do not allow gap generation between sequences, and

some algorithms do [5, 6, 9]. Algorithms that allow gap generation has two main

parameters called, gap creation penalty and gap extension penalty. These parameters are

used for selecting the most wanted results, and this topic will be covered in the scoring

part of the algorithm.

Stars under the aligned sequences show the similar/aligned parts. If these marked parts

are taken with their different parts between them, then we can generate the minimal

match sequences of these strings. This means that sequence alignment algorithms could

be used to generate optimal match sequences. But, as stated above sequence alignment

algorithms with gap generation uses some parameters for not generating all possible

match sequences. It causes not generating all optimal match sequences of two strings.

In addition to this, there is a lot of work done on sequence alignment since 1970s [32];

as sequence alignment is one of the most commonly used computational tools of

molecular biology. Thus, some of these algorithms could be adapted to find optimal

match sequence in a fast way [32, 40].

CHAPTER 3 :GENERALIZATION OF PREDICATES 17

3.2 Generalization Process/Generating Templates

Generalization is another important part of this thesis. After finding the match

sequences, generalized templates should be generated. There are some generalization

techniques. One of them is Plotkin’s [24, 25] relative least general generalization

(RLGG) technique, which is used by many ILP systems [26]. In [27] a new

generalization technique, specific least general generalization, is introduced. SLGG is

more powerful for finding the optimum generalized template [27]. For example, the

GOLEM system uses RLGG schema and generalizes two clauses:

p([b,a]).

p([c,d,a]).

by creating p([A,B|C]) as the generalized clause. Generated clause covers the two given

clauses but it can be noticed that it is an over generalization. Since there are common

parts, which is [a] in this example, should have been captured by the generalization

algorithm. Moreover, this common part is at the end of these lists, and this should be

captured too. In [21, 22, 27], to generalize two clause examples of a single-arity

predicate with string arguments, SLGG of two strings is used. For the example above,

SLGG technique generalizes as the following:

p(L) :- append(L1,[a],L).

by assuming that append predicate is in the background knowledge.

In this work, SLGG is used with a slight modification. Generalization process can be

defined as following:

If there is an optimal match sequence originated from similarity and difference

sequences such as (D0)S1D1S2D2…Sn(Dn) then generated template would be (V0)

S1V1S2V2…Sn(Vn), where V is a variable such as X, Y, Z, etc. There are some

conditions the generated template must satisfy:

1.Same differences cannot be replaced with the same variables

2.V0, V1, V2,…Vn are all different variables

3.There should be at least one similarity or variable

4.There should be a similarity between two variables

CHAPTER 3 :GENERALIZATION OF PREDICATES 18

Reader may notice that only difference with the SLGG is the first conditions, which

provides a little bit more generalization. In the original SLGG, same differences are

replaced with the same variables. To find the SLGG of two strings :

- Firstly the optimal match sequences are found

- Secondly all differences are replaced with variables to create the SLGG.

If the strings are abc and dbef, their optimal match sequence will be (a,d)b(c,ef), and the

SLGG of these strings will be XbY. For the strings abcd and abdc, there will be two

optimal match sequences ab(c, ε)d(ε, c) and ab(ε, d)c(d, ε), and their SLGGs will be

abXdY and abXcY respectively.

In order to show the whole process for the generalization of single arity predicates some

examples can be given.

Example 3.5: In this example, the conditions, which there are more than two strings,

will be examined. Let us assume that the following clauses are given as positive

examples.[27]

1. p(ba).

2. p(cda).

3. p(a).

These clauses will be represented in Prolog as follows.

1. p([b,a]).

2. p([c,d,a]).

3. p([a]).

To generalize all of the predicates, we will find optimal match sequences for all the

predicate pairs, 1 and 2, 1 and 3, 2 and 3. For clauses 1 and 2, SLGG of the ba and cda

will be Xa. For 1 and 3, it will be Xa too. And for 2 and 3, SLGG of cda and a will be

Xa again. Thus the result set for generated SLGGs will only have one member, Xa. This

SLGG can be represented in Prolog as follows:

p(L) :- append(L1, [a], L).

Example 3.6: In this example, positive examples, which produce more than one SLGG,

will be examined. Let us assume that the following clauses are given as positive

examples.

CHAPTER 3 :GENERALIZATION OF PREDICATES 19

1. p(ca).

2. p(dea).

3. p(b).

4. p(fgb).

The generalization of clauses 1 and 2 is Xa, 1 and 3 is X (since there is no similar part),

1 and 4 is X too, 2 and 3 is X, 2 and 4 is X and finally 3 and 4 is Xb. Thus, the result set

is { Xa, X, Xb}. Since there is more than one solution, we should order them as in

decision lists [17]. Scoring and sorting algorithm will be explained in Section 3.3. The

results can be represented in Prolog as follows

p(L) :- append(L1, [a], L).

p(L) :- append(L1, [b], L).

p(L).

As it is seen from the result, first two predicates capture the fact that these predicates

should end with a or b. The third clause is the over-generalized one and can be

eliminated by the scoring algorithm.

A question may come to mind that “What happens if we generate SLGGs from these

SLGGs?” This means that trying to generalize the learned templates. If you need more

generalization in a specific domain this can be tried but generally it does not improve

the performance much. Say, Xabcd and XbYcd are generated templates; generalization

of these templates produces XbYcd again. Nothing has been learned from these

templates. If abXcd and efXab are used then XabY template can be learned, which

means that there is an ab structure that is independent from ef and cd. Thus, we can say

that our algorithm does not work incrementally, since for the generation of the templates

we need all the examples.

3.2.1 Generalization with n-arity predicates

Generalization with n-arity predicates is important for different domains, such as

exemplar-based machine translation systems [27, 29]. Some EBMT systems use 2-arity

predicates for learning translation rules. In this section, generalization process for n-

arity predicates using single arity generalization will be looked through.

In the generalization of single-arity predicates, string pairs are used to find the optimal

match sequences and the SLGGs of these strings. In n-arity predicate generalization,

CHAPTER 3 :GENERALIZATION OF PREDICATES 20

again string pairs are used, but these pairs are the first parameter of a predicate and the

first parameter of another predicate and second parameters, third parameters, … and nth

parameters. After the generation of the SLGGs, they are combined with respect to their

scores. This process can be defined as follows

Let us assume that p1(s1, s2, …, sn) and p2(α1, α2, …, αn) are two predicates with the

same arity. The alphabets of these arguments can be different and these alphabets may

not be the known character based alphabets. Optimal match sequences for s1…sn and

α1…αn is O1…On and their SLGG sets are S1…Sn. The cartesian product of these sets

gives the generalized templates of these predicates.

There are some conditions that are satisfied because of the definition, these are:

- Number of elements of each SLGG set might be different from each other.

- Number of elements of SLGG sets are depends on the generated SLGGs

from sx and αx.

- If n(S) gives the number of elements in S. Cartesian product of these sets

produces a result set with n(S1)*n(S2)* … *n(Sn) elements.

Notice that result set might be very big and it may include nonsense or useless

templates. Using the scoring and sorting algorithm can prevent this. Scoring reduces the

elements of S1, S2, …, Sn which causes a decrease in the size of results set. Scoring

will be explained in Section 3.3.

Definition might be a little bit blur, but a few examples will be enough to make the

scene clear.

Example 3.7: In this example, we will see the basic process to find the generalized

templates for 2-arity predicates. Let us assume that the following positive predicates are

given

p(abc, dbe).

p(klc, dmv).

These clauses will be represented in Prolog as follows

p([a, b, c], [d, b, e]).

p([k, l, c], [d, m, v]).

CHAPTER 3 :GENERALIZATION OF PREDICATES 21

First of all, we should find the optimal match sequences between abc and klc, and then

OMS between dbe and dmv. Optimal match sequence of abc and klc is (ab,kl)c. OMS of

dbe and dmv is d(be,mv). SLGGs of these match sequences are Xc and dX,

respectively. Cartesian product of gives only one solution

p(Xc, dY).

Which means that, first parameter must end with c, and the second parameter must

begin with d. It can be represented in Prolog as

p(List1, List2) :- append(L1, [c], List1),

append([d], L2, List2).

Example 3.8: This example shows the multi-result generation process with the

following positive examples.

p(abc, dbe).

p(acb, ebd).

Optimal match sequences of abc and acb are a(ε, c)b(c, ε) and a(b, ε)c(ε, b).

Optimal match sequences of dbe and ebd are (ε, eb)d(be, ε), (d,e)b(e,d) and (db, ε)e(ε,

bd).

SLGGs of abc and acb are aXbY and aXcY.

SLGGs of dbe and ebd are XdY, XbY, XeY.

Result set will include 2x3 = 6 elements; these are

p(aXbY, LdM).

p(aXbY, LbM).

p(aXbY, LeM).

p(aXcY, LdM).

p(aXcY, LbM).

p(aXcY, LeM).

Example 3.9: This example examines the conditions, which there are more than 2

positive examples. Following positive examples can be used for this example.

1. p(abc, dbe).

2. p(klc, dmv).

3. p(alc, dme).

CHAPTER 3 :GENERALIZATION OF PREDICATES 22

The result set for 1 and 2 has been generated in Example 3.7. We need to generate

SLGGs of 1 and 3, and 2 and 3.

Optimal match sequence of abc and alc is a(b, l)c.

Optimal match sequence of klc and alc is (k,a)lc.

Optimal match sequence of dbe and dme is d(b, m)e.

Optimal match sequence of dmv and dme is dm(v, e).

SLGGs are aXc, Xlc, dXe, dmX respectively.

We have generalized templates

p(Xc, dY) from 1 and 2.

p(aXc, dYe) from 1 and 3

p(Xlc, dmY) from 2 and 3.

as the result set. Notice that some of the generated templates are more specialized, while

the others are more generalized. Ordering of these generated templates is another

problem and will be explained in Section 3.3.

If the alphabets of the arguments are same, finding similar parts and giving the same

variables to those part could be a good feature, but it does not supported in the current

version of the program. This feature can be added to the program easily, since our

current algorithm has already finds the similar parts of given to strings. If we give the

two arguments of the example, we can find the similar parts easily. (This is true for only

the predicates with two arguments).

3.3 Scoring and Sorting

Scoring the generated templates is one of the most important parts of this work.

Although, generalization algorithm finds all the optimal match sequences and their

SLGGs, it is not enough for practical usage of the result set. There should be an order

between these result, which we can say which ones are more specialized and which ones

are more generalized. Since order of applying rules is very important in many ILP

systems [17, 21, 32], order of the rules should be declared by our algorithm too.

If we can define which result is the most specialized one for us then, it will be easy to

find an algorithm for ordering the templates. Let us examine the following positive

examples and their result set.

CHAPTER 3 :GENERALIZATION OF PREDICATES 23

Positive examples are:

1. p(abc).

