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ABSTRACT

INDUCTION OF LOGICAL RELATIONS BASED ON
SPECIFIC GENERALIZATION OF STRINGS

Yasin Uzun

M.S. in Computer Engineering

Supervisor: Assist. Prof. Dr. İlyas Çiçekli

January, 2007

Learning logical relations from examples expressed as first order facts has been

studied extensively by the Inductive Logic Programming research. Learning with

positive-only data may cause overgeneralization of examples leading to inconsis-

tent resulting hypotheses. A learning heuristic inferring specific generalization

of strings based on unique match sequences is shown to be capable of learning

predicates with string arguments. This thesis outlines the effort showed to build

an inductive learner based on the idea of specific generalization of strings that

generalizes given clauses considering the background knowledge using least gen-

eral generalization schema. The system is also extended to generalize predicates

having numeric arguments and shown to be capable of learning concepts such as

family relations, grammar learning and predicting mutagenecity using numeric

data.

Keywords: indective logic programming, machine learning, string generalization,

hypotheses, example, background knowledge.
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ÖZET

MANTIKSAL İLİŞKİLERİN DİZİLERİN ÖZGÜL
GENELLEMESİNE DAYANAN BİR YÖNTEMLE

TÜMEVARIMSAL ÇIKARILMASI

Yasin Uzun

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Yar. Doç. Dr. İlyas Çiçekli

Ocak, 2007

Mantıksal ilişkilerin birincil sıra gerçekler olarak ifade edilmiş örneklerden

çıkarılması Tümevarımsal Mantık Programlama araştırmalarınca derinleme-

sine çalışılmış bir konudur. Sadece pozitif örneklerden yola çıkılarak yapılan

öğrenmeler aşırı genellemelere neden olup tutarsız hipotezlerin sonuçlanmasına

neden olabilir. Tek eşlemeli dizilere dayalı özgül genellemeler çıkaran bir

öğrenme yönteminin dizi argümanlı önerileri öğrenebildiği gösterilmiştir. Bu

tez, dizilerin özgül genellemeleri fikrine dayalı, en az genel genelleme şemasını

kullanma yoluyla geri plan bilgisini de dikkate alarak önerme genelleyen

bir tümevarımsal öğrenicinin gerçekleştirilebilmesi için yapılan çalışmayı

özetlemektedir. Gerçekleştirilen sistem, ayrıca sayısal argümanlı önermeleri de

genelleyebilecek şekilde genişletilmiş ve akrabalık ilişkileri, dilbilgisi öğrenme ve

sayısal veri işlemesi gereken mutagenesis tahmini gibi örneklerde başarılı sonuçlar

verdiği gösterilmiştir.

Anahtar sözcükler : tümevarımsal mantık programlama, makine öğrenmesi, dizi

genellemesi, hipotez, örnek, geri plan bilgisi.
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Chapter 1

Introduction

As human beings, we start to learn at the time of birth as an infant. In fact,

there are fetal psychology foundings such as different reactions given by the fetus

to the voices of the mother and other people, indicating that learning process

starts even before birth [14]. Throughout our life, we learn about ourselves and

the environment in various ways and learning by experience is perhaps the most

common method we follow.

It can be said that, learning concepts from examples is a strong way of learning

for human beings. There are more radical claims such as

Example is not another way to teach. It is the only way.

by A. Einstein. For instance, an infant does not learn speaking by using grammar

books, what she simply does is to imitate her relatives, mostly her family. We

usually follow the same strategy when we are learning reading, writing, speaking

a foreign language or performing a particular sport. It can be possible to make

use of this idea to build clever machines that can learn certain concepts.

Providing computer systems to learn has been studied in long term and enor-

mous amount of research has been done in this field. Although a Star Wars

android does not seem to appear in near future, machine learning studies showed

1



CHAPTER 1. INTRODUCTION 2

their efficiency in many real-world domains such as speech recognition, face recog-

nition, computer vision, medical diganosis, bioinformatics [22]. Although there

are many learning systems based on different approaches, most of them share the

common property of requiring a training set to identify the target concept.

Logic Programming can be defined as use of Mathematical Logic for Com-

puter Programming [49]. Studies on Artificial Intelligence and Automatic Theo-

rem Proving [18] formed theoretical foundations of Logic Programming in 1960’s.

Efforts on theorem proving in early 1960’s inspired Robinson [40] for introducing

the resolution inference rule, which could enable computer systems to perform

automated deduction. Developed in 1972 by Colmaurer [18], Prolog program-

ming language had great influence in Logic Programming by providing a solid

and universal basis for the research.

Logic programs consist of logic formulas and computation is the process of

proof construction. The most distinctive feature of a Logic Program comes from

the declarative meaning of logic, that is its self-expressiveness and closeness of

the notation to real life [49]. That is, it is not necesary to have a deep knowledge

of syntax and notation to understand a logic program and express some real life

facts in the language.

Although different taxonomies are present, it can be said that Machine Learn-

ing paradigms include analytic learning, genetic algorithms, neural networks and

inductive learning [3]. Most of the current systems rely on one of these paradigms,

though there are some implementations which exploit the advantages of several

techniques [36]. There are arguments [20] stating that the knowledge produced

by the system should be understandable by humans, which omits Neural systems

out.

Inductive Logic Programming, shortly ILP, is a relatively new research area

that is between Machine Learning and Logic Programming, and inherits the tech-

niques and theories from both disciplines. The aim of ILP research is to learn logic

programs, given examples and background knowledge expressed in Horn clause

logic, which correctly define a single concept or multiple related concepts. The

learned logic programs are usually expressed in Prolog syntax and declarativeness
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of logic programs is the main source of efficiency of ILP.

There are many ILP learners implemented and tested in the literature. These

systems can be classified as empricial and interactive in terms of input style or

top-down and bottom-up in the aspect of search direction. Empirical learners take

their input at once and learn a single predicate; while interactive systems interact

with the user and can induce several predicates. Among these systems, MIS [45]

is top-down and interactive, FOIL [35] is top-down and empirical, CIGOL [44]

is bottom-up and interactive, GOLEM [43] is bottom-up empirical learner. Pro-

gol [27] works in the same manner as GOLEM, and is the most common state-

of-the art ILP learner.

Common approach in state-of the art ILP paradigm is to produce general

clauses from positive examples and restrict their coverage by the help of negative

examples. In domains where there is positive-only data, the systems may not be

able to learn the concepts correctly because of the absence of negative examples.

The problem is so substantial and common that, Progol system is designed to

work in a different mode when there is only positive data.

One application area of ILP is learning predicates having string arguments,

which can occur in many domains such as Grammar Learning and Machine Trans-

lation. The bottom-up method Least General Generalization proposed in [33]

may cause overgeneralization in the clause generation in the absence of negative

examples. In [4], a specific generalization of two strings is proposed to reduce

overgeneralization. To compute SG, unique match sequence, which is a sequence

of similiarities and differences is found in initial step and followed by the general-

ization by replacing differences with variables. In the mentioned work, application

of the heuristic in Machine Translation and Grammar Learning is also explained

with example cases.

Although [4] proposes a heuristic for generalization of strings, it is far from

being an ILP system because of lack of background knowledge processing and

generalization of non-string (numeric) arguments. The purpose of the research

that is materalized in this thesis was to develop an ILP system based on the

specific generalization idea. We achieved this purpose by extending the specific
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generalization algorithm taking the background clauses into consideration and

constructing a generalization technique for numeric arguments that is similar to

SG algorithm based on pairwise distances of numbers. We showed that the system

works effectively in several example domains.

The rest of the thesis is organized as follows. Chapter 2 summarizes the main

points and paradigms of ILP. Specific generalization of strings, proposed in [4] is

discussed in Chapter 3. In Chapter 4, we explain the construction of an inductive

learner, which we name InGen, based on the specific generalization heuristic

outlined in the previous chapter. Implementation of InGen and experimental

results are listed in Chapters 5 and 6, respectively. Chapter 7 concludes the

whole thesis with future directions to study.



Chapter 2

Inductive Logic Programming

Inductive Logic Programming is a research field between Machine Learning and

Logic Programming that learns logical relations as logic programs as illustrated

in Figure 2.1. It relies on the logical theories of Logic Programming and learning

techniques of Machine Learning.

2.1 Foundations

Induction can be defined as a way of reasoning from specific to general and

inductive learning is described as the process of deriving the formal description

of concepts using the given examples [16]. It can also be considered as a search

Machine Learning Logic Proggramming

ILP

Figure 2.1: Machine Learning, Logic Programming and ILP

5



CHAPTER 2. INDUCTIVE LOGIC PROGRAMMING 6

of underlying theory behind the facts that are given as examples given in prior.

The success of induction process is closely related with the language that is

used to describe concepts and descriptions. A possible choice for object descrip-

tion can be attribute-value representation, in which every object is described with

the values assigned to a set of attributes. For instance, all the cards in a deck can

be represented by two attributes: suit and rank of the card. The set of values for

the suit attribute is {hearts, diamonds, clubs, spades}. The set of values for the

rank is: {ace, 2, 3, .., 10, jack, queen, king}. In this language, an individual card

can be represented as: [Suit = clubs] and [Rank = 5]. In Predicate Calculus, the

same card can be described as card(clubs, 5)

We must represent concepts together with the objects in the language induc-

tion is performed. For instance the concept of a pair in a deck of cards can be

described in several ways in an attribute-value language. The most compact rep-

resentation is

pair if Rank1 = Rank2.

In Predicate Calculus, the same concept can be described as:

pair(card(Suit1, Rank1), card(Suit2, Rank2))← Rank1 = Rank2

One of the main issues of inductive learning is to decide whether an object

description satisfies the concept description, meaning that the concept covers

the object. A hypothesis is a possible description of the concept to be learned.

An object description is labeled as a positive example if it is an instance of the

concept and negative otherwise. For instance for the concept of card pairs in a

deck of card:

pair(card(clubs, 4), card(spades, 4)) is a positive example.

pair(card(hearts, ace), card(clubs, ace)) is a positive example.

pair(card(diamonds, 8), card(diamonds, 3)) is a negative example.

Based on the concept and object descriptions, we can define covers(H,e) as

a boolean function that results true when hypothesis H covers example e and

covers(H, E) as a function that results the set of examples in example set E,

covered by hypothesis H. A hypotheses is said to be complete if it covers all

the positive examples and consistent if it covers no negative examples. In this
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Figure 2.2: Completeness and consistency + and - signs represent positive and
negative examples, respectively and the elips represents the coverage set of the
hypotheses

context, a hypotheses can be one of four states with respect to a given example

set, including positive and negative examples, as illustrated in in Figure 2.1. In

this context, learning a concept can be defined as the task of finding a hypotheses

H for a concept C, that is both complete and consistent.

In certain aspect, inductive concept learning can be defined as searching the

correct description among the space of all possible concept descriptions [21], which

can be very large for difficult problems. The search space may shrink with the

usage of additional clauses about the concept, known in prior, namely, background

knowledge. With the help of background knowledge, the concepts might be ex-

pressed closer to the descriptions in human mind. The background clauses might

be presented in different forms such as Horn clauses form or First Order Clausal

Form. Considering the background knowledge, the covers relations must be ex-

tended as follows:

covers(B, H, e) = covers(B ∧H, e), for a single example.

covers(B, H, E) = covers(B ∧H, E), for an example set.
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Examples Background Clauses
daughter(mine, aylin). ⊕ parent(aylin, mine). female(aylin).
daughter(elif, tolga). ⊕ parent(aylin, tolga). female(mine).
daughter(tolga, aylin). � parent(tolga, elif). female(elif).
daughter(elif, aylin). � parent(tolga, ibrahim). male(tolga).

Table 2.1: The daughter example

where B is the set of background clauses. The coverage function, which denotes

whether a fact can be deduced from a theory or hypotheses, can be implemented

using several different ways in Logic and ILP. SLD-Resolution proof [17], is the

mostly used procedure for this purpose, and is mainly based on the variable

substitution and resolutions using logic rules.

The notions of completeness and consistency need to be redefined considering

the background knowledge, where E+ and E− denote sets of positive and nega-

tive examples, respectively.

A hypothesis H is complete with respect to background knowledge B and exam-

ples E if covers(B, H, E+) = E+.

A hypothesis H is consistent with respect to background knowledge B and ex-

amples E if covers(B, H, E−) = φ.

Learning a relational concept description in terms of given examples and back-

ground clauses in the language of logic programs is named as logic program syn-

thesis or inductive logic programming [26], shortly ILP.

Learning daughter relation is a simple ILP problem where the learning task

is to define the predicate daughter(X,Y), which describes the case that person

X is daughter of person Y. As an example, consider that we have an example

set consisting of two positive (denoted with ⊕) and two negative examples (de-

noted with �), and background family clauses as in Table 2.1, where parent(X,Y)

denotes that person X is parent of Y and female(X) has its obvious meaning.

We expect an ideal ILP system to induce the following hypothesis:

daughter(X, Y )← female(X) ∧ parent(Y, X).

which is the correct description of the concept.
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2.2 History of ILP

The history of induction dates back to Socrates’ dialogs noted in Plato’s Crito [26].

In these dialogs, concepts are developed and refined by means of examples and

counter-examples from everyday life. In 17th century, Bacon was the first to give

the formal description of inductive scientific method in his book Novum Organum.

Methods developed for predicting the outcome of chance games formed the basis

of statistics, which was used in the evaluation of scientific hypotheses in 18th

century.

The discussion on ability of machines to learn from examples first came out

when Turing suggested the use of an oracle to derive the incompleteness of logical

theories [12, 47, 48]. From the statistical perspective, Carnap developed theories

to confirm the correctness of theories expressed in first-order form. Plotkin [33]

and Shapiro [45] worked on inductive inference based on Predicate Calculus.

Plotkin’s work in his PhD thesis [33] formed the basis of current bottom-

up generalization methodology in ILP. Since logic programming was not present

at that time, he developed his theories independent of Horn clause logic. He

introduced two important concepts that shed light on the generalization research:

• relative subsumption, which defines the generality between two clauses.

• relative least general generalization and its inductive mechanism.

But he also noted the fact that there was no guarantee that least general gen-

eralization of two clauses is finite, and this restricted his relative least general

generalization implementation. This inefficiency motivated Shapiro to follow a

general to specific approach and use algorithmic debugging in MIS [45]. In this

technique, the faulty clause that causes the logic program to be incomplete or

incorrect was found and replaced with a better clause to make the system con-

sistent.

First area that an ILP system was used in a real life domain is construction

of expert systems. Early expert systems were developed by hand coded rules,
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which required vast amount of labor to develop and maintain, therefore they

were limited in the number of rules and had high costs. GASOIL and BMT

were the first expert systems that enjoyed atuomated induction performed by

Quinlan’s inductive decision tree building algorithm ID3 [34]. These two systems

illustrated the great amount of benefit in terms of software engineering that can

be gained by automated induction.

Quinlan later introduced FOIL [35], which is an efficient program that induces

first-order clauses and is based on general to specific search relying on the entropy

of the invented clauses. Quinlan noted that his approach in FOIL is natural

extension of ID3 and admitted that his search heuristic may not find the solution

for some concepts such as list reverse and integer multiplication.

In [2], a generalization system MARVIN was introduced, which generalizes

a single example at a time. Muggleton and Buntine [44] would show that this

generalization was a special case of inverting a resolution proof.

To overcome the limitations of Plotkin’s LGG, various attempts had been

made. Muggleton and Feng [43] developed GOLEM, a system that was based

on the inverse resolution which Sammut and Banerji applied a special case in

MARVIN.

Recently, Muggleton introduced Progol, which is a sophisticated system that

makes use of type and mode declarations to GOLEM to achieve better efficiency.

Progol showed its efficiency in many domains and is the most common ILP learner

at the moment. The implementation is publicly available for research and licensed

for commercial use.

2.3 Classification of ILP paradigms

ILP paradigms can be classified in two aspects: presentation of input and the

search strategy. In terms of input presentation, the paradigm may be empirical

or interactive [16]. In terms of search strategy, the paradigm may be top-down
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or bottom-up [10].

2.3.1 Empirical vs. Interactive

Empirical systems are those that take the input example set and background

clauses at once and produce the hypothesis and give it as output. Interactive

systems start with an example set, produce a hypothesis and incrementally update

it by the answers of questions that are directed to an oracle by the system.

While most empirical systems force the background clauses to be ground,

most of the interactive systems allow nonground clauses. Another advantage of

the interactive systems is that they can learn multiple predicates while empirical

systems can learn only a single predicate in general.

Some examples of empirical ILP systems are, FOIL [35], mFOIL [8],

GOLEM [43], Progol [27], LINUS [31], MARKUS [13] and MOBAL [24]. Inter-

active ILP systems include MIS [45], CLINT [37], CIGOL [44] and MARVIN [2].

2.3.2 Top-down vs. Bottom-up

Top-down ILP methods generate caluses by means of specialization, that is, they

start with the most general clause and specialize it by iteratively restricting it by

body literals, so that it does not cover any negative examples. Bottom-up meth-

ods work by generalization, which is described as process of building a general

description from specific examples in order to predict the classification of new

data [19].

Most bottom-up approaches take their root from Plotkin’s LGG schema,

which is the first sound description of the generalization process for inductive

inference. Some wellknown bottom-up ILP systems are GOLEM [43], IRES [42],

ITOU [41], CLINT [37], CIGOL [44]. Top-down methods generally make use of

statistics and refinement graphs to build and select clauses. Some examples of

top-down systems are FOIL [35], FOCL [32], MIS and MARKUS [13].
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2.4 Applications

Extensive research has been performed in ILP in last decade and it has been

applied in many domains. First and most common area is construction of expert

systems, as mentioned in 2.2. Another application domain is knowledge discovery

in databases [50]. Lastly, ILP is used for scientific discovery, theory formation,

experimental design and theory verification [38].

Knowledge acquisition is a time consuming and difficult task in the process

of building expert systems, since it is necessary to observe and interview with

domain experts, who usually have difficulty in expressing their experiences in

computational formalism. This problem is named as knowledge acquisition bot-

tleneck and inductive logic technologies can be helpful for partial automatization

of knowledge acquisition phase providing better efficiency than coventional dia-

logue based techniques [1].

One of the well-known knowledge acquisition tool based on ILP is

MOBAL [24], which is a model inference system. This system has three com-

ponents. First one extracts models from rules, second one classifies the models

that has been extracted and the other builds a model hierarchy. Another learn-

ing system, DISCIPLE [46] is used for interactively building knowledege bases.

DISCIPLE has three learning modules, a knowledge base and a expert system

shell.

Database knowledge discovery research is interested in extracting implicit, un-

known information from big databases that may have potential good [50]. Con-

ventional Machine Learning systems construct a single relation, attribute-value

solution. But ILP makes use of the interdepencies and other relations among the

data.