2. p(klc).

3. p(alc).

Generated templates for these examples are:

1. p(Xc).

2. p(aXc).

3. p(Xlc).

Notice that Xc covers all the examples, but aXc and Xlc covers 2/3 of the examples.

From this point of view it can be said that Xc is the most general one and its score

should be less than the others. For the present, let us assume that it is correct. Then, how

will we decide about the order of aXc and Xlc? Although both of them cover the 2/3 of

the examples, we can make a preference that more compact, less fragmented results are

better and less specialized. Thus, our algorithm can be based on the coverage and

compactness/fragmentation.

3.3.1 Fragmentation score for single-arity predicates

Fragmentation of a template means that the fragmentation of terminal symbols in a

template. Say, a template occurs from (V)T1VT2…Tn(V). V stands for variables and T

symbolizes the terminal groups. Number of fragments for this template is n, since there

are n terminal groups. If n(T) gives the length of the terminal groups, then

fragmentation score of a template is

FS = n(T1)
2 + n(T2)

2 + … + n(Tn)
2

Example 3.10: This example shows the calculation of the fragmentation score for a

simple template. Let us assume that generated templates are the following ones:

p(Xc).

p(aXc).

p(Xlc).

Fragmentation scores for these templates are

CHAPTER 3 :GENERALIZATION OF PREDICATES 24

FS(Xc) = 12 = 1

FS(aXc) = 12 + 12 = 2

FS(Xlc) = 22 = 4

Using only the fragmentation score scheme, templates can be sorted with respect to their

specificity. The prolog output will be as follows

p(List) :- append(L1, [l, c], List).

p(List) :- append([a], L1, L2), append(L2, [c], List).

p(List) :- append(L1, [c], List).

assuming, “append” as the background knowledge.

3.3.1.1 Fragmentation score for n-arity predicates

Fragmentation score for n-arity template is the sum of the fragmentation scores of

individual arities. If fragmentation score of each arity is λ, total fragmentation score, θ,

will be:

θ = λ1 + λ2 + …λn.

Example 3.11: This example shows the calculation of n-arity predicates in a detailed

manner. Let us assume that we have given following positive examples.

1. p(abc, dbe).

2. p(klc, dmv).

3. p(alc, dme).

Generated templates for these examples are

p(Xc, dY) from 1 and 2.

p(aXc, dYe) from 1 and 3

p(Xlc, dmY) from 2 and 3.

Total fragmentation scores for these templates are

- Xc = 1, dY = 1 and θ = 1 + 1 = 2

- aXc = 2, dYe = 2 and θ = 2 + 2 = 4

CHAPTER 3 :GENERALIZATION OF PREDICATES 25

- Xlc = 4, dmY = 4 and θ = 4 + 4 = 8

As it is seen from the scores, generated templates should be sorted as

p(Xlc, dmY).

p(aXc, dYe).

p(Xc, dY).

Since the fragmentation score is a kind of indicator of the coverage of all the possible

strings with the given alphabet, not the coverage of the example set, we may need to

change the order of or remove some of the generated templates with respect to our

example set and domain. Thus, fragmentation score is used with the coverage score for

sorting and eliminating the generalized templates.

It can be noticed that, scoring algorithm omits some conditions. For example, aXc and

XaYc are the generated templates. Scoring algorithm calculates the scores of aXc and

XaYc as 2 for both of them, although XaYc covers the superset of aXc’s coverage. If

this kind of accuracy is needed then the number of variables can be used as a parameter

for the calculation. Moreover, there are other methods that deal with gap creation and

gap extension in sequence alignment [5, 9]. These methods can be adapted for this

purpose.

3.3.2 Confidence factor/ Coverage score

Confidence factor assignment to the learned rules is very common in statistical machine

learning algorithms [23]. By the help of the confidence factor, very rare or very

specialized rules can be eliminated or vice versa. Both of them can be used in different

domains. If generalized templates are more useful instead of the specialized ones, or if

you want to cover all the examples with a few templates, then templates with small

coverage score can be eliminated easily or vice versa.

Confidence factor of a template, δ, can be calculated as

δ = γ/η

where γ is the number of covered examples, and η is the total number of examples.

With single-arity predicates it can be calculated as following

1. p(abc).

CHAPTER 3 :GENERALIZATION OF PREDICATES 26

2. p(klc).

3. p(alc).

are the positive examples and the generated templates are

p(Xc).

p(aXc).

p(Xlc).

The coverage scores of these templates are

- Xc covers 3/3 of the examples (abc, klc and alc) and δ is 1.

- aXc covers 2/3 of the examples (abc and alc) and δ is 0.66.

- Xlc covers 2/3 of the examples (klc and alc) and δ is 0.66.

3.3.2.1 Coverage score for n-arity predicates

For n-arity predicates calculation of coverage score is similar to the single-arity

predicates. Definition is same with the singe-arity predicates, but finding coverage a

little bit different. If the given positive examples are as following

1. p(abc, dbe).

2. p(klc, dmv).

3. p(alc, dme).

And the generated templates are

1. p(Xlc, dmY).

2. p(aXc, dYe).

3. p(Xc, dY).

For the first template, Xlc covers 2nd and 3rd examples; dmY covers 2nd and 3rd

examples too, intersection set is 2nd and 3rd examples. So the coverage of p(Xlc, dmY) is

2/3 (0.66).

For the second one, aXc covers 1st and 3rd examples; dYe covers 1st and 3rd examples

and the intersection set is 1st and 3rd examples. The coverage of p(aXc, dYe) is 2/3

(0.66).

For the last one, Xc covers all the examples, and dY covers all the examples too. So the

coverage score for the p(Xc, dY) is 3/3 (1.0).

CHAPTER 3 :GENERALIZATION OF PREDICATES 27

Example 3.12: In this example, parameters of generated templates covers in a

synchronized manner, but this may not be come true for every example set. If a new

example, p(plc, dce), is added to our predicates, we can observe the difference. Our

predicates will be

1. p(abc, dbe).

2. p(klc, dmv).

3. p(alc, dme).

4. p(plc, dce).

And the generated templates are

p(Xlc, dmY).

p(Xlc, dYe).

p(Xlc, dY).

p(aXc, dYe).

p(Xc, dYe).

p(Xc, dY).

First parameters of the 1st, 2nd and 3rd templates are same but the second parameters are

different. This will cause different coverage sets for these templates.

- Xlc covers 2nd, 3rd, 4th examples.

- dmX covers 2nd and 3rd examples.

- dXe covers 1st, 3rd, 4th examples.

- dX covers all the examples.

The intersection sets for these templates are

- For p(Xlc, dmY), 2nd and 3rd , the coverage is 2/4 (0.5).

- For p(Xlc, dYe), 3rd , the coverage is 1/4 (0.25).

- For p(Xlc, dY), 2nd, 3rd, 4th, the coverage is 3/4 (0.75).

As it can be seen from the example, first and second parameters could cover different

examples. We should be careful about this fact during coverage score calculations.

Moreover, the last example shows an important point that, generated templates are in

the fragmentation score order, but when we calculated their coverage scores, we saw

that their order change with respect to their coverage scores. This shows that

CHAPTER 3 :GENERALIZATION OF PREDICATES 28

fragmentation score and the coverage score should be used in a combined manner. And

the weights of these scores on the total score could be changed with a parameter.

3.3.3 Total Score

Total score calculation is needed because of different domains and different

requirements of the applications. By the total score calculation we can give different

weights to the fragmentation score and the coverage score. If the weights are equal then

we want results with high fragmentation score and high coverage. In fact, adjusting the

weights of the fragmentation and coverage could be a little bit painful.

Total score, Φ, is the sum of the weighted δ, coverage score, and θ, fragmentation

score, by given weight factors. If fragmentation factor is α, and coverage factor is β,

then total score is

Φ = αθ + βδ

Changing fragmentation and/or coverage factor affects the ordering of the generated

templates. If the templates that have more coverage score are more exceptional, then we

should increase the coverage factor or vice versa. Weight parameters can be defined in

the input file as follows

parameter('align_factor', 0.15).

parameter('cover_factor', 0.50).

First predicate defines the weight of the fragmentation score, α, as 0.15, and the second

predicate defines the weight of the coverage score, β, as 0.50. If we want to see all the

scores for example 3.12:

Fragmentation Coverage Total Score

p(Xlc, dmY). 16 0.50 2.650

p(Xlc, dYe). 8 0.50 1.450

p(Xlc, dY). 4 0.75 0.975

p(aXc, dYe). 4 0.50 0.850

p(Xc, dYe). 2 0.75 0.675

p(Xc, dY). 1 1.00 0.650

Table 3.1: Calculated scores for example 3.12

CHAPTER 3 :GENERALIZATION OF PREDICATES 29

3.3.4 Cut-point level

Cut point level is an important facility that may speed up the whole process. In this

work, cut point is used for only selection of first n high scored solution, but this might

be broadened to different types of cut-point applications. Some of them are:

- Detecting score gaps between consecutive templates to find the cut point

- Taking the average or mean of the scores and getting the templates, which

are around the mean or average.

- Use different scores for the selection, such as fragmentation, coverage, etc.

This list can grow easily by appending statistical methods. Selecting first n top scored

template is enough for our work. We can define the cut-point level in the input file as

follows

parameter ('constraint_level',5).

This predicate says that get the first five high scored templates for the final template set.

Usage of the cut point can be understood with an example easily.

Example 3.13: In order to show the usage of the cut point, pairs of the examples should

produce more than one optimal match sequence. Since cut point is applied to generated

templates of two strings. Assume that following positive examples are given

p(aabcc).

p(abc).

Optimal match sequences of these strings are

- a(a,)bc(c,)

- a(a,)b(,c)c

- (a,)abc(c,)

- (a,)ab(,c)c

And the SLGGs of these match sequences are

- aXbcY with fragmentation score of 5.

- aXbYc with fragmentation score of 3.

- XabcY with fragmentation score of 9.

CHAPTER 3 :GENERALIZATION OF PREDICATES 30

- XabYc with fragmentation score of 5.

If the cut-point is defined as 1, we get the most compact solution XabcY, although other

solutions are might show meaningful generalizations, such as aXbYc, which means

every string will begin with a, end with c, and it must include a b in the middle

somewhere. If the cut-point is 2, we will get XabcY and then there are two solutions

aXbcY and XabYc. Which one should we get? Or should we get both of them? In this

work, we preferred to get the one that we meet first, since there might be many more

solutions with the same score. Getting all the solutions with the same score might be a

little overwhelming for processing the final result set. This condition can be examined

by adding a new positive example to our input set.

Example 3.14: In this example, a new predicate will be added to the input set and the

effects of the cut-point on the final set will be looked through. If our domain is the

strings which include abc. Our examples will be

1. p(aabcc).