Several ILP systems such as FOIL, GOLEM and LINUS have been applied in

database knowledge discovery and gave promising results. But these systems learn

a single predicate at a time. In order to capture the relational interdependencies,

multiple predicate learners such as MOBAL, MPL [38] and CLAUDIEN [5] should
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be preferred.

Scientific knowledge discovery is parallel to building expert systems in the

aspect of construction steps [38]. In both processes, new piece of information,

namely hypothesis, is extracted by generalizing observations or examples with the

help of domain knowledge. ILP can aid scientific discovery process in following

steps [16]:

• interactive generation of experiments,

• generating the logical theory from the observations.

• testing the logical theory.

For first step, only interactive ILP systems can be applied, such as MIS and

CLINT. For generating the theory, both class of ILP frameworks can be used.

An empirical system, GOLEM has been applied and gave sound results that are

published in the scientific literature [30]. FOIL and LINUS are other systems

that are applied in theory generation.

ILP shows potential use for several application areas. Some are satellite fault

diagnosis [11], predicting secondary structure of proteins [29] and finite element

mesh design [6].

2.5 Common ILP Systems

Although there are many ILP systems due to vast amount of research as discussed

in previous sections, we will discuss five systems, which have major importance

and impact in ILP field. These are CIGOL, which is based on inverse resolution,

MIS, which relies on a breadth first search of refinement graphs, FOIL, which is

based on entropy calculation, GOLEM ,which is build upon the idea of Plotkin’s

RLGG and Progol, which integrates modes and types to GOLEM.
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a

b

c

b <-- a

c <-- b

Figure 2.3: Simple resolution procedure

2.5.1 CIGOL

CIGOL (inversely read LOGIC) is an interactive learning system that is built on

the basic idea of inverse resolution, which is the inverse of the resolution rule that

is used to prove the correctness of logic programs.

2.5.1.1 Resolution

Introduced by Robinson [40] in 1965, resolution rule had great influence in Logic

Programming paradigm and has been almost the standard method to prove logical

theories. Rather than giving its theoretical definition, we will explain it with an

example.

Suppose we have a theory T = {c← b, b← a, a} we want to derive c. Firstly,

the fact a resolves with b ← a to give b. Then b resolves with c ← b, giving c.

The resolution procedure is illustrated in Figure 2.3

Although the resolution is simple when clauses are ground, the procedure gets

more complex because of need for substitution when there are variables in the

theory. Consider we have the daughter relation as the theory:

H = {c} = {daughter(X, Y )← female(X), parent(Y, X).}
The background knowledge consists of two facts:

b1 = female(mine).

b2 = parent(aylin, mine).

and we want to derive the fact daughter(mine, aylin).
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daughter(X,Y) <-- female(X), parent(Y,X)

daughter(mine, aylin)

female(mine)

parent(aylin, mine)

Q1={X\mine}

Q2={Y\aylin}

daughter(mine,Y) <--  parent(Y,mine)

Figure 2.4: The resolution tree for deriving daughter fact

Firstly, clause c is resolved with clause b1. Therefore, female(mine) and

female(X) in the body of the clause are unified and variable X is bound to

constant mine. The resolution result is:

c1 = daughter(mine, Y )← parent(Y, mine).

Next, c1 should be resolved with b2 under the substitution {Y/aylin} giving the

clause:

c2 = daughter(mine, aylin).

Therefore the fact is derived. Figure 2.4 shows the resolution tree for this example.

2.5.1.2 Inverse Resolution

Inverse resolution works in the same way but opposite direction with proof reso-

lution procedure. Suppose the background knowledge is same as in the previous

example and we encounter the positive example daughter(mine, aylin). Initially,

the fact daughter(mine, aylin) is inversely resolved with parent(aylin, mine) giv-

ing the clause daughter(mine, aylin)← parent(aylin, mine) as the result.

Applying inverse substitution {aylin/Y } results as:

daughter(mine, Y )← parent(Y, mine).
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daughter(X,Y) <-- female(X), parent(Y,X)

daughter(mine, aylin)

female(mine)

parent(aylin, mine)

daughter(mine,Y) <--  parent(Y,mine)

Q2  ={mine\X}
-1

Q1   = {aylin\Y}
  -1

Figure 2.5: Inverse resolution of daughter relation

In the next step, this clause is inversely resolved with female(mine) to give

daughter(mine, Y )← parent(Y, mine), female(mine).

Finally the inverse substitution {mine/X} takes place and we get the hypothesis

H = {c} = {daughter(X, Y )← parent(Y, X)female(X).}
which is the generalization of the example with respect to background knowledge.

Figure 2.5 illustrates the inverse resolution procedure.

CIGOL is mainly based on inverse resolution principle. The operation carried

in the previous example is called the absorption and represented with symbol ‘V’.

There are also other operators used in CIGOL. One of them is intra-construction,

which is denoted by ‘W’ and is capable of inventing predicates that are not

encountered among the example predicate and background predicates. This may

be a very important and useful feature for some concepts to be learned.

Like CIGOL, we build clauses in a bottom-up manner (from specific to gen-

eral) in our system, but our heuristic based on the specific generalization rather

than the inverse resolution and we do not invent new clauses.
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Hypotheses H ← φ
loop

Process the next example
while H is incomplete or inconsistent do

if H covers a negative example e then
Delete the clauses causing H to cover e.

end if
if There exist a positive example e not covered by H then

Develop a clause c that covers e by a breadth-first search through the
refinement graph.
Add clause c to H.

end if
end while

end loop

Figure 2.6: MIS Algorithm

2.5.2 MIS

Developed by Ehud Shapiro in 1983, MIS (standing for Model Inference System)

was one of the first attempts for inductive logic program synthesis making use of

logic programming. MIS employs refinement graphs, which are directed, acyclic

graphs that contain the most general clause at the root and the output clauses at

the leaves. The arcs represent refinement operators which are either addition of a

literal or substitution of a variable with a term. The fundamental MIS algorithm

is listed in Figure 2.6.

We will explain how MIS works by using the family example in Table 2.1.

Since MIS [45] is an interactive system, the examples will be processed in turn.

Initially the hypothesis set consists of the empty clause, which is a contradiction.

When first example e1 = daughter(mine, aylin) is processed, the most general

definition of daughter predicate

daughter(X, Y )← .

is asserted. At this stage, the hypothesis includes a single clause:

H = {c} = {daughter(X, Y )← .}
which covers example e1. Then the second example is presented. This clause also

covers example e2 = daughter(elif, tolga), so it is left intact. Next, the negative
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example e3 = daughter(tolga, aylin) is processed. The example is covered by c

although it is negative, therefore the clause needs to be refined by adding a literal

to its body. There are two types of literals that can be added at this stage:

• The literals having variables appearing in the head of the clause.

These are: X = Y, female(X), female(Y ), parent(X, X), parent(Y, Y ),

parent(X, Y ), parent(Y, X).

• The literals introducing new variables. These are:

parent(X, Z), parent(Z, X), parent(Y, Z), parent(Z, Y ).

where X, Y and Z are variables with different contents.

First, the literal X = Y is tried, but

daughter(X, Y )← X = Y.

covers none of the examples, therefore it is eliminated. Second, the clause

daughter(X, Y )← female(X)

is considered. This clause covers two positive examples e1, e2 and does not cover

negative example e3. Therefore it is kept as the output of the third step and

hypothesis is:

H = {c} = {daughter(X, Y )← female(X).}

Then we return to the outer loop and process the negative example

e4 = daughter(elif, aylin). Since clause c covers e4, it is deleted from hy-

pothesis and search is reinitiated to cover positive examples as in the previous

step. Neither of the refinements of

daughter(X, Y )← .

discriminates examples, therefore refinements of its children are considered. First,

refinements of

daughter(X, Y )← X = Y.

are tried, but obviously none of them cover example e1, so they are discarded.

Second, refinement of

daughter(X, Y )← female(X).

is considered, and it is discovered that the clause
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daughter(X, Y) <-- 

daughter(X,Y) <-- X=Y daughter(X,Y) <-- 
                parent(Y, Y)

daughter(X,Y) <-- 
                 parent(Y, X)

daughter(X,Y) <-- female(X)

daughter(X,Y) <-- 
                    female(X),
                    female(Y)

daughter(X,Y) <-- 
                   female(X), 
                   parent(Y, X)

Figure 2.7: The refinement graph for inducing daughter relation

daughter(X, Y )← female(X), parent(X, Y ).

is both complete and consistent with respect to the given example set and it is

put into the hypothesis. Finally, our hypothesis will be:

H = {daughter(X, Y )← female(X), parent(Y, X).}
which describes the concept correctly.

Unlike MIS, our system is placed in the empirical category, and it processes

the input literals in pairs, rather than one by one.

2.5.3 FOIL

Inheriting its information based heuristic search, First-Order Inductive Learner

(FOIL in short) is natural extension of ID3, as Quinlan comments [35]. It also

follows similar covering approach to AQ, as described in Figure 2.8 and top-down

search similar to MIS, as discussed in Section 2.5.2 [35].

FOIL accepts function-free ground facts as examples and background knowl-

edge. Negative examples are optional, since the initialization step produces nega-

tive examples by relying on closed-world assuption, that is all the possible inputs
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Ecur := E
H := φ
while There are positive examples uncovered do

initialize clause c := T ← .
c := specialization(c, Ecur)
c := postprocess(c)
H := H ∪ c
Ecur = Ecur − cover(B, c, Ecur)
Break if encoding constraint is violated

end while

Figure 2.8: FOIL covering algorithm inherited from AQ family

except positive examples are labeled as negative. The hypothesis language of

FOIL consists of function-free program clauses where there is no constants or

compound terms. Predicates of body literals of the output clauses can be back-

ground predicates or the target predicate, meaning that the recursive clauses can

be induced. No new predicate is invented in the procedure and no free variable

is allowed, that is, at least one of the variables in the body of an output clause

must also appear in its head or some other literal.

Like other top-down approaches, FOIL operates in three steps:

1. Pre-processing of example set

2. Construction of hypothesis

3. Postprocessing of hyhpothesis

Negative examples are produced in first step, if not given. Hypothesis, which may

contain several clauses with same predicate, is constructed with main covering

algorithm. Last step eliminates the errors that may arise because of noise. The

implemented covering algorithm is basically as in Figure 2.8.

The specialization function finds the best literal with repect to selection cri-

teria and constructs the clause by adding a literal to the body of the clause in a

loop. The specialization algorithm is as in Figure 2.9.
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while cover(c, B, E−
cur) �= φ and encoding constraints are not violated do

Find the best literal L to add the body of c = T ← Q
c := T ← Q, L.

end while
return c

Figure 2.9: FOIL specialization method

The best literal is found by using weighted information gain, which is calcu-

lated by computing the entropy of adding a literal as follows:

Let ci denote the state of clause at step i, and c+
i , c−i denote number of positive

and negative examples represented by this clause at step i, respectively. Infor-

mation needed to signal positivity of an example is with this clause is:

I(ci) = −log2(c
+
i /(c+

i + c−i )

In this context, let ci+1 denote the state of the clause after adding literal Li to

the body of the clause ci, and c++
i denote the number of positive examples cov-

ered by both ci and ci+1. Weighted information gain that is obtained by adding

literal Li to the clause body is calculated by:

Gain(Li) = WIG(ci, ci+1) = c++
i ∗ (I(ci)− I(ci+1)))

In each state of the specialization algorithm, the literal that offers highest

weighted information gain is added to the body of the clause.

The essential shortcoming of FOIL is that it searches the clauses greedily with

one literal look-ahead. There may be cases when two single literals have zero gain

but their conjuction may have high gain and may be necessary to produce the

correct result. In this case, FOIL may prefer another literal that has a nonzero

gain and no further specializations can be made. This defficiency is called “local

pleteau problem” [39] and arises from the fact that FOIL is a hill climbing method.

We also follow AQ covering approach in our system as FOIL. But we use a

different specialization algorithm, in which body literals are appended using the

differing arguments of the other literals.
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2.5.4 GOLEM

GOLEM is a bottom-up learner that is based on Plotkin’s LGG schema. In

its input language, functional terms are allowed for examples and background

clauses, but they are still restricted to ground form. The underlying methodogy

for generalization is as follows: The |= operator denoting logical entailment, let B

denote the set of background clauses and clause C the least general generalization

of examples e1 and e2 relative to B and is used only once in the derivation of

both e1 and e2

B ∧ C |= e1

C |= B → e1

|= C → (B → e1)

|= C → (¬B ∨ e1)

|= C → (¬(b1 ∧ b2 ∧ ...) ∨ e1)

|= C → ((¬b1 ∨ ¬b2 ∨ ...) ∨ e1)

Following the same procedure for e2, we get

|= C → ((¬b1 ∨ ¬b2 ∨ ...) ∨ e2)

If we let

C1 = ((¬b1 ∨ ¬b2 ∨ ...) ∨ e1) and C2 = ((¬b1 ∨ ¬b2 ∨ ...) ∨ e2)

Then

|= C → C1 |= C → C2

and we get:

|= C → lgg(C1, C2)

The mehodology can be better illustrated with an example. Consider learning

to identify a bird. The examples are:

bird(hawk).

bird(eagle).

which are both positive. The background clauses are:

haswings(hawk).

haswings(eagle).

flies(hawk).

flies(eagle).
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Using the reasoning presented above, the findings are:

C1 = bird(hawk) ∨ (¬haswings(hawk) ∨ ¬haswings(eagle) ∨ ¬flies(hawk) ∨
¬flies(eagle)).

= bird(hawk)← haswings(hawk), haswings(eagle), f lies(hawk), f lies(eagle).

C2 = bird(eagle) ∨ (¬haswings(hawk) ∨ ¬haswings(eagle) ∨ ¬flies(hawk) ∨
¬flies(eagle)).

= bird(eagle)← haswings(hawk), haswings(eagle), f lies(hawk), f lies(eagle).

The generalization results as:

lgg(C1, C2) = bird(X)← haswings(X), haswings(hawk), haswings(eagle),

f lies(X), f lies(hawk), f lies(eagle).

Removing the redundant literals we get:

bird(X) : −haswings(X), f lies(X).

Unlike the learning case presented in this simple example, the generalized

clause can contain too many literals and become extremely large to process.

Therefore restrictions are imposed for variables appearing in the body of induced

clauses. For this aim, authors introduce determinism, which forbids body vari-

ables that can not be determined uniquely using the values of the variables in the

head of the lgg.

GOLEM picks example pairs randomly at initial step, computes their lggs and

chooses the lgg that covers maximum number of examples. Then it computes

the lgg of the selected clause and other positive examples. The loop continues

until the generalization does not extend the coverage set. At this point, the

clause is post-processed to eliminate the redundant literals to provide additional

generalization.

Our system also generalizes the input clauses using Plotkin’s least general

generalization schema as performed in GOLEM. Unlike GOLEM, once we append

a literal to the body, we never remove it from the clause.
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B E ⊥
animal(X)← pet(X). nice(X)← dog(X). nice(X)← dog(X), pet(X), animal(X).

pet(x)← dog(X).
hasbeak(X)← bird(X). hasbeak(tweety). hasbeak(tweety); bird(tweety);
bird(X)← vulture(X). vulture(tweety)

white(swan1). ← black(swan1). ← black(swan1), white(swan1).
sentence([], []). sentence([a, a, a], []). sentence([a, a, a], [])← sentence([], []).

Table 2.2: Most-specific clause for different example clause and background
knowledge set pairs

2.5.5 PROGOL

In [27], the authors approach the generic ILP problem as finding the simplest

hypotheses H that explains example set E, together with background knowledge

B, in the finite or infinite search space of possible solutions, that is,

B ∧H |= E

The authors denote that B, H and E can be arbitrary logic programs. Each

clause in H must cover some positive examples, otherwise there is a simpler hy-

potheses H’ to replace H. Considering the H and B each a single clause, using

the inference as in GOLEM, the relation is converted to:

B ∧ Ē |= H̄

Then, the authors introduce the most specific clause, namely ⊥, where ⊥̄ denotes

the conjuction of all literals which are true in every model of B ∧ Ē. Since H̄

is true in the same model, it follows that the literals of H̄ are the subset of the

literals in ⊥̄, that is H̄ can be deduced from ⊥̄. The relation is as follows:

B ∧ Ē |= ⊥̄ |= H̄ .

therefore for every possible solution H,

H |= ⊥.

In this context, possible solutions can be computed by considering clauses which

θ-subsume ⊥. Some examples listed by the authors illustrating the relation be-

tween E, B and ⊥ are listed in Table 2.2.

The first case follows from the absorption rule mentioned in CIGOL. The

second case relies on the identification rule of in the same system. In the third

clause, it is learnt that a swan can not be black and white at the same time,
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which demonstrates how negative facts can be extracted. The last example is a

special case of the grammar rule sentence([a|X], Y )← sentence(X, Y ).

Progol reduces the search space by using mode declarations for the target

predicate. In this context, type of every variable should be declared by the user.

For instance, if there are examples such as:

class(dog, mammal).

class(shark, fish).

Then, the user must specify the types of the variables as follows:

animal(dog).

animal(shark).

class(mammal).

class(fish).

Furthermore, the structure of the target predicate must be declared as follows:

class(+animal, #class).

where animal and class are variable types that can occur in the argument and +

symbol denoting input variable, # denoting constant (- denoting output).

Mode declarations also permit the user to declare the recall number, which

specifies the number of alternatives to be tried to instatiate an atom. Declarations

are used for both head and body literals. For instance

modeh(1, class(+animal, #class)),

describes the head of the target predicate,

modeb(1, haseggs(+animal)),

describes the structure of a possible body literal, where the integer 1 stands for

the recall number.

Having clauses like these as input at hand, Progol can produce clauses like:

class(X, mammal) : − hasEggs(X), hasMilk(X), or

: − class(X, mammal), class(X, fish),

meaning that an animal can have only one class.

Progol uses an A*-like algorithm to find the hypotheses, which finds the cor-

rect one if it is reachable. It chooses the hypotheses having the greatest Occam

compression, using total number of atom occurences as encoding measure, when
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there are several solutions. Progol system is implemented in C programming

language and available for academic research via world wide web [25].

Our system requires neither type, nor mode declarations. But it can provide

better generalizations when type information is provided in background knowl-

edge.



Chapter 3

String Generalization

3.1 Introduction

Learning by positive-only data is a difficult task in ILP due to the possible over-

generalization caused by the lack of restriction induced by negative examples. But

in real-life, we have many domains where we have only positive examples such as

Grammar Learning and Machine Translation. There has been attempts [7, 23, 28]

to propose a solution for learning from positive-only data such as statistical tech-

niques using prior probabilities or closed world assumption. In closed world as-

sumption approach, every possible ground clause not given in the positive example

set is produced by the system and labeled as negative.