2. p(abc).

3. p(cabca).

Optimal match sequences of 1 and 2 are already calculated in the previous example. For

1-3 and 2-3, optimal match sequences and their SLGGs with their score are

From 1-3:

(ε, c)a(a, ε)bc(c, a) XaYbcZ with score of 5.

(a, c)abc(c, a) XabcY with score of 9.

(a, c)ab(c, ε)c(ε, a) XabYcZ with score of 5.

(ε, c)a(a, ε)b(c, ε)c(ε, a) XaYbZcM with score of 3.

(ε, cabc)a(abcc, ε) XaY with score of 1.

(ε, c)a(ε, bc)a(bcc, ε) XaYaZ with score of 2.

(aab, ε)c(ε, ab)c(ε, a) XcYcZ with score of 2.

From 2-3:

(ε, c)abc(ε, a) XabcY with score of 9.

(ab, ε)c(ε, abca) XcY with score of 1.

(ε, cabc)a(bc, ε) XaY with score of 1.

CHAPTER 3 :GENERALIZATION OF PREDICATES 31

Notice that there are many useless generated templates; by the help of the cut-point, we

get XabcY from 1-2, XabcY again from 1-3 and XabcY from 2-3 too. Thus, final result

set for these inputs will include only XabcY. This is the perfect solution that we want.

On the other hand, this approach may prevent the occurrence of the interesting but less

compact templates. Although cut-point mechanism is used to reduce the generated

output, with big datasets this might not be an enough solution. Selecting the useful

subset(s) within these templates is another problem and it will be handled by the

selection sets.

3.4 Selection Sets

Selection sets are used to examine the practicality/usability of used scoring schemes.

General algorithm during the calculation of these sets is

1. Order the templates by its fragmentation/coverage/total score.

2. Select templates one by one beginning from the most specific.

3. Omit the ones with coverage score 1.00.

4. Check that selected template covers new/uncovered examples.

5. If all the examples are covered, stop to select templates.

6. Remove redundant templates that are covered by a more general template in

the selection set.

Differentiating from this whole coverage selection set only includes the ones with the

coverage score of 1.00.

There are four kinds of selection sets used in this work. These four different approaches

are

- By fragmentation score

- By coverage score

- By total score

- By whole coverage

In order to see the differences between these methods we need a positive example set

that we can use in four selection algorithm to see the difference. Let us assume the

following past tenses of some verbs have been given as the positive examples.

pr(moved).

CHAPTER 3 :GENERALIZATION OF PREDICATES 32

pr(removed).

pr(killed).

pr(spied).

pr(fried).

pr(married).

pr(written).

pr(engineered).

pr(stopped).

pr(connected).

pr(clipped).

If the fragmentation score weight and coverage score weight are 0.5. The generated

templates and their scores will be as in Table 3.2.

Fragmentation Coverage Total

Xmoved 25 0.181818 3.840909

Xried 16 0.181818 2.490909

Xpped 16 0.181818 2.490909

XrYied 10 0.181818 1.590909

Xied 9 0.272727 1.486364

XnYneZed 9 0.181818 1.440909

XnYneZeKd 7 0.181818 1.140909

XnYnZeKed 7 0.181818 1.140909

sXpYed 6 0.181818 0.990909

XnYeZed 6 0.181818 0.990909

mXed 5 0.181818 0.840909

XoYed 5 0.363636 0.931818

XrYed 5 0.363636 0.931818

XmYed 5 0.272727 0.886364

XeYed 5 0.272727 0.886364

XreYd 5 0.181818 0.840909

XiYed 5 0.545455 1.022727

XlYed 5 0.181818 0.840909

XpYed 5 0.272727 0.886364

XriYeZ 5 0.272727 0.886364

XtYed 5 0.181818 0.840909

cXed 5 0.181818 0.840909

XcYed 5 0.181818 0.840909

Xed 4 0.909091 1.054546

XenY 4 0.181818 0.690909

XteY 4 0.181818 0.690909

XnYnZeKd 4 0.181818 0.690909

XnYeZeKd 4 0.181818 0.690909

XoYeZd 3 0.363636 0.631818

CHAPTER 3 :GENERALIZATION OF PREDICATES 33

XrYeZd 3 0.363636 0.631818

XeYeZd 3 0.272727 0.586364

XiYeZd 3 0.545455 0.722727

XrYiZeK 3 0.272727 0.586364

XnYeZd 3 0.181818 0.540909

cXeYd 3 0.181818 0.540909

XeYd 2 0.909091 0.754545

XrYeZ 2 0.454545 0.527273

XiYeZ 2 0.636364 0.618182

XiYnZ 2 0.181818 0.390909

XeYnZ 2 0.181818 0.390909

XtYeZ 2 0.272727 0.436364

XeY 1 1.00 0.65

XnY 1 0.272727 0.286364

Table 3.2: Generated templates for some past tense examples

There are 43 generated templates in the result set and many of them are uninteresting

and useless. From these results, we get any information about the examples, but

decreasing the number of templates and increasing the percentage of usefulness would

be better. To achieve this goal 4 ways have been tried. Now, we can examine these four

different approaches with the same data.

3.4.1 Selection with fragmentation score

Generated selection set without removing the redundant templates with respect to

fragmentation score will be as follows

p(Xmoved).

p(Xried).

p(Xpped).

p(Xied).

p(XnYneZed).

p(XiYed).

p(XriYeZ).

Reader might notice that, these generated templates are not the first seven templates in

Table 3.2. This is because we do not select the templates that do not cover any

new/uncovered example, which is declared as the 4th step of the algorithm. If we step

over the algorithm:

Xmoved is selected that covers moved and removed.

CHAPTER 3 :GENERALIZATION OF PREDICATES 34

Xried covers fried and married.

Xpped covers stopped and clipped.

XrYied covers fried and married already covered by Xried.(omitted)

Xied covers spied, fried and married.

XnYneZed covers connected and engineered.

XnYneZeKd does not covered any new example, not selected.

XnYnZeKed does not covered any new example, not selected.

…

Until XiYed, templates cover the examples already covered by previous

templates. In other words, templates between XnYneZed and XiYed do not cover any

new example, so we do not include them in our selection set, but XiYed covers killed,

which is not covered before.

And the algorithm goes on like this, until all the examples are covered. Since only

written has left as uncovered, when we meet with XriYeZ which covers written,

algorithm stops. In the end we have a compact and very informative result set with 8

elements, instead of 43. Moreover, it covers all the given examples as the other one. But

a careful one, may notice that Xied covers the superset of Xried and XiYed covers the

superset of Xied. Then why do we use Xried and Xied? In fact, Xried and Xied might

be needed in different domains and some applications, our algorithm provides the

redundant template removal for the ones who need more compact results. On the other

hand, going towards more compact result, means that loosing information about the

examples. Thus, the requirements of the domain should be defined well about the

needed information.

Final result set with removal of the redundant templates would be

p(Xmoved).

p(Xpped).

p(XnYneZed).

p(XiYed).

p(XriYeZ).

with 5 templates.

3.4.2 Selection with coverage score

To be able to see the execution of the algorithm easily, we need the generated templates

sorted by coverage score in descending order.

CHAPTER 3 :GENERALIZATION OF PREDICATES 35

Fragmentation Coverage Total

XeY 1 1 0.65

Xed 4 0.909091 1.054546

XeYd 2 0.909091 0.754545

XiYeZ 2 0.636364 0.618182

XiYed 5 0.545455 1.022727

XiYeZd 3 0.545455 0.722727

XrYeZ 2 0.454545 0.527273

XoYed 5 0.363636 0.931818

XrYed 5 0.363636 0.931818

XoYeZd 3 0.363636 0.631818

XrYeZd 3 0.363636 0.631818

Xied 9 0.272727 1.486364

XmYed 5 0.272727 0.886364

XeYed 5 0.272727 0.886364

XpYed 5 0.272727 0.886364

XriYeZ 5 0.272727 0.886364

XeYeZd 3 0.272727 0.586364

XrYiZeK 3 0.272727 0.586364

XtYeZ 2 0.272727 0.436364

XnY 1 0.272727 0.286364

Xmoved 25 0.181818 3.840909

Xried 16 0.181818 2.490909

Xpped 16 0.181818 2.490909

XrYied 10 0.181818 1.590909

XnYneZed 9 0.181818 1.440909

XnYneZeKd 7 0.181818 1.140909

XnYnZeKed 7 0.181818 1.140909

sXpYed 6 0.181818 0.990909

XnYeZed 6 0.181818 0.990909

mXed 5 0.181818 0.840909

XreYd 5 0.181818 0.840909

XlYed 5 0.181818 0.840909

XtYed 5 0.181818 0.840909

cXed 5 0.181818 0.840909

XcYed 5 0.181818 0.840909

XenY 4 0.181818 0.690909

XteY 4 0.181818 0.690909

XnYnZeKd 4 0.181818 0.690909

XnYeZeKd 4 0.181818 0.690909

XnYeZd 3 0.181818 0.540909

cXeYd 3 0.181818 0.540909

CHAPTER 3 :GENERALIZATION OF PREDICATES 36

XiYnZ 2 0.181818 0.390909

XeYnZ 2 0.181818 0.390909

Table 3.3: Generated templates sorted by coverage score

Table 3.3 says that scoring of the templates with fragmentation and coverage are in the

reverse direction generally as it is expected. So the one that covers all the examples is at

the top. Fortunately, our selection algorithm omits the ones that cover all the examples,

since they will block the selection of specialized templates. Thus, the generated

selection set will be

p(Xed).

p(XiYeZ).

Xed covers all the regular verbs and XiYeZ covers the written. As it is seen this

selection set shows only the most common properties of the examples. With this

approach, it might not be very useful, but the algorithm for selection could be changed

that templates, which have coverage score above average or some cut point (like 0.20

for this example) or some gap, can be selected and from this group, there could be

another selection.

3.4.3 Selection with total score

Selection with total score might be the most promising selection set generation

approach. In order to see this, we need the sorted solution by total score.