Predicates defined on string arguments occur in many domains such as Gram-

mar Learning and Machine Translation. In [4], the authors propose a solution

for learning predicates that have string arguments in domains having no negative

examples.

The proposed methodology is based on the notion of unique match sequence,

which is based on similarities (subsequences occurring in both strings) and differ-

ences (subsequences differing among strings) of two strings. The unique match

sequence is generalized using Plotkin’s LGG schema.

27
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Suppose we have two positive examples with predicate endsWith in Prolog

notation, where lists represent strings:

endsWith([a,b], [x,y]).

endsWith([c,d,b], [w,z,y]).

Although these two predicates share the common property that first argument

is a list ends with b, and second argument is a list ends with y, GOLEM, which

also uses LGG schema, overgeneralizes this pair with result:

endsWith([A,B|C],[D,E|F]).

which accepts all endsWith predicates with list pair having length at least two as

input.

The output of Progol, which is based on similar principles with GOLEM is:

endsWith([a,b], [x,y]).

endsWith([c,d,b], [w,z,y]).

which overfits on the examples and covers nothing more.

The string generalization technique proposed in [4] learns the following clause

with the same example pair:

endsWith(L1,L2) :- append(X,[b],L1), append(Y,[y],L2).

which accepts clauses with predicate endsWith, and the last elements of the first

and second arguments are b and y. respectively. This corresponds to p(Xb, Yy)

in string case.
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3.2 Preliminaries

The mentioned methodolgy makes generalizations by processing similarities and

differences of strings. A match sequence is the sequence of similarities and differ-

ences between two strings. Informally, a similarity between two strings is common

subsequence of symbols and a differences are the subsequences between similar-

ities. For a string pair (abcd, abe); ab is the similarity and (cd, e) represents the

difference.

Although the string pair (abcd, ecfg) has a single match sequence

(ab, e)c(d, f), the pair (abc, dbebf) has two match sequences (a, d)b(c, ebf) and

(a, dbe)b(c, f) since b appears twice in the second string.

In the article, a specific case of a match sequence, the notion of unique match

sequence is defined with two additional restrictions on a match sequence:

• Symbols occuring similarities and differences constitute two disjoint sets.

This rule enforces that, a symbol occuring in one of the similarities can not

occur in any difference.

• Symbols of first and second constituents of differences constitute two dis-

joint sets. This rule enforces that, common symbols can only occur in

similarities.

These two restrictions together provide only string pairs whose common symbols

occur same number of times in the same order to have a unique match sequence.

Some examples that can help to clarify the notion of unique match sequence

are:

• UMS(abceb, fgbhb) = (a,fg)b(ce,h)b.

• UMS(ab, ab) = ab.

• UMS(abc, xyz) = (abc, xyz).
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• UMS(abcb, dbebf) = (a,d)b(c,e)b(ε,f).

• UMS(abc, abdb) = φ.

• UMS(ab, ba) = φ.

The authors introduce the notions of seperable and seperation differences are

to provide further capturing of similar patterns. In short, difference (D1, D2)

is said to be seperable by difference (d1, d2) if d1 and d2 occur same number of

times and grater than zero in D1 and D2, respectively. We say that a difference

(D1, D2) is divided by another difference (d1, d2) with separation factor n where

n is the number of times d1 occurs in D1 and d2 occurs in D2.

For instance, the difference (aba,cdc) is seperable by difference (a,c) with

factor 2. Hovewer, the difference (aba,cd) is not seperable by difference (a,c) since

a occurs twice in the first constituent while c occurs in the second constituent

only once.

Seperation of a difference (D1, D2) with seperation difference (d1, d2) is the se-

quence (α1, β1)(d1, d2)(α2, β2)(d1, d2) . . . (d1, d2)(αn, βn), where D1 consists of the

sequence α1d1α2d1 . . . d1αn and D2 consists of the sequence β1d2β2d2 . . . d2βn, and

empty differences are dropped. Seperation of a match sequence with a difference

is the sequence of similarities and seperation of all differences with that difference.

In the framework terminology, the seperation differences that seperate all the

differences in that match sequence and increase the number of differences more

than once after the seperation of a difference are discriminated as useful. As an

instance of this concept, while (a,b) is a useful separation difference for match

sequence (ac,bde)g(a,b) since the total number of differences which occur more

than once is increases from 0 to 2 after the seperation, (ab,d) it is not a useful

seperation difference for this difference since the same parameter does not increase

after the seperation.

For a match sequence to be seperated, the authors describe the most useful

seperation difference as the one among useful seperation differences that seperates

the match sequence with the greatest factor. If there are more than one useful



CHAPTER 3. STRING GENERALIZATION 31

specInstance← ums(α1, α2)
while there is a MUSD that seperates specInstance with factor ≥ 2 do

specInstance← seperation(specInstance, MUSD)
end while
return specInstance

Figure 3.1: Finding Specific Instance

seperation differences seperating with the greatest factor n, the seperation of the

match sequence with most useful seperation difference should be still seperable

by the other differences with factor n.

There can be many useful separation differences for a match sequence but

there is at most one most useful separation difference. For instance, the most

useful separation difference for match sequence (cac,bdb)g(cf,bg) is (c,b) with

separation factor 3. For match sequence (ab,c)g(ab,c), there is no most useful

separation difference, because neither of (a,c) and (b,c) has the superiority over

the other.

3.3 Methodology

3.3.1 Finding Specific Generalization

Once unique match sequence of a string pair is found (if there is), the best (not

always most) specific instance of the sequence is computed by the algorithm in

Figure 3.1. In this algorithm, specific instance of a match sequence is computed by

dividing the match sequence iteratively by the most useful seperation difference.

The iterations continue until none of the useful separation differences can be

favored among others.

The specific generalization of strings α1 and α2 is computed (if exists) by

the algorithm in Figure 3.2. In this algorithm, inverse substitution step is the

operation of replacing differences with variables, with the restriction that same

differences correspond to same variables in the result.
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if ums(α1,α2) does not exist then
There is no possible generalization

else
UMS ← uniqueMatchSequence(α1,α2)
SIofUMS ← specInstance(UMS)
SG← InverseSubsitute(SIofUMS)

end if

Figure 3.2: Finding Specific Generalization

As an instance that shows how specific generalization works, consider the

generalization of a string pair abcdfc and abghefg. The common subsequences of

these strings are ab and f. Therefore the unique match sequence of the pair is

ab(cd,ghc)f(c,g). For this match sequence, (c,g) is the mosy useful seperation

difference with seperation factor 2. The seperation of the sequence with this dif-

ference gives the new sequence: ab(c,g)(d,he)f(c,g). Since there is no most useful

seperation difference for this new sequence, we conclude that ab(c,g)(d,he)f(c,g)

is the most specific instance for the generalization of the string pair. Applying the

inverse substitution process, we get the generalized string abXYfX as the result

of the specific generalization procedure.

A generalized string is a sequence of characters and variables such as abX,

which represents all strings starting with ab. The generalized set GS of a gener-

alized string is all the possible strings that are represetnted by that string. For

instance, GS(abX) = All strings starting with ab.

3.3.2 Generalizing Predicates

The proposed method for generalizing predicates is a coverage procedure based

on specific generalization of strings. Every generalization rule includes append

predicate implicitly in their bodies. For instance, a predicate definition noted as

p(Xa) corresponds to

p(L) :- append(X,[a],L)
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GEN(S) ba cda a aa faga
Examples used {1} {2} {3} {4} {5}

EG set {1} {2} {3} {4} {5}
Table 3.1: String generalization, initialization step

GEN(S) Xa XaYa ba cda a aa faga
Examples used {1, 2, 3} {4, 5} {1} {2} {3} {4} {5}

EG set {1, 2, 3, 4, 5} {4, 5} {1} {2} {3} {4} {5}
Table 3.2: String generalization, computing generalizations

in Prolog notation.

Two clauses having string arguments are generalized using specific generaliza-

tion of their arguments if exists. The generalization of two strings α1, α2 is their

specific generalization, if their specific generalization exists, and it is not a (most

general) single varaible X.

Assume that S is a set of ground strings α1, α2, . . . , αn. EG(α) represents set

of ground strings represented by α, where α is a ground or generalized string.

To construct the generalized set GEN(S ) for a set of strings S, generalizations of

all string pairs are computed and put into GEN(S ). In the second step, among

the generalizations that cover the same examples, the more specific one is kept

and the other is removed from the set. Next, the generalizations whose coverage

sets are subset of coverage of another generalization are removed from the set.

Lastly, if there are generalizations such that all the examples that it covers are

also covered by another subset, they are removed from the generalization set.

Then S is initialized to GEN(S ) and the whole procedure is repeated until there

is no possible generalization that can be computed.

To illustrate how the algorithm works, consider the example clause set

{p(ba), p(cda), p(a), p(aa), p(faga)}. Firstly, GEN(S ) is initialized to the set of

arguments S = {ba, cda, a, aa, faga} as in Table 3.1.

In first iteration, Xa, which is the specific generalization of ba, cda, a; and

XaYa, which is the specific generalization of aa, faga are added to GEN(S ) as in

Table 3.2.
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GEN(S) Xa
Exs {1, 2, 3}
EG {1, 2, 3, 4, 5}

Table 3.3: String generalization, final result

Since EG(ba), EG(cda), EG(a), EG(aa), EG(faga) and EG(XaYa) are all

subsets of EG(Xa), they are removed from the generalization set and generalized

clause set will consist of a single clause in the end, which is p(Xa) as in Table 3.3.

The predicates with multiple string arguments can be generalized in the same

way with a little modification. The argument sequence can be treated as a sin-

gle string separated with a special symbol such as ‘:’, which must not occur as

any part of the input. For instance, two example clauses such as, p(a,bac) and

p(d,fde) can be treated as p(a:bac) and p(d:fde) and the resulting generalization

is p(X:YXZ), which corresponds to p(X,YXZ). Therefore the methodology also

finds the interdependencies between arguments of a single predicate.



Chapter 4

Inductive Generalization

4.1 Introduction

The heuristic described in [4] is a successfull method for string generalization with

potential application areas. But with its current status, it remains a stub as an

Inductive Logic System. First of all, only class of background predicates handled

by the framework is those denoting the type of the variables. It does not have the

ability to process background predicates having arbitrary number of arguments.

Second, although the heuristic eliminates some generalizations using specification

heuristic, it does not specify the exact methodology to select the hypotheses set,

that covers the examples. The last point is that, there is not specific treatment for

numbers, which may be necessary for learning in the domains having continuous

data, such as learning mutagenecity.

As pointed out in Chapter 1, the aim of the research documented in this thesis

is to develop an inductive learning system for domains with positive-only data,

using the idea of string generalization proposed in [4]. For this purpose, initially,

we define the concept language that our system will work with. The second

point that has been worked is to extend the technique to consider arbitrary first-

order background predicates. Next issue was to define a sound methodology for

selecting the clauses to construct the hypotheses. In the end, we developed a

35
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heuristic to handle numeric arguments. As the result of this effort, we hope to

invent an efficient ILP learner particularly for positive-only domains.

4.2 Language

Studies on attribute-value learning paradigms suffer from the lack of a standard

language and notation. Inductive learning systems take their power from the

declarativeness of the language they use, and Prolog is accepted almost the stan-

dard for these systems. The methodology described in this section also takes

the input in Prolog notation, but the language is restricted form of Prolog. The

example set and background knowledge consist of function-free ground literals

without bodies, which correspond to real-life facts. All the examples in the given

set must have the same predicate as we aim to build an empirical single predicate

learner, but background knowledge may include several types of predicates. In

this context, a sample example set may be:

{daughter(sibel, ahmet), daughter(ceren, mehmet), daughter(sibel, zehra)}
Background knowledge may be:

{sister(sibel, bora), parent(mehmet, ceren), father(ahmet, sibel)}
Functional terms such as

pair(card(clubs, five)).

and variables

prent(ayse, X).

are disallowed.

The output hypotheses consits of function-free Horn clauses, which can have

variable in their bodies, such as:

parent(X, cengiz)← daughter(cengiz, X).

As mentioned in Chapter 2, inductive learners construct output hypotheses

that consist of generalized clauses. In our system, two kinds of generalized clauses

may appear in the output hypotheses: a general Horn clause with a nonempty

body or a unit clause with empty body. Instances of general Horn clauses are:
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p(X, Y )← q(X), p(X, Y )← q(X), r(Y ).

Instances of unit clause are:

p(a, X, Y ), p(X, Y ) p(X, Y, X)

We do not introduce a heuristic to invent new clauses, therefore clauses hav-

ing nonempty bodies can only appear only in the cases where some background

knowledge is specified.

In our framework, symbolic and numeric arguments are generalized differ-

ently. Symbolic arguments are generalized based on unique match sequences and

numeric arguments are generalized by computing intervals. If ith argument is

symbolic in some example clauses and numeric in the others, it is considered as

symbolic in all of them.

4.3 Symbolic Generalization

We generalize input examples by considering all symbolic arguments as a single

list, where argument boundaries are specified by the special symbol ‘:’. Therefore

usage of this symbol as a seperate token is not allowed in the input and back-

ground knowledge set. This rule does not restrict the language, since a midlevel

input can be generated by another token that does not occur in the input and

post-process the output to reverse the replacement. So, the impact of preprocess

is as follows:

p([a], [b], [a, c]) is converted into p([a, :, b, :, a, c]).

p([d], [b], [d, e]) is converted into p([d, :, b, :, d, e]).

From this point on, we treat each token in our system as a single symbol. That

is, tokens correspond to characters, and lists correspond to strings in string gen-

eralization framework proposed in [4].

Having the argument of each example converted into a single list, we inves-

tigate the existence of unique match sequence for each pair of these lists. For

a pair, if there is not a unique match sequence, we say that there is not any

possible generalization for this pair. Otherwise, we compute the unique match



CHAPTER 4. INDUCTIVE GENERALIZATION 38

repeat
ums := uniqueMatchSequence(arg1, arg2)
SIofUMS := specificInstance(ums)
for all tokens t in SIofUMS do

if t is a difference then
for all background predicates p do

if p covers left and right constituents of the t then
newSpecInstance := SIofUMS + p(tleft, tright)
Split newSpecInstance to its constituents nsiLeft, nsiRight
arg1 = nsiLeft
arg2 = nsiRight

end if
end for

end if
end for

until There is no such background predicate or no UMS

Figure 4.1: Extended specific generalization algorithm of InGen

sequence and search for its most useful seperation difference as defined in Section

3.2. If there is not such a difference, the specific instance is the match sequence

itself. If there is a most useful seperation difference, the most specific instance is

computed using the specific instance algorithm in Figure 3.1 in Section 3.3.

The symbolic generalization algorithm can be summarized as Figure 4.1. The

generated clauses are specialized by appending body literals with the statement:

newSpecInstance := SIofUMS + p(tleft, tright).

The unique match sequence of the arguments of initial two examples given

above is ([a] , [d]) [:, b] ([a, c] , [d, e]). The most useful seperation difference for this

unique match sequence is ([a] , [d]) with seperation factor 2. Therefore we seperate

the UMS with this seperation difference and get ([a] , [d]) [:, b] ([a] , [d])([c] , [e]) as

the result. Since there is not a useful seperation difference for this match sequence,

we conclude that it is the most specific instance and can be generalized for this

example pair.

Background predicates are handled at this point, after computing the specific

instance. For each difference in the most specific instance, we search a background
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predicate that contains both left and right constituents in one of its arguments,

by using a breadth-first algorithm. If there is such a predicate, we stop the search

and reconstruct the initial example pair and extend both of them using the clause

that provides coverage. In this step, we also use the Prolog implication symbol

‘:-’ to seperate the target predicate from background clauses. We also treat name

of the background predicates as special string tokens. If there is unique match

sequence of the new pair, the same procedure is repeated with the unique match

sequence of the new pair. The procedure continues until no new unique match

sequence is found or there is not a suitable background predicate for extension.

In subsequent iterations, the special symbol ‘−−’ is used as a seperator between

body clauses.

For instance, for the example clauses given above, assume the background

clauses are also provided as follows:

q([a, f ]).

q([d, g]).

q([b, b]).

r([f ], [k, m]).

r([g], [k, m]).

r([h], [h, k]).

In the background knowledge, we see that predicate q covers both constituents

of the difference ([a] , [d]), therefore we seperate the most specific instance and

extend both examples as follows:

[a, :, b, :, a, c, : −, q, a, :, f ].

[d, :, b, :, d, e, : −, q, d, :, g].

Unique match sequence of this pair is:

([a] , [d]) [:, b, :] ([a, d] , [c, e]) [: −, q] ([a] , [d]) [:] ([f ] , [g])

and the sepecific instance is

([a] , [d]) [:, b, :] ([a] , [d])([c] , [e]) [: −, q] ([a] , [d]) [:] ([f ] , [g])

When repeat the same procedure for the new specific instance and discover that

difference ([f ] , [g]) is covered by predicate r, and the new pairs are then as fol-

lows:

[a, :, b, :, a, c, : −, q, a, :, f,−−, r, f, :, k, m].
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[d, :, b, :, d, e, : −, q, d, :, g,−−, r, g, :, k, m].

having the unique match sequence:

([a] , [d]) [:, b, :] ([a, d] , [c, e]) [: −, q] ([a] , [d]) [:] ([f ] , [g]) [−−, r] ([f ] , [g]) [:, k, m]

The new specific instance is:

([a] , [d]) [:, b, :] ([a] , [d])([c] , [e]) [: −, q] ([a] , [d]) [:] ([f ] , [g]) [−−, r] ([f ] , [g]) [:, k, m]

Next, we see that there is not any generalization covering any difference, therefore

we stop and exit from this step.

Next issue is the generalization of lastly found specific instance, namely spe-

cific generalization step. In this step, similarities are kept as constants, as per-

formed in the specific generalization algorithm listed in Figure 3.2 in Section 3.3.

Note that, if there are several arguments, all ‘:’ symbols must occur as similar-

ities, since they occur same number of times in each input list. Last process in

this step is to replace the differences with variables, respecting the rule that same

differences are replaced with same variables. Therefore the generalization that

will be extracted for the example pair given above is:

[X, :, b, :, X, Y, : −, q, X, :, Z,−−, r, Z, :, k, m].

A fter simple parsing and construction we get the generalized clause:

p(X, b, [X, Y ]) : − q(X, Z), r(Z, [k, m]).

that correspons to the following Prolog clause:

p(X, b, [X, Y ], Z) : − q(X, Z), r(Z, [k, m]), append(X, Y, Z).

Following the same methodology in Section 3.3, the most general clause X is

not admitted as a generalization.

4.4 Numeric Generalization

For generalization of numeric input arguments, we follow a different approach.