Fragmentation Coverage Total

Xmoved 25 0.181818 3.840909

Xried 16 0.181818 2.490909

Xpped 16 0.181818 2.490909

XrYied 10 0.181818 1.590909

Xied 9 0.272727 1.486364

XnYneZed 9 0.181818 1.440909

XnYneZeKd 7 0.181818 1.140909

XnYnZeKed 7 0.181818 1.140909

Xed 4 0.909091 1.054546

XiYed 5 0.545455 1.022727

sXpYed 6 0.181818 0.990909

XnYeZed 6 0.181818 0.990909

XoYed 5 0.363636 0.931818

XrYed 5 0.363636 0.931818

CHAPTER 3 :GENERALIZATION OF PREDICATES 37

XmYed 5 0.272727 0.886364

XeYed 5 0.272727 0.886364

XpYed 5 0.272727 0.886364

XriYeZ 5 0.272727 0.886364

mXed 5 0.181818 0.840909

XreYd 5 0.181818 0.840909

XlYed 5 0.181818 0.840909

XtYed 5 0.181818 0.840909

cXed 5 0.181818 0.840909

XcYed 5 0.181818 0.840909

XeYd 2 0.909091 0.754545

XiYeZd 3 0.545455 0.722727

XenY 4 0.181818 0.690909

XteY 4 0.181818 0.690909

XnYnZeKd 4 0.181818 0.690909

XnYeZeKd 4 0.181818 0.690909

XeY 1 1 0.65

XoYeZd 3 0.363636 0.631818

XrYeZd 3 0.363636 0.631818

XiYeZ 2 0.636364 0.618182

XeYeZd 3 0.272727 0.586364

XrYiZeK 3 0.272727 0.586364

XnYeZd 3 0.181818 0.540909

cXeYd 3 0.181818 0.540909

XrYeZ 2 0.454545 0.527273

XtYeZ 2 0.272727 0.436364

XiYnZ 2 0.181818 0.390909

XeYnZ 2 0.181818 0.390909

XnY 1 0.272727 0.286364

Table 3.4: Generated templates sorted by total score

If Table 3.2 and Table 3.4 is compared, it is seen that Xed takes its position between the

templates with high fragmentation score. The reflection of this change can be observed

in the generated selection set.

p(Xmoved).

p(Xried).

p(Xpped).

p(Xied).

p(XnYneZed).

p(Xed).

p(XriYeZ).

CHAPTER 3 :GENERALIZATION OF PREDICATES 38

Again we have 7 templates, but this time it includes Xed, instead of XiYed. Destiny of

the XiYed is directed by a small number (1.054546-1.022727 = 0.031819). Notice that

weights of the fragmentation and coverage score can change the order of the templates,

which may cause the changing of the selection set. In addition to this, the order of the

Xed and XriYeZ is in a conflict with sorting from most specialized to most generalized.

In fact, this is our choice in this selection model, but this behavior may need to be

questioned in different domains.

Moreover, if we want to use the removal of redundant templates, the output will be

p(Xed).

p(XriYeZ).

This output is the same with the coverage score selection set. It covers all the regular

verbs and the written.

3.4.4 Selection set with coverage score 1.0

In this example, there is only one template that covers all the examples. So the result set

is

p(XeY).

If our input had included a past tense of a verb, which does not include any e character,

then the selection set would have been empty, since the only possible template that

covers all the examples would be p(X).

Although this selection set might seem useless, there might be some domains with long

sequences that seeing common points is difficult. By this selection set, these kind of

common points that are not to be noticed, might be discovered easily.

CHAPTER 4 :IMPLEMENTATION 39

Chapter 4

Implementation

Our system consists of three fundamental parts:

- Alignment of two sequences

- Assigning score to individual templates

- Constructing decision list

Alignment module generates all possible templates for two given strings obeying the

constraints about maximum template number. During this generation process, scoring

module assigns score to these match sequences/templates. After generation of all

possible templates for all sequence pairs, decision list construction module sorts and

eliminates some of these templates with respect to given selection criteria and finally

produces the selection set/decision list. General architecture is given in Figure 4.1. The

components will be explained in details in the following sections.

4.1 Alignment Module

The aligner component of the alignment module takes only two sequences/strings for

the alignment process. All possible alignments of these two sequences are generated,

but only the ones that obey the constraint level parameter are stored in the buffer.

Manager part of the alignment module arranges the template generation. Since only two

sequences can be given at the same time to the aligner, for n-arity predicates aligner is

fed in the argument order, and the Cartesian product of the generated templates is taken

to get the final templates. Again, constraint level checker eliminates the excessively

generated templates. After generation of templates for two sequences, alignment

manager feeds the aligner with another combination of given examples. It goes until all

the combinations of examples are fed into the aligner. The most important component of

the alignment module is the aligner, which finds the optimal match sequences of given

two strings. The algorithm is given in the following lines.

CHAPTER 4 :IMPLEMENTATION 40

4.1.1 Algorithm to find optimal match sequences

In this part, a simple recursive algorithm will be given to find optimal match sequences.

Since the main goal of this project is not finding the optimal match sequences in a faster

way, an easy implementable, recursive algorithm was chosen to implement. A

simplified pseudo-code has been given to give an idea about the recursive solution.

In fact, alignment operation is a depth-first search. Recursive algorithm finds all

possible alignments with depth-first search and generated match sequences are put in a

buffer, and then they are converted to templates for the generalization process.

Generalization process takes generated match sequences and changes difference parts of

the match sequences with variables.

Figure 4.1: General architecture

Alignment

Module

Scoring

Module
Constraint

Checker

Templates

Examples

Final Template

Generator

Final Templates

Decision Lists

Decision List

Generator

CHAPTER 4 :IMPLEMENTATION 41

FindAlignment(String1, String2, oms, Dif1, Dif2)

If String1 or String2 is empty then

concat similarity and difference parts with already generated oms

call scoring module with generated oms to put it to db

return

do {

if String1 does not include String2’s first character or

their first characters are same then

{

append String2’s first character to Dif2

FindAlignment(String1, String2.substring(1,last), oms, Dif1, Dif2)

}

else if it includes first character in different position

{

append new diffs to oms and empty Dif1 and Dif2

FindAlignment(String1.substring(position), String2.substring(1, last), oms,

Dif1, Dif2)

If there are suitable parts in String1 for matching with the rest of String2

then

FindAlignment(String1, String2.substring(1, last), oms, “”, Dif2)

}

}until String1 does not include String2’s first character

Figure 4.2: Alignment algorithm

Figure 4.2 shows the recursive alignment algorithm. This function is called by the

alignment manager such as:

FindAlignment(“abcd”, “ad”, “”, “”, “”);

First two arguments are strings which will be aligned. Third parameter is the already

generated oms of these strings and the last two arguments are the already found

differences that are not finished. In the first call, since the string1 and string2 are not

empty, do-until loop is executed. Since the first characters are same “a”. FindAlignment

is called as

FindAlignment(“bcd”, “d”, “a”, “”, “”);

“b” is not found in string2 so “b” is added to the Dif1 and

FindAlignment(“cd”, “d”, “a”, “b”, “”);

is called. Again string2 does not include “c”, so “c” is added to the Dif1 and

CHAPTER 4 :IMPLEMENTATION 42

FindAlignment(“d”, “d”, “a”, “bc”, “”);

is called. The called function finds “d” as similar part and closes the differences by

appending difference part to the oms. Oms becomes “a(bc, E)”. Then similar part is

appended to the oms to call

FindAlignment(“”, “”, “a(bc,E)d”, “”, “”);

Since the string1 and string2 are empty, we understood that oms is the final product.

Thus, this oms can be send to the scoring module. When the function returns from the

scoring module, all the called functions returns, since there are no more producible

oms. The alignment manager calls the findAlignment with other strings.

If our strings are “abcda” and “ad”, our recursion will be rolled back until the first

called function. This function finds the second occurrence of “a” and calls itself as

follows

FindAlignment(“”, “d”, “a”, “abcd”, “”);

Since the first string is empty, function realize that it is the stop point and it

concatenates the rest of the remaining string to produce the oms. The resultant oms is

“(abcd,E)a(E,d)”. Again this oms is sent to the scoring function and when it returns,

recursive functions returns to the caller function.

The data structures and the class definitions can be found in Appendix A.

4.2 Assigning Score to Templates

Scoring module has two parts. One of them calculates the fragmentation score of the

generated templates just after the generation of the template. Other part calculates the

coverage score. Calculation of fragmentation score is fast enough since it is calculated

from the generated template. On the other hand, calculation of the coverage score

depends on the size of the examples. It checks for every example that if it is covered by

the generated template. Using a kind of caching mechanism might accelerate this

process. Nevertheless, this has not been implemented in this project.

Fragmentation score calculation part takes the generated template as input such as:

CHAPTER 4 :IMPLEMENTATION 43

abcXdef

and gives the fragmentation score. Fragmentation score is calculated similar to the

Euclidian distance calculation without the square root. Each similar part (terminals

between variables) taken as a different dimension and the sum of the squares of their

lengths gives the fragmentation score. For n-arity predicates, total fragmentation score

is the sum of the fragmentation scores of each argument. The details of the calculation

process can be found in Chapter 3. At the end, the template and its fragmentation score

information are send to the constraint checker.

Calculation of coverage score is done during the generation of final templates. Since the

individual coverage of templates of n-arity predicates does not mean anything, their

coverage score is calculated for all the argument templates. Thus for the calculation of

the coverage score, we need to wait until the final templates begin to be generated.

Calculation details of coverage score are in Chapter 3.

4.2.1 Constraint checker

The constraint checker is the guardian of the databases (arrays in the current

implementation). Every template structure is checked before being added to the DB.

Constraint checker gets template structure as input and if it is an acceptable template,

adds it to the DB.

In fact, there are two different constraint checkers, one of them checks the templates for

single-arity predicates and the temporary templates for multi-arity predicates.

“constaint_level” parameter is important for this checker. The other one, checks the

constraints of multi-arity predicates for the final template DB. For this checker

“unbalanced_variable” and “constraint_level” parameters are the most important ones.

4.3 Decision List Construction

Selection set generation and producing decision lists is the final part of the whole

process. There are four kinds of selection sets used in this work. These four different

approaches are

- By fragmentation score

- By coverage score

- By total score

- By whole coverage

CHAPTER 4 :IMPLEMENTATION 44

Details of these approaches can be found in Chapter 3, but in this section information

about the relations between the selection set generation module and the other modules

can be found.

Selection set generation module uses the final templates generated by alignment and

scoring modules. All the final templates have fragmentation score, coverage score and

total score. This module selects from these templates with respect to four different

constraints and put them in different sets. These sets are sorted with respect to their

related score. At this point decision list generation part produces decision lists for these

sorted selection sets. Figure 5.2 explains this process.

Figure 4.3: Decision list generation

4.4 Working of The Program

In this section, we will begin with the example set and generate one of the decision lists.

Let us assume the following example predicates are given:

p(abcd).

Final Templates

Selection Set

Generator

Decision List

Producer

Decision Lists

CHAPTER 4 :IMPLEMENTATION 45

p(ad).

p(aed).

Alignment manager takes two of these predicates (firstly 1 and 2, then 2 and 3) for

alignment and calls the aligner such as:

align(“abcd”, “ad”)

After this call, the given algorithm in Figure 4.2 begins to work. It finds “aXd” and

sends it to the scoring module. Scoring module calculates fragmentation score as “2”

and sends it to the constraint checker, constraint checker puts it to the template array in

the first position. After this point, since there are no more templates which can be

generated from these two strings, alignment manager sends these templates to the final

template generator. Final template generator appends the coverage and total score to

every template structure. In this example, it is “1” and “1.5” respectively for “aXd”

(since the default ratio for fragmentation and coverage scores are 0.5). And, the

templates are added to the final template array in the control of the constraint checker.

Alignment manager calls aligner with

align(“ad”, “aed”)

Aligner finds “aXd” again and the same process is repeated, but in the addition to the

final template phase, it is found that this template has already been added to the array

and it does not added again. Thus in the end we have a final template array with one

record, which is {“aXd”, 2, 1, 1.5}. In fact, there are more values such as variable

count, fragment count in the real structure but they are used internally.

Since all the final templates and their required scores are generated, we selection set

generation can be called. In the current version of the program, the default selection set

is the one which uses the fragmentation score for sorting. Final templates are sorted by

their fragmentation score or the one defined in input file. In addition, the first “N” of the

templates are selected and the rest are cropped. Decision list generator generates the

following lines:

p(X):-

append([‘a’],L1,L2),

append(L2,[‘d’],X),!.

This is all the work done to find the generalization of given examples.

CHAPTER 4 :IMPLEMENTATION 46

4.5 Time Complexity Analysis

In this section, time complexities of all the fundamental procedure, i.e. alignment,

scoring, selection set generation will be derived. Assume that we have N examples, total

number of alignment operations is denoted by TA.

() ()2
2

22

1
2

NO
NNNNN

TA =−=−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

Calculation of the coverage score depends on the number of examples and the number

of generated templates. Calculation of coverage score for only one template is O(N),

since there are N comparisons. Total number of comparisons for NT (number of

templates) will be NTN × . Thus, complexity of scoring will be ()NTNO × .

In order to generate selection sets, all the generated templates are compared with the

examples in the worst case. So the complexity of selection generation will be

()NTNO × .

All calculated time complexities given above depend on the number of examples.

Maximum complexity is the ()NTNO × , but we have not calculated anything about the

generation of templates from two string pairs that directly affects the NT. Assume that

we have two strings with lengths m and n, such that nm ≥ . Difference between m and n

is defined as d (d=m - n). In the worst case, total number of comparisons between two

strings is

() () ()2

2

1

2

1
2 nmO

ddnn
m ×=⎟

⎠
⎞

⎜
⎝
⎛ +−+

Maximum number of generatable template from two strings is n. In the worst case, we

can assume that all the templates, generated from the examples, are different. Thus, the

total number of the length of the strings which are half of the example strings that have

minimum length gives the number of templates. Assume that all the strings have length

l. Total number of templates will be

()
2

1−×= NN
lNT

As a result, the complexity of scoring and selection set generation will be ()3NlO × .

Table 4.1 shows timings and number of generated templates for past tense learning.

“FindAlignment calls” column of the table is about the total number of recursive calls

during the whole process. Generated templates are the total number of templates which

are generatable/generated from all the examples. “Time without templates” is timing for

CHAPTER 4 :IMPLEMENTATION 47

alignment process without generating templates, since the templates are not generated,

scoring/sorting and selection set generation do not affect the results.

Number of

examples

FindAlignment

calls

Generated

templates

Time without

templates (ms)

Total Time

(ms)

10 2868 426 440 770

20 10095 1769 1810 4340

30 23964 4145 4230 15100

40 39369 7036 7250 29440

50 66468 11255 11760 54480

60 96962 15938 16860 85080

70 133291 21962 22680 126220

80 182076 30307 30480 186800

90 224454 37379 37570 249970

Table 4.1: Statistics for past tense learning

CHAPTER 5: APPLICATIONS 48

Chapter 5

Applications

String generalization can be used in many different domains. Some of them are DNA

sequence alignment, past tense learning, translation template learning, etc. In this

chapter, application of TDL* to these domains will be examined in detail.

Following sections are about the domains with single arity predicates, which includes

learning member predicate, etc. Then domains with n-arity (especially 2-arity) will be

examined.

5.1 Applications with Single-Arity

Although there are many applications with single-arity we chose the biological

sequence alignment domain to explain the weak and strong sides of our program.

5.1.1 DNA sequence alignment

The main goal of the alignment is establishing homology in nucleotide positions. There

are four types of sequences. These sequences are amino acid, protein-coding DNA,

ribosomal DNA, non-coding DNA.

Sequence alignment has problems with amino acids and protein-coding DNAs, if they

are less conserved, they can get insertions and deletions of nucleotides. Moreover, for

non protein-coding DNAs, greater occurrence of insertions and deletions may be

observed, since their sequences are not constrained by a translation.

* In this chapter, our application will be called as TDL, stands for “Template Decision List”.

CHAPTER 5: APPLICATIONS 49

There are different alignment programs: e.g., CLUSTAL W, Divide and Conquer,

Malign, Pileup, TreeAlign [3]. All programs use a set of parameters to calculate

alignment; some can be set by the user. Common to all are: mismatch penalty, match or

identity score, gap creation penalty, gap extension penalty. Individual programs have

additional unique parameters. Matches increase overall score; mismatches, gaps

decrease it.

Two protein sequences in FASTA format are as follows:

>oryza

MTKAIPKIGS---RRKVRIGLRRNARFSLRKSARRITKGVIHVQASFNNT

IITVTDPQGRVVFWSSAGTCGFKSSRKASPYAGQRTAVDAIRTV---GLQ

RAEVMVKGAGSGRDAALRAIAKSGVRLSCIRDVTPMPHNGCRPPKKRRL

>nicotiana

MAKAIPKISS---RRNGRIGSR--------KGARRIPKGVIHVQASFNNT

IVTVTDVRGRVVSWSSAGTSGFKGTRRGTPFAAQTAAANAIRTVVDQGMQ

RAEVMIKGPGLGRDAALRAIRRSGILLTFVRDVTPMPHNGCRPPKKRRV

The alignment of these two sequences found by our program is:

mXkaipkiXs---rrXrigXrXkXarriXkgvihvqasfnnt

iXtvtdXgrvvXwssagtXgfkXrXpXaXqXaXairtvXgXq

raevmXkgXgXgrdaalraiXsgXlXrdvtpmphngcrppkkrrX

All the variables shown as X, represent different sequences. Current version of our

program finds this template in more than an hour. This is because current algorithm to

find the alignments is a recursive one and the depth of the recursion increases with the

length of the examples. Thus, without changing the algorithm of the aligner module of

the program, it is not practical to use it for long sequences.

From the point of correctness, our algorithm finds the most specific generalized

template. This is the best optimal solution with respect to our heuristic which says that

the optimal solution is the one which has minimum number of variables and maximum

fragmentation score, sum of the squares of the lengths of the similar parts. DNA/Protein

sequence alignment algorithms have some parameters such as gap creation penalty and

gap cost. Gap creation penalty affects the number of variables, in other words, the

difference sequences in our algorithm. Gap cost is not taken into consider by our

algorithm, since the length of the difference part is not important with respect to our

algorithm. Finding the global optimal or finding the maximum similar points between

two sequences is important, so restrictions on the length of the differences affects to

CHAPTER 5: APPLICATIONS 50

solution. Moreover, some of the DNA/Protein sequence alignment programs employs

parameters about DNA/Protein structures, such as the protein boundaries, replication

begin-end points, etc. In fact most of the parameters employed are used to speed up the

alignment process, since finding the best solution is NP-HARD as stated in Section 2.1,

all the algorithms try to minimize the search space with these constraints. Our algorithm

is very slow, but it finds the best optimal solution. Moreover, since our algorithm finds

all possible alignments, our solution set covers the solutions of other programs. As a

result, we can say that there is a trade-off between finding the global optimal solution

and the time.

5.2 Experiments with 2-Arity

5.2.1 Past tense learning

Learning the past tense of English verbs is an important topic in machine learning since

1986. There is a lot of work done on this topic. Rumelhart and McClelland began with a

classic perceptron algorithm, Ling and Marinov continued with slightly modified

version of C4.5. Califf, tried to apply FOIL and GOLEM, but he got disappointing

results [41]. Mooney achieved better results with FOIDL.

Some of these applications worked with phonetic encoding of verbs, some of them used

alphabetic data. We will use the alphabetic dataset in our examples [42].

All the previous methods try to find the similar and changing parts between the present

participle and past participle of the words. On the other hand, our method finds similar

and changing parts between present participles, and then between past participles of

verbs. Moreover, other methods use some kind of negative example, explicitly or

implicitly and some of them use closed-world assumption. Using assumptions about the

negative examples might be problematic. In real world, a new language learner cannot

say anything negative about the past participles of words. He/she cannot say that this

verb cannot be regular/irregular, until she/he learns its correct form.

From this point of view, TDL tries to learn every positive example like a human being

without teacher. TDL compares each verb with each other, their past participles with

each other and tries to generate templates about what it learns. Moreover, it uses a

simple heuristic to define their order.

CHAPTER 5: APPLICATIONS 51

Example 5.1: In this example, learning past tenses of regular verbs will be examined. A

few examples will be enough to learn “add ‘ed’” rule.

past(look, looked).

past(accept, accepted).

From two example, our method generates two templates:

past(X, Yed).

past(X, YeZd).

First rule is enough to show the learning of “add ‘ed’” rule with TDL. Second rule

shows an important point in our work. There is one variable “X” in left side, but there

are two variables “Y” and “Z” in right side. Note that our algorithm does not ensure that

same variables correspond to the same meaning. Even for past(X, Yed), X and Y does

not represent the same thing, because X and Y might be in different alphabets. This

condition might occur in translation examples. This will be examined in the following

sections.

For this kind of domains, we use a parameter to provide the balance of variables in all

the arguments of the rules:

parameter(‘unbalancedvariable’, false).

If we continue with the generated templates, fragmentation score selection and total

score selection will produce only one template, which is:

p(X, Yed).

In FOILD, for the examples above, following line is generated [17]:

past(A,B) :- split(B, A, [e,d]).

Example 5.2: This example is about “exceptions to the exception to the rule” concept

declared in [17] by Mooney and Califf. The example of this concept is about learning

the changing of “y” to “ied” and incorrectly covering a few examples that are correctly

covered by the previously learned “add ‘ed’” rule (e.g., bay bayed; delay

delayed). FOIDL can overcome this problem. What about the TDL? Let us our

examples are:

CHAPTER 5: APPLICATIONS 52

past(bay,bayed).

past(delay,delayed).

past(try,tried).

past(fry,fried).

There are seven generated templates for these examples. Note that some of these

templates affected from the problem explained in the previous example.

past(Xay,Yayed).

past(Xry,Yried).

past(Xay,YeZd).

past(Xay,YdZ).

past(Xy,Yed).

past(Xy,YeZd).

past(Xy,YdZ).