We treat numbers as points in the set of real numbers and generalizations are

intervals.

For generalization of numeric arguments, we used a modified version of hier-

archical clustering [15] since we believe that it is the most similar way to pairwise
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generalization. In this case, closeness in terms of distance corresponds to simi-

larity and intervals correspond to generalizations.

Hierarchical clustering is a technique that builds a hierarchical tree of grouping

among input examples. Initially every data point (example) constitutes a single

cluster. Then, clusters are merged pairwise until a single cluster that contains all

the data points is left. The distance between two clusters is determined by the

linkage method, an there are several alternatives:

• take the minimum of all pairwise distances between elements of two clusters

• take the maximum of all pairwise distances between elements of two clusters

• take the distance between the mean of two clusters (centroid method)

We take the minimum pairwise distance to make generalizations.

Suppose that the examples set consists of seven points : {1.2, 1.8, 2.5, 6.0, 6.5, 8.4, 8.6}.
Initially every point is a single cluster:

C1 = {1.2} , C2 = {1.8} , C3 = {2.5} , C4 = {6.0}, C5 = {6.5} , C6 = {8.4} , C7 =

{8.6}
The closest cluster pair is C6 and C7 with distance 0.2, therefore we merge them

making a single cluster:

C1 = {1.2} , C2 = {1.8} , C3 = {2.5} , C4 = {6.0} , C5 = {6.5} , C67 = {8.4, 8.6}
The next closest pair C4 and C5 with minimum pairwise distance 0.5, are merged.

C1 = {1.2} , C2 = {1.8} , C3 = {2.5} , C45 = {6.0, 6.5} , C67 = {8.4, 8.6}.
The next closest pair C1 and C2 with minimum pairwise distance 0.6, are merged.

C12 = {1.2, 1.8} , C3 = {2.5} , C45 = {6.0, 6.5} , C67 = {8.4, 8.6}.
The next closest pair C12 and C3 with minimum pairwise distance 0.7, are merged.

C13 = {1.2, 1.8, 2.5} , C45 = {6.0, 6.5} , C67 = {8.4, 8.6}.
The next closest pair C45 and C67 with minimum pairwise distance 1.9, are

merged.

C13 = {1.2, 1.8, 2.5} , C47 = {6.0, 6.5, 8.4, 8.6}.
The only remaining pair C13 and C47 are merged in the end and we have a single

large cluster
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1.2 6.56.02.51.8 8.4  8.6

1.2 6.56.02.51.8 8.4  8.6

1.2 6.56.02.51.8 8.4  8.6

1.2 6.56.02.51.8 8.4  8.6

1.2 6.56.02.51.8 8.4  8.6

1.2 6.56.02.51.8 8.4  8.6

1.2 6.56.02.51.8 8.4  8.6

Figure 4.2: Example of hierarchical clustering

C17 = {1.2, 1.8, 2.5, 6.0, 6.5, 8.4, 8.6},
which is the initial example set.

The whole procedure is illustrated in the Figure 4.2.

It is obvious that the final result of the algorithm does not provide useful

information for us. The information that hierarchical clustering gives us is the

clustering tree itself. Hence, extra procedure is needed to extract clusters from

the the tree. For this purpose, we specify a cut-off point that indicates to stop

merging process. We rely on the average distance among the input data points.

That is, if the minimum pairwise exceeds the average distance among the data

points which is computed at the initial step, two clusters are not merged. Since



CHAPTER 4. INDUCTIVE GENERALIZATION 43

dist = 0.5

dist = 0.2

dist = 0.6

dist = 0.7

dist = 1.9

m.p.dist exceeds
avg. dist, stop

1.2 6.56.02.51.8 8.4  8.6

1.2 6.56.02.51.8 8.4  8.6

1.2 6.56.02.51.8 8.4  8.6

1.2 6.56.02.51.8 8.4  8.6

1.2 6.56.02.51.8 8.4  8.6

Figure 4.3: Generalization of Numbers

pairwise distance increases at each step, it is appearent that if this condition is

violated at certain step, it can never be satisfied in further steps, so we stop

merging. The average distance can be calculated as:

Davg = (max−min)÷ (n− 1)

where n is the set size.

For the example set given in the previous step,

Davg = (8.6− 1.2)÷ (7− 1) = 1.23

indicating that cluster merging process continues until the minimum pairwise

distance exceeds 1.23. When merging C45 and C67, the pairwise distance is 1.9,

which is larger than 1.23, hence merging is stopped at this point and we get three

clusters:

C13 = 1.2, 1.8, 2.5, C45 = 6.0, 6.5, C67 = 8.4, 8.6.

The procedure is illustrated is in Figure 4.3.

Although we have clusters at this point, our system needs generalizations

(intervals in o.w). A simple choice may be to determine the borders with the

smallest and largest elements of each cluster, but a bettter alternative may be

adding a smoothing factor. We select the smoothing factor as the average distance

computed in the initial step, that is we compute the intervals by choosing the left
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-0.03 3.73 4.77 7.73 7.17 9.83

1.2 6.56.02.51.8 8.4  8.6

Figure 4.4: Interval computation

most and right most elements, and extending it both ends with average distance.

In the example given, three intervals can be constructed from three clusters as

follows

C13 = {1.2, 1.8, 2.5} , C45 = {6.0, 6.5} , C67 = {8.4, 8.6}.
I1 = [1.2− 1.23, 2.5 + 1.23] = [−0.03, 3.73]

I2 = [6.0− 1.23, 6.5 + 1.23] = [4.77, 7.73]

I3 = [8.4− 1.23, 8.6 + 1.23] = [7.17, 9.83]

The result is illustrated in Figure 4.4.

Note that intervals I2 and I3 intersect at [7.17, 7.73]. But this is not a problem

for our system since what we are trying to do is to make a generalization, not

actual clustering. It is not important which generalization covers an example,

what is important is that whether an example is covered by some interval or

not. An example can be covered by two generalizations, as in the case both

generalizations aX and Xb covers string ab.

Although our generalization method is developed for domains with positive

only data, it can easily be adapted to benefit from negative examples when there

is such data. For this purpose, an additional step is necessary to (possibly) shrink

the generalization intervals to make the output hypotheses consistent.

After the intervals are extracted, if a negative example is not covered by any

generalizations, that is the data point does not fall in any of the intervals, no

extra process is needed. If it falls in some interval, there may be two cases. First

possibility is that, it may fall in left or right smoothing extensions. In this case,

we shrink the interval from the side where the point falls by dividing from the

middle point between the negative example and the closest positive example.

If the negative example falls between two positive examples in an interval, that

interval is divided into two by cutting from the middle points between the negative
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-0.03 3.73

-0.03 2.7

1.2 1.8 2.5

1.2 1.8 2.5 2.9

Figure 4.5: Adaption to negative examples, first case

1.2 1.8 2.5

-0.03 3.73

-0.03 1.95 2.3 3.73

1.2 1.8 2.52.1

Figure 4.6: Adaption to negative examples, second case

example and the neighbouring positive examples.

For the example set given, suppose we have an extra negative example 2.9.

The data point corresponding to this example falls into the right smoothing ex-

tension of first interval I1 = [ -0.03, 3.73]. In this case, that interval is shrinked

from right and the new upper bound is (2.5 + 2.9) / 2 = 2.7. The state of

the interval before and after the nagative example is processed, is displayed in

Figure 4.5.

Consider that the negative example is 2.1, which falls between two positive

examples, 1.8 and 2.5, included in the first interval. In this case, the interval is

divided into two, from point 2.1. The left end of the left subinterval and the right

end of the right subinterval remain same. The right end of the left subinterval

becomes (1.8 + 2.1) / 2 = 1.95. The left end of the right subinterval becomes

(2.1 + 2.5) / 2 = 2.3. The resulting intervals are [-0.03, 1.95 ], and [ 2.3, 2.73 ]

as shown in Figure 4.6.
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4.5 Construction of the Hypotheses

In our system, the hypotheses set consists of the general clauses computed by ex-

tended specific generalization algorithm and the examples themselves. We follow

the coverage algorithm similar to the one applied in FOIL. From a set of gen-

eralized clauses, we select the best clause with respect to our selection criteria,

put it into the hypotheses and remove the examples covered by this clause. In

the next step, the clauses that do not cover any example are removed from the

clause set and the best clause from the remaining clause is chosen. Disjunction

of selected clauses build the hypotheses. The iteration procedure continues until

all the examples are covered by the hypotheses.

For learning predicates having mixed arguments (symbolic and numeric), all

the symbolic arguments are considered as a single list as described in Section 4.3,

and each numeric argument is considered as an individual group. Initally, numeric

intervals are produced. Then, in the specific generalization step, for each argu-

ment, we investigate whether there is an interval that covers numeric arguments

of each example. If there is one, we generalize the examples and associate the

clause with the body literals real(N), between(N,a,b) denoting N is a real num-

ber between two real numbers a and b. If there is not such an interval, numeric

argument is directly generalized as real(N) .

Consider a simple generalization task of generalizing three examples such as:

p(a,b,2.1).

p(c,b,2.7).

p(d,b,6.9).

p(e,b,8.1).