Although, there are seven generated templates, selections sets for fragmentation and

total score produce same output with two clauses:

past(Xay,Yayed).

past(Xry,Yried).

Since TDL, tries to find and use the most specific templates, we do not meet this kind of

incorrect coverage. Reader may notice that result set does not have

past(Xy,Yied).

template, which is the source of the problem in Mooney’s approach. Since TDL uses the

decision lists as in FOIDL, the list that is ordered with our heuristic will be:

past(Xay,Yayed).

past(Xry,Yried).

past(Xy,Yied).

Again, TDL covers the examples correctly.

Example 5.3: Is everything excellent with TDL? In this example, the condition that

TDL cannot learn anything will be shown. Let the examples are do not have any

common character.

past(act, acted).

past(know, known).

CHAPTER 5: APPLICATIONS 53

Generated template is the most general template that accepts everything:

past(X,Y).

Although, this is very disappointing, in the real dataset there are many words and these

words have common parts with each other. If this was not the case, nobody would learn

to speak or everyone would have a super memory. This problem can be recovered

easily, if there are examples that cannot be covered by the generated templates except

the most general template. These examples can be added directly to the result set, but in

real life, main problem is these kind of exceptional verbs have similar characters with

other words. Thus, our program may generate a template that can cover these examples

(for know and known in this case) such as:

p(XnY, MnoN).

Although, this is not a useful template from our point of view, it is an acceptable

template for the program. Because of this kind of exceptions, current version of the

program cannot learn wanted templates (in the meaning of past tense learning). In order

to eliminate this, the pattern of the template to generate can be given. For the past tense

learning, the templates that begin with a variable followed by terminals will be most

suitable one. This causes omitting the information about the similar parts in the

beginning and the middle of the strings, since only the end parts of the verbs are

affected from this change. If in English there are verbs with past tenses that the first

characters of the two tenses are different, this solution cannot be used too.

5.2.2 Learning translation templates

In 1996, Guvenir and Cicekli proposed a new exemplar based machine translation

system [21]. This system is based on the translation templates. The heuristic of the

translation template learning (TTL) algorithm can be summarized as follows: given to

translation pairs, if there are some similarities (differences) in the source language, then

the corresponding sentences in the target language must have similar (different) parts,

and they must be translations of the similar (different) parts of the sentences in the

source language. Similar parts are replaced with variables to get a template, which is a

generalized exemplar, by this method. In [21], translation templates are ordered

according to the number of terminal symbols of the templates. Since this criterion is not

sufficient for large systems, [23] added confidence factor assignment that each rule and

some rule combinations are assigned weights.

CHAPTER 5: APPLICATIONS 54

In this section, notation of [21, 22] will be used for the source and target languages. Let

us try to use TDL to learn translation templates.

Example 5.4: This example is about the main motivation point of this work. In [30], it

is stated that TTL algorithm cannot learn any template from the following translation

examples between American and British English:

1. The other day, the president analyzed the state of the union ↔
The other day, the president analysed the state of the union

2. Recently, the president analyzed the state of the union ↔
Recently, the president analysed the state of the union

3. Recently, the president analyzed the union ↔
Recently, the president analysed the union

The reason for this is that the lexical item the will end up in both a similarity and a

difference in a match sequence of any two of these examples [30]. Such as :

Recently, the president analyzed the (state of the, ε) union

Recently, the president analyzed (the state of, ε) the union

for the sentences 2 and 3. In [30], it cannot choose one of them as the correct template,

but this is not a problem for our algorithm, since it generates and accepts all possible

templates (both of the templates above, in this example). In TDL, we can use constraint

level and scoring for restrictions on the learned templates. If we define the constraint

level as 1, TDL learns three different templates from these examples, which are:

1. X the president analyzed the state of the union ↔
Y the president analysed the state of the union

2. X the president analyzed the Y union ↔
M the president analysed the N union

3. Recently, the president analyzed the X union↔
Recently, the president analysed the Y union

These templates are learned since their fragmentation scores are greater than other

templates. TDL learned the third template:

Recently, the president analyzed the X union↔ ...

instead of

CHAPTER 5: APPLICATIONS 55

Recently, the president analyzed Y the union↔ ...

because the fragmentation score of the first one is 26, and 20 for the second one, if we

count the words as the terminals. If the constraint level is increased to 2, then a few

more templates are added to list. One of them is:

X the president analyzed Y the union ↔
M the president analysed N the union

This template is important since it shows “the union” as one structure. Thus, we can say

that TDL can find the “wanted” similarities between the examples. On the other hand,

TDL might learn another template such as

X the president analyzed Y the union ↔
M the president analysed the N union

Fragmentation score of this template will be greater than the previous template. So this

will be higher priority to be selected.

Example 5.5: This example shows the powerful and weak sides of the TDL. Following

example translations “I saw you at the garden” “Seni bahçede gördüm” and “I saw

you at the party” “Seni partide gördüm” are given with their lexical level

representations [21]:

i see+p you at the garden ↔ sen+yH bahçe+DA gör+DH+m

i see+p you at the party ↔ sen+yH parti+DA gor+DH+m

TDL, generates the following output:

ttl(i see+p you at the X, sen+yh Y+da gor+dh+m).

From these examples with one pair of differences in both sides, following translation

templates are learned by the TTL algorithm:

[i see+p you at the X1] ↔ [sen+yH X2+DA gör+DH+m]

if [X1] ↔ [X2]

[garden] ↔ [bahçe]

[party] ↔ [parti].

CHAPTER 5: APPLICATIONS 56

TTL learns information from the differences. “garden” ↔ “bahçe” pair and “party” ↔
“parti” pair are learned from the differences. But, TDL algorithm can only learn the

similar part as translation rule. If, on the other hand, the number of differences are equal

on both sides, but more than one, i.e., 1 < n = m, without prior knowledge, it is

impossible to determine which difference pairs in one side corresponds to which

difference pairs on the other side [21]. Equal number of variables/differences on both

sides is really needed? The next example will be about this.

Example 5.6: In this example, we will try to make a translation with the templates with

different number of variables/differences on both sides. Let us assume that following

translation pairs are given:

my party was good ↔ benim partim güzeldi

your party was good ↔ senin partin güzeldi

my school ↔ benim okulum

To show the process as simple as possible, following templates are generated by hand.

Since TDL does not consider the word boundaries, with TDL generated templates it

would be difficult to explain the translation in a few lines.

ttl(Xs1 party was good, Xt1 partiYt1 güzeldi).

ttl(my Xs2, benim Xt2m Yt2).

With these two templates, although we can only translate “my party was good” ↔
“benim partim güzeldi”, this translation is very valuable. Since it shows that we can

make a translation with the templates that have unequal variables on both sides.

If “my party was good” is given as the source, 2nd template is found, since “my” parts

match, then we search for “party was good”; template should begin with a variable and

we find the 1st template. So we can say that “benim” corresponds to Xt1, “parti” matches

with Xt2, Yt1 with “m”, and “güzeldi” with Yt2. Thus, “benim partim güzeldi” can be

generated.

Moreover, if append one more example (“your school” ↔ “senin okulun”) to our

training set, we can learn two more templates for translation:

ttl(your Xs3, senin Xt3n Yt4).

ttl(Xs4 school, Xt4 okulYt4).

CHAPTER 5: APPLICATIONS 57

By the help of these templates, we can translate “your school”, “my school” and “your

party was good” too. This means that we can generate all the given positive examples.

Besides, this example shows that if we can provide enough examples, TDL generate

templates that can translate at least the given example set.

CHAPTER 6: CONCLUSION 58

Chapter 6

Conclusion and Future Work

In this thesis, a different approach to the generalization of predicates with string

arguments has been presented.

The main goal of this project was to be able to generalize the examples which have

more than one same similar parts. This goal has been achieved as it is showed in Section

5.2.2.

In the previous versions of the algorithm, finding match sequences has strict rules.

These rules are relaxed in this project. This caused learning similarities, in an effective

way, but during learning of similarities, learning of differences is omitted.

Unfortunately, we see that learning differences is very important for translation template

learning.

Moreover, we see that for multi-arity predicates dependencies between the arguments

with same alphabet are very important for past tense learning. Although, our algorithm

can find the similar parts of the present and past forms of verbs perfectly, finding the

past form of a given verb is not easy with the current version of our work.

For the single arity predicate examples, our algorithm can learn functions such as

membership, but for applications such as DNA sequence alignment, our current

alignment strategy is too slow for practical usage, since our search algorithm tries to

find all possible alignments.

From the paragraphs above, future work can be extracted. These can be:

• For 2-arity predicates that have the same alphabet in both arguments, similar

parts should be detected and variables should be the same for the same parts of

the arguments.

CHAPTER 6: CONCLUSION 59

• Instead of using breadth-first search to find all possible alignments, dynamic

programming can be employed to find the alignments that have scores above a

value.

• For translate template learning, the algorithm should learn new templates from

the difference parts of the examples.

In conclusion, we see that our greedy approach to find the best possible similarity

works; but without adding other features, usage of this tool is rather difficult.

REFERENCES 60

References

[1] S. Karlin and S.F. Altschul, "Methods for assessing the statistical significance of

molecular sequence features by using general scoring schemes", Proc. Natl. Acad.

Sci. U.S.A. 87, pp 2264-2268, 1990.

[2] S. Karlin and S.F. Altschul, "Applications and statistics for multiple high scoring

segments in molecular sequences", Proc. Natl. Acad. Sci. U.S.A. 90, pp 5873-5877,

1993.

[3] S. Muggleton, R. King and M. Sternberg, "Protein secondary structure prediction

using logic-based machine learning", Protein Engineering, v 5, pp 647-657, 1992.

[4] W.R. Pearson, "Searching protein sequence libraries: comparison of the sensitivity

and selectivity of the Smith-Waterman and FASTA algorithms", Genomics 11(3),

pp 635-650, 1991.

[5] R. Bundschuh, "Rapid significance estimation in local sequence alignment with

gaps", RECOMB 2001, pp 77-85, Montreal, Canada.

[6] T. Hwa and M. Lassig, "Optimal detection of sequence similarity by local

alignment", RECOMB 98, pp 109-116, NY, USA.

[7] S.F. Altschul, W. Gish, W. Miller, W.W. Myers, and D.J Lipman, "Basic local

alignment search tool", J. Mol. Biol. 215, pp 403-410, 1990.

[8] T.F. Smith and M.S. Waterman, "Identification of common molecular

subsequences", J. Mol. Biol. 147, pp 195-197, 1981.

[9] R. Bundschuh, "An analytical approach to significance assessment in local sequence

alignment with gaps", RECOMB 2000, pp 86-95, Tokyo, Japan.

[10] S.F. Altschul, "A protein alignment scoring system sensitive at all evolutionary

distances", J. Mol. Evol. 36, pp 290-300, 1993.

REFERENCES 61

[11] L. Wang, T. Jiang and D. Gusfield, "A more efficient scheme for tree alignment",

RECOMB 97, pp 310-318, Santa Fe New Mexico, USA.

[12] L. Wang and T. Jiang, "On the complexity of multiple sequence alignment",

Journal of Computational Biology 1, pp 337-348, 1994.

[13] S. Altschul and D. Lipman, "Trees, stars, and multiple sequence alignment", SIAM

Journal on Applied Math. 49, pp 197-209, 1989.

[14] R. Ravi and J. Kececioglu, "Approximation algorithms for multiple sequence

alignment under a fixed evolutionary tree", Proc. 6th Combinatorial Pattern

Matching Conf., pp 330-339, 1995.

[15] B. Schwikowski and M. Vingron, "The deferred path heuristic for the generalized

tree alignment problem", RECOMB 97, pp 257-266, New Mexico, 1997.

[16] R.L. Rivest, Learning decision lists. Machine Learning 2(3), pp 229-246, 1987.

[17] R.J. Mooney and M.E. Califf, "Induction of first-order decision lists: results on

learning the past tense of english verbs", Journal of Artificial Intelligence Research

3, 1995.

[18] F. Bergadano, D. Gunetti and U. Trinchero, "The difficulties of learning logic

programs with cut", Journal of Artificial Intelligence Research 1, pp 91-107, 1993.

[19] G.I. Webb and N. Brkie, "Learning decision lists by prepending inferred rules",

Proceedings of the Australian Workshop on the Machine Learning and Hybrid

Systems, pp 6-10, 1993.

[20] H. Kitano, "A comprehensive and practical model of memory-based machine

translation", Proc. of the Thirteenth Int. Joint Conf. on Artificial Intelligence,

Morgan Kaufmann v 2, pp 1276-1282, 1993.

[21] H.A. Guvenir and I. Cicekli, "Learning translation templates from examples", Proc.

of the 6th Annual Workshop on Information Technologies and Systems (WITS'96),

pp 112-123, 1996.

REFERENCES 62

[22] I. Cicekli and H.A. Guvenir, "Learning translation rules from a bilingual corpus",

Proc. of the 2nd Int. Conf. on New Methods in Language Proc. (NeMLaP-2),

pp 90-97, 1996.

[23] Z. Oz, "Confidence factor assignment to translation templates", Msc. Thesis,

Bilkent University, 1998.

[24] G.D. Plotkin, "A note on inductive generalization", Machine Intelligence 5,

pp 153-163, 1971.

[25] G.D. Plotkin, "Automatic methods of inductive inference", Ph.D. Thesis, Edinburg

University, 1971.

[26] S. Muggleton and C. Feng, "Efficient induction of logic programs", Inductive

Logic Programming, pp 281-198, 1992.

[27] I. Cicekli, "A specific least general generalization of strings and its application to

example-based machine translation", Proceedings of the 10th Turkish Symposium

on Artificial Intelligence and Neural Networks (TAINN2001), North Cyprus, 2001.

[28] H.A. Guvenir and I. Cicekli, "Learning translation templates from examples",

Information Systems, v 23, no 6, 1998.

[29] I. Cicekli, "Similarities and differences", Proceedings of SCI2000, Orlando, FL,

USA, pp 331-337, July 2000.

[30] I. Cicekli and H.A. Guvenir, "Learning translation templates from bilingual

translation examples", Journal of Applied Intelligence, pp 1-24, 2001.

[31] S. Henikoff and J.G. Henikoff. "Amino acid substitution matrices from protein

blocks", Proc. Natl. Acad. Sci. U.S.A. 89(2), pp 10915-10919, November 1992.

[32] Z. Oz and I. Cicekli, "Ordering translation templates by assigning confidence

factors", Proceedings of AMTA'98-Conference of the Association for Machine

Translation in the Americas, Lecture Notes in Computer Science 1529, Springer

Verlag, pp 51-61, Langhorne, PA, USA, October 1998.

[32] G. Myers, S. Selznick, Z. Zhang and W. Miller, "Progressive multiple alignment

with constraints", RECOMB'97, pp 220-225, Santa Fe New Mexico, USA, 1997.

REFERENCES 63

[33] J.R. Quinlan, R.M. Cameron-Jones, "FOIL: A midterm report", Proceedings

European Conference on Machine Learning, pp 3–20, Vienna,1993.

[34] R.S. Michalski, I. Mozetic, J. Hong and N. Lavrac, "The multipurpose incremental

learning system AQ15 and its testing application to three medical domains",

Proceedings of Fifth National Conference on Artificial Intelligence, Philedelphia,

pp 1041-1054, 1986.

[35] J.R. Quinlan, "Learning logical definitions from relations", Machine Learning 5,

pp 239-266, 1990.

[36] S. Muggleton and C. Feng, "Efficient induction of logic programs", Inductive

Logic Programming, pp 281-198, 1992.

[37] S. Muggleton and W. Buntine, "Machine invention of first-order predicates by

inverting resolution", Proc. of The Fifth International Conference on Machine

Learning, pp 339-352, 1988.

[38] G.D. Plotkin, "Automatic methods of inductive inference", PhD thesis, Edinburg

University, 1971.

[39] G.D Plotkin, "A further note on inductive generalization", Machine Intelligence,

vol 6, 1971.

[40] E.L. Anson and E.W. Myers, "ReAligner: A program for refining dna sequence

multi-alignments", Proceedings of the First Conference on Computational Molecular

Biology, pp 9-16, ACM-Press, 1997.

[41] M.E. Califf, "Learning the past tense of English verbs: An inductive logic

programming approach", unpublished project report, 1994.

[42] Dataset for past tense learning: http://www-ai.ijs.si/~ilpnet2/apps/ptense.html.

APPENDIX A: DATA STRUCTURES 64

Appendix A

Data Structures

This chapter represents the data structures used in implementation.

Contents of “Aligner.h”

//This header defines the similarity-difference and template structures,

//Alignment manager module as Aligner class and methods of this

//class as the called modules. Aligner class holds the input array and the

//template arrays.

//--//
#include <string>

using namespace std;

#include "Genel.h"

#include "Parameter.h"

#include "SimpleParam.h"

#include "MyTemplate.h"

typedef struct out_struct

{

//string str;

CSimpleParam pred;

int nScore;

int nFrag;

}OUTPUT_TYPE;

typedef struct temp_struct

{

//string str;

CSimpleParam pred;

int nScore[MAX_PARAM];

int nFrag[MAX_PARAM];

unsigned char nVar[MAX_PARAM];

float nCoverScore[MAX_PARAM];

float nTotalScore[MAX_PARAM];

}TEMPLATE_TYPE;

enum SortType {byScore = 0, byFrag, byCoverScore, byTotalScore };

typedef CMyTemplate MYTEMPLATEARRAY[200][2] ;

APPENDIX A: DATA STRUCTURES 65

#include <map>

class CAligner

{

int _nIndex; //output array index

int _nTemplateIndex[MAX_PARAM]; //template index

int _nFinalTemplateIndex[MAX_PARAM];

int _nCurrIndex; //kacinci parametre align ediliyor

int _nRow; //parse ederkenki satir sayisi, ne kadar input oldugu

float m_fCoverFactor;

float m_fAlignFactor;

OUTPUT_TYPE _outputArray[1];//[MAX_ARRAY];

TEMPLATE_TYPE _templateArray[MAX_TEMP_ARRAY];

// OUTPUT_TYPE _finalOutputArray[MAX_ARRAY];

TEMPLATE_TYPE _finalTemplateArray[MAX_ARRAY];

string cszStr1;

string cszStr2;

string pred_name;

int pred_num;

int m_nAlphabet;

CParameter m_param;

public:

CSimpleParam inputArray[MAX_INPUT_ARRAY];

int min_templateScoreIndex;

public:

void createSelectionSets();

void selectionSet_1();

void selectionSet_2();

void selectionSet_3();

void selectionSet_4();

void removeDuplicates();

void moveGenerated();

void multipleMoveGenerated();

BOOL parse(FILE *f);

float calculateTotalScore(int n);

float calculateConfidenceFactor(string strTemplate, int nIndex, TEMPLATE_TYPE

array[]);

CAligner();

virtual ~CAligner();

void align(string str1, string str2);

void align();

BOOL isCovers(string strTemplate, string strInput);

BOOL isCovers(CSimpleParam prmTemplate, CSimpleParam prmInput);

void giveScore(string str);

int divide(int start, char ch, string x1, string &pre, string &post);

void postProcess(string str);

APPENDIX A: DATA STRUCTURES 66

void findAlignment(string x1, string x2, string out, string dif_a, string dif_b,

BOOL bDif);

void sort();

void sortTemplate();

void sortFinalTemplate(TEMPLATE_TYPE array[], int arrayIndex[],int nType);

void printTemplates();

void removeRedundant(int nIdex, MYTEMPLATEARRAY array);

private:

int min_templateScore;

void swap(int n1, int n2);

void swapTemplate(int n1, int n2);

void swapFinalTemplate(TEMPLATE_TYPE array[], int n1, int n2);

void addSimDif(string strSimDif, int nFrag, int nScore);

void addTemplate(string strTemplate, int nFrag, int nScore, int nVarCount);

void addToFinalTemplate(TEMPLATE_TYPE temp);

void addToTempFinalTemplate(TEMPLATE_TYPE array[], int arrayIndex[],

TEMPLATE_TYPE temp);

};

Contents of MyTemplate.h

//CmyTemplate is a generic class which can hold the string of the template

//it has methods that can give some of the properties of the template, such as

//fragmentation score, number of constants, etc.
//----------------------------------//

#include "Genel.h"

class CMyTemplate : public CMyString

{

public:

static int numberOfVariables(string s);

double alphabetCoverage(int nLen=0);

int fragScore();

int numOfConsts();

int numOfFrags();

CMyTemplate();

virtual ~CMyTemplate();

CMyTemplate operator=(string s);

};

Contents of Parameter.h

//Cparameter class is used to hold the default and given parameter values.

//Values are set by default or during the parsing of the input file.

//When the value of a paameter is needed, related method is called.
//---------------------------------//

class CParameter :public CSimpleParam

{

APPENDIX A: DATA STRUCTURES 67

protected:

string strParam[10];

string strValue[10];

public:

int isUnbalancedVariableOK();

int getConstraintLevel();

int getMaxTemplateNumber();

int getSelectionSet();

float getAlignFactor();

float getCoverFactor();

string get(int index);

BOOL add(string val);

string get(string key);

BOOL add(string key, string val);

BOOL add(int key, string val);

CParameter();

virtual ~CParameter();

};

Contens of SimpleParam.h

//This is the base class for Cparameter class and

//it is used to hold the arguments of a predicate in template structure.
//---------------------------------//

#include <string>

#include "Genel.h"

using namespace std;

class CSimpleParam

{

protected:

string strValue[MAX_PARAM];

int nIndex;

public:

BOOL operator==(CSimpleParam b);

string get(int index);

BOOL add(string val);

BOOL add(int key, string val);

CSimpleParam();

virtual ~CSimpleParam();

};

//Contents of Genel.h

//In this file defualt values are defined such as the maximum array size.

//default coverage factor, etc.
//------------------------------//

#define BOOL int

#define TRUE 1

#define FALSE 0

APPENDIX A: DATA STRUCTURES 68

const int MAX_ARRAY =4000;

const int MAX_INPUT_ARRAY=2000;

const int MAX_TEMP_ARRAY=500;

const int STRING_SIZE =20;

const int MAX_PARAM =2;

const int MAX_PRED_NUM = MAX_PARAM;

const float ALIGN_FACTOR = (float)0.15;

const float COVER_FACTOR = (float)0.50;

#include <string>

using namespace std;

class CMyString :public string

{

public:

static string lowerCase(string str);

string lowerCase();

string lowerCaseOf();

int findUpper(int nStart);

};

APPENDIX B: EXAMPLE SETS 69

Appendix B

Example Sets

This is an example of a file in FASTA format. This file includes some example protein

sequences, such as zea, oryza, etc. Most of the sequence alignment programs can take

input in FASTA format. The following examples are already aligned sequences.

********FILE STARTS BELOW THIS LINE**********

>zea

MTKAIPKIGS---RKKVRIGLRRNARFSLRKSARRITKGIIHVQASFNNT

IITVTDPQGRVVFWSSAGTCGFKSSRKASPYAGQRTAVDAIRTV---GLQ

RAEVMVKGAGSGRDAALRAIAKSGVRLSCIRDVTPMPHNGCRPPKKRRL

>oryza

MTKAIPKIGS---RRKVRIGLRRNARFSLRKSARRITKGVIHVQASFNNT

IITVTDPQGRVVFWSSAGTCGFKSSRKASPYAGQRTAVDAIRTV---GLQ

RAEVMVKGAGSGRDAALRAIAKSGVRLSCIRDVTPMPHNGCRPPKKRRL

>nicotiana

MAKAIPKISS---RRNGRIGSR--------KGARRIPKGVIHVQASFNNT

IVTVTDVRGRVVSWSSAGTSGFKGTRRGTPFAAQTAAANAIRTVVDQGMQ

RAEVMIKGPGLGRDAALRAIRRSGILLTFVRDVTPMPHNGCRPPKKRRV

>spinacia

MAKPIPKIGS---RRNGRISSR--------KSARKIPKGVIHVQASFNNT

IVTVTDVRGRVVSWASAGTCGFRGTKRGTPFAAQTAAGNAIRTVVEQGMQ

RAEVMIKGPSLGRDAALRAIRRSGILLSFVRNVTPMPHNGCRPPKKRRV

>pisum

MAKSIPKIGS---RKTGRIGSR--------KHPRKIPKGVIYIQASFNNT

IVTVTDVRGRVISWSSAGSCGFKGTRRGTPFAAQTAAGNAIQTVVEQGMQ

RAEVRIKGPGLGRDAALRAIYRSGILLKVIRDVTPLPHNGCRAPKKRRV

>geranium

MAKPIRKYWRYNLRRNRRIRLR--------KNIRKIEKGIIHVQANFSNT

APPENDIX B: EXAMPLE SETS 70

LVTITDRKGRVVIWDSAGACGFKGRRRGTPFAAQTTTQNAIQPLVRQGMK

RVSVLIKGIGRGRDAALRAIFRSRVRVRLIRDITPMPHNGCRPPKKRRT

********FILE ENDS ABOVE THIS LINE**********

Alignment of oryza and nicotiana by our algorithm is

mXkaipkiXs---rrXrigXrXkXarriXkgvihvqasfnnt

iXtvtdXgrvvXwssagtXgfkXrXpXaXqXaXairtvXgXq

raevmXkgXgXgrdaalraiXsgXlXrdvtpmphngcrppkkrrX

The only difference between the sequences above and the result of our program is the

variables. By the help of these variables we can understand the different and similar

parts easily.

APPENDIX C: MID-LEVEL OUTPUT FOR PAST TENSE 71

Appendix C

Mid-level Output for Past Tense

Learning
This is the mid-level output which shows the top scored templates. It is shortened up to

100 top scored templates for space considerations. 1392 examples is used for this

experiment. This data is obtained from [44].

Argument 1 Argument 2 Frag. Coverage Total Score

Xemonstrate Xemonstrated 12100 0.001437 1815.001

XaYticipate XaYticipated 5330 0.001437 799.5008

Xnstitute Xnstituted 5184 0.001437 777.6008

Xrighten Xrightened 3969 0.001437 595.3508

Xnstruct Xnstructed 3969 0.001437 595.3508

Xrespond Xresponded 3969 0.001437 595.3508

Xtribute Xtributed 3136 0.002155 470.4011

Xstitute Xstituted 3136 0.002155 470.4011

Xescribe Xescribed 3136 0.001437 470.4008

Xreserve Xreserved 3136 0.001437 470.4008

XrYighten XrYightened 2405 0.002155 360.7511

XoYstruct XoYstructed 2405 0.001437 360.7507

XtYighten XtYightened 2405 0.001437 360.7507

Xighten Xightened 2304 0.003592 345.6018

Xlatter Xlattered 2304 0.001437 345.6007

Xregard Xregarded 2304 0.001437 345.6007

Xlisten Xlistened 2304 0.001437 345.6007

Xstruct Xstructed 2304 0.002155 345.6011

Xresent Xresented 2304 0.002155 345.6011

XtYribute XtYributed 1850 0.002155 277.5011

cXculate cXculated 1850 0.001437 277.5007

XsYtitute XsYtituted 1850 0.002155 277.5011

XlYminate XlYminated 1850 0.001437 277.5007

XeYculate XeYculated 1850 0.001437 277.5007

Xrespond XresponYdZ 1813 0.001437 271.9507

APPENDIX C: MID-LEVEL OUTPUT FOR PAST TENSE 72

Xrender XrYendered 1800 0.001437 270.0007

Xresent rXesented 1800 0.001437 270.0007

Xlocate Xlocated 1764 0.001437 264.6007

Xnounce Xnounced 1764 0.002155 264.6011

Xsemble Xsembled 1764 0.001437 264.6007

Xassure Xassured 1764 0.001437 264.6007

Xelieve Xelieved 1764 0.001437 264.6007

Xculate Xculated 1764 0.002874 264.6014

Xchange Xchanged 1764 0.001437 264.6007

Xnclude Xncluded 1764 0.001437 264.6007

Xnspire Xnspired 1764 0.001437 264.6007

Xcrease Xcreased 1764 0.001437 264.6007

Xeserve Xeserved 1764 0.002155 264.6011

Xfigure Xfigured 1764 0.001437 264.6007

Xminate Xminated 1764 0.002155 264.6011

Xtimate Xtimated 1764 0.001437 264.6007

Xevolve Xevolved 1764 0.001437 264.6007

Xmulate Xmulated 1764 0.001437 264.6007

Xroduce Xroduced 1764 0.001437 264.6007

Xresume Xresumed 1764 0.001437 264.6007

Xrinkle Xrinkled 1764 0.001437 264.6007

Xtumble Xtumbled 1764 0.001437 264.6007

Xrefer Xreferred 1600 0.001437 240.0007

disappXrY disappXrYed 1517 0.001437 227.5507

disappXeY disappXrYed 1517 0.001437 227.5507

transfXrY transfXrYed 1517 0.001437 227.5507

improvXe improvXed 1480 0.001437 222.0007

commenX commenXed 1440 0.001437 216.0007

designX designXed 1440 0.001437 216.0007

flatteX flatteXed 1440 0.001437 216.0007

disappXeY disappXeYd 1406 0.001437 210.9007

disappXrY disappXeYd 1406 0.001437 210.9007

transfXrY transfXeYd 1406 0.001437 210.9007

XpreciYate XpreciYated 1394 0.001437 209.1007

Xnounce XnYounced 1332 0.002155 199.8011

Xapprove XaYpZroved 1323 0.001437 198.4507

Xcounter XcountYeZd 1323 0.001437 198.4507

XcYulate XaYculated 1300 0.001437 195.0007

XcYatter XcYattered 1300 0.001437 195.0007

XeYclaim XeYclaimed 1300 0.001437 195.0007

sXatter sXattered 1300 0.001437 195.0007

sXagger sXaggered 1300 0.001437 195.0007

XnYounce Xnounced 1274 0.002155 191.1011

Xtribute XiYbuted 1274 0.002155 191.1011

APPENDIX C: MID-LEVEL OUTPUT FOR PAST TENSE 73

Xcounter XnYtered 1274 0.001437 191.1007

Xbound Xbounded 1225 0.001437 183.7507

Xcount Xcounted 1225 0.002874 183.7514

Xdress Xdressed 1225 0.002155 183.7511

Xallow Xallowed 1225 0.001437 183.7507

Xalter Xaltered 1225 0.001437 183.7507

Xmount Xmounted 1225 0.002155 183.7511

Xpoint Xpointed 1225 0.001437 183.7507

Xtract Xtracted 1225 0.002874 183.7514

Xatter Xattered 1225 0.00431 183.7522

Xother Xothered 1225 0.001437 183.7507

Xenter Xentered 1225 0.001437 183.7507

Xclaim Xclaimed 1225 0.002874 183.7514

Xnsist Xnsisted 1225 0.001437 183.7507

Xntain Xntained 1225 0.001437 183.7507

Xntend Xntended 1225 0.001437 183.7507

Xcover Xcovered 1225 0.002155 183.7511

Xcrawl Xcrawled 1225 0.001437 183.7507

Xesign Xesigned 1225 0.001437 183.7507

Xelect Xelected 1225 0.001437 183.7507

Xtreat Xtreated 1225 0.002155 183.7511

Xblish Xblished 1225 0.001437 183.7507

Xhibit Xhibited 1225 0.002155 183.7511

Xpress Xpressed 1225 0.002155 183.7511

Xasten Xastened 1225 0.001437 183.7507

Xather Xathered 1225 0.001437 183.7507

Xinger Xingered 1225 0.001437 183.7507

Xicker Xickered 1225 0.001437 183.7507

Xutter Xuttered 1225 0.002155 183.7511

Xlower Xlowered 1225 0.001437 183.7507

Xround Xrounded 1225 0.002155 183.7511

Xammer Xammered 1225 0.001437 183.7507