Generalization of numeric arguments produces two intervals I1 = [0.1, 4.7], I2 =

[4.9, 10.1]. In the specific generalization of (a,b,2.1) and (c,b,2.7), we observe that

most speicific instance of (a,b) and (c,b) is (a,c)b and both numbers are elements

of the interval I1, therefore the generalization of these examples are XbI1. In the

same manner, specific generalization of (d,b,6.9) and (e,b,8.1) is XbI2. There is

not any interval covering the numeric arguments of the first and third examples,

therefore their generalization is XbI.
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For this example set InGen extracts three generalized clauses:

p(X,b,N) :- real(N), between(N,0.1,4.7).

p(X,b,N) :- real(N), between(N,4.9,10.1).

p(X,b,N) :- real(N).

but only puts the first two of them into the hypotheses as they cover the whole

set together and are preferred over the last one because of the selection criteria

described below.

For selecting the best clause to add the hypothesis, various criteria are applied

for selection of best clause in the following order:

1. Number of free variables, which are the variables that appear only once in

the body of a generalized clause. The clauses having fewer free variables

are preferred over the others, since we believe that greater number of free

variables lead to irrelevant clauses.

2. Number of body literals. The clauses having greater number of background

literals are favored over the others, since we believe that each background

literal introduces further specialization and more specific generalizations.

3. Number of examples that are covered by the clause. The clauses that cover

more examples are favored over the others.

For the generalized clauses generated in the case described above, we see that none

of them contains free variables, and first two clauses contain greater number of

body literals and cover the whole set together, therefore this pair is chosen as the

hypotheses.

As another sample case, we recall the daughter example again as in Table 2.1.

With this input at hand, The initial clauses generated by InGen are:

c1 = daughter(senay, X0) : −parent(X0, senay).

c2 = daughter(nese, X0) : −parent(X0, nese).

c3 = daughter(X0, X1) : −parent(X1, X0), female(X0).

c4 = daughter(X0, X1) : −parent(X2, X0), female(X0), parent(X1, X0).

The values of selection criteria for each of the clauses are as in Table 2.1
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Clause Free variables Background literals Covered examples
c1 0 1 2
c2 0 1 2
c3 0 2 4
c4 1 3 4

Table 4.1: Input clauses for learning daughter relation

Among the generated caluses, we can observe that each of c1, c2, c3 does

not include free varibales but c4 does, therefore first three clauses are preferred

over the fourth clause. Among the first three clauses, we observe that c3 has

the maximum number of background literals, therefore it is selected as the best

clause for this stage and add to the hypotheses set. Since clause c3 covers all of

the examples, the remaining uncovered set is empty, and outer loop algorithm

stops. Therefore the output hypoteses is:

H = {c3} = {daughter(X0, X1) : − parent(X1, X0), female(X0).}
which is the correct description of the concept.

There may be cases where some examples are covered by none of the gener-

alized clauses. In such cases, the examples which are not covered by any of the

clauses are lastly added to the hypotheses set to make the hypotheses complete

with respect to given example set.



Chapter 5

Implementation

Our system InGen bascially consists of six modules. These are:

1. Parser

2. Matcher

3. Specializer

4. Interval Generator

5. Generalizer

6. Clause Selector

Figure 5 illustrates the general architecture of our system.

5.1 Parser

Parser processes the input and background knowledge files and parses the literals.

Both the example set and background knowledge must consist of function-free

ground literals. Since our system is designed as an empirical single predicate

49
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Figure 5.1: Architecture of InGen
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learner, all the input examples must have same predicate name and same number

of arguments. Firstly, it is investigated whether there is an example or background

clause that violates the restrictions, and a message describing the error is asserted

in such situations. If there is no problem in input format, the module searches

whether there is any numeric input argument among the examples. Argument list

is passed to Matcher for computing unique match sequence. Numeric arguments

are also passed to Interval Generator.

Consider the case of learning from following example set:

p([a],[b],[a,f],2.1).

p([c],[b],[c,g],2.7).

p([d],[b],[h],6.9).

p([e],[b],[k],8.1).

associated with the background knowledge:

q([a]). r([c])

q([c]). r([d])

q([d]). r([e])

All the example and background clauses are ground, have the same predicate

name p and there are no functional terms, therefore the input is suitable for

learning process. First two arguments of each clause are symbolic and the last is

numeric, therefore the literals are passed in two parts to the Matcher. The input

passed to Matcher is:

[[a,:,b,:,a,f],[2.1]]

[[c,:,b,:,c,g],[2.7]]

[[d,:,b,:,h],[6.9]]

[[e,:,b,:,k],[8.1]]

5.2 Matcher

The function of Matcher is to compute the unique match sequences of the sym-

bolic arguments and associate it with the numeric arguments. The argument list

contains sublists of symbolic and numeric arguments. For each pair, if there is
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a unique match sequence for the symbolic arguments, Matcher computes it and

appends the numeric arguments in the end of the match sequence as differences.

Firstly, two restrictions of having a unique match sequence are tested. These

restrictions require that common symbols (strings) must occur same number of

times and occur in the same order in both arrays. To test this situation, firstly

common symbols in both lists are extracted as a set. Using this list, the sequence

of common symbols are extracted retaining duplicates and the order for each list.

If these sequences are exactly same, there is a unique match sequence, else , null

sequence is returned indicating there is no UMS.

If the test result is positive, unique match sequence procedure starts to work.

To find unique match sequence, similarites are extracted using the common sym-

bols. Similarities are used as seperators and the symbols between similarites are

constituents of differences.

Unique match sequence extraction procedure might be summarized by the

algorithm in Figure 5.2. In the initial step, each common symbol is treated

as a single similarity. This may be lead to empty differences and consequent

similarities. In the end, empty differences are removed and consequent similarities

are concatenated to obey the rule of unique match sequence.

The unique match sequence of the symbolic argument pairs of the given input

are:

(a,c)b(af,cg), (a,d)b(af,h), (a,e)b(af,k), (c,d)b(cg,h), (c,e)b(cg,k), (d,e)b(h,k),

hence the output of Matcher passed to the Specializer is:

[([a],[c]),[:,b,:],([a,f],[c,g])],[(2.1,2.7)]]

[([a],[d]),[:,b,:],([a,f],[h])],[(2.1,6.9)]]

[([a],[e]),[:,b,:],([a,f],[k])],[(2.1,8.1)]]

[([c],[d]),[:,b,:],([c,g],[h])],[(2.7,6.9)]]

[([c],[e]),[:,b,:],([c,g],[k])],[(2.7,8.1)]]

[([d],[e]),[:,b,:],([h],[k])],[(6.9,8.1)]]
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commonSymbols← common(list1, list2)
commonSymbols1 ← projection(commonSymbols, list1)
commonSymbols2 ← projection(commonSymbols, list2)
if commonSymbols1 �= commonSymbols2 then

No UMS, return
end if
commonIndexes1 ← indexes(list1, commonSymbols)
commonIndexes2 ← indexes(list2, commonSymbols)
commonIndexes1 [0]← 0
commonIndexes2 [0]← 0
i← 1
while i ≤ commonIndexes.length − 1 do

sublist1 ← sublist(list1, commonIndexes1 [i− 1] , commonIndexes1 [i])
sublist2 ← sublist(list2, commonIndexes2 [i− 1] , commonIndexes2 [i])
ums [i− 1]← New difference(sublist1, sublist2)
ums [i]← commonSymbols1(i− 1)
i← i + 1

end while
sublist1 = sublist(list1, commonIndexes1 [i− 1] , commonIndexes1 [i])
sublist2 = sublist(list2, commonIndexes2 [i− 1] , commonIndexes2 [i])
ums [i + 1] = difference(sublist1, sublist2)
Remove Empty Differences in the ums
unite Neighbouring Similarities in ums
for all Numeric argument pair (n1, n2) do

if n1 = n2 then
Append n1 as a similarity.

else
Append (n1, n2) as a difference.

end if
end for

Figure 5.2: Finding Unique Match Sequence
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5.3 Specializer

Specializer module takes the unique match sequence extended with the numerical

arguments and outputs the most specific instance of the sequence.

Initially, the unique match sequence is processed and the useful seperation

differences for this match sequence is computed. Among the useful seperation

differences, if there is the most useful one, the sequence is seperated with that

difference. The same process is repeated for the resulting sequence iteratively

until no MUSD is found. For the example case, such a seperation difference only

exists for the first match sequence and it is: (a,c). The seperation of the first

sequence with difference (a,c) results the sequence (a,c)b(a,c)(f,g).

Next, specializer performs a breadth-first search to find a background predi-

cate that covers the both constituents of a difference. If there is such a predicate,

the specific instance is splitted to the examples that it were built and literals are

appended to the examples with a special seperator symbol. Then, these sequences

are passed to Matcher to recompute the unique match sequence. If there is not

such a background predicate or Matcher returns the null sequence indicating that

there is not a UMS of the extended sequences, Specializer produces output and

passes it to Generalizer.

For the first instance, we observe that the difference (a,c) is covered by back-

ground predicate q. Therefore the arguments are splitted and extended as follows:

[[a,:,b,:,a,f],[2.1],[:-,q,a]

[[c,:,b,:,c,g],[2.7],[:-,q,c]]

These examples are returned to Matcher to recompute the unique match se-

quences and then turn back to the specializer as follows:

[([a],[c]),[:,b],([a],[c]),([f],[g]),(2.1,2.7),[:-,q],([a],[c])]

It can be observed there is no further specialization for these examples, therefore

it is the final output of the Specializer for the first instance.

There is no most useful seperation difference for other instances, but back-

ground specialization takes place and the instance set generated by the Specializer
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is:

[([a],[d]),[:,b],([a,f],[h]),[:],(2.1,6.9),[:-,q],([a],[c])]

[([a],[e]),[:,b],([a,f],[k]),[:],(2.1,8.1),[:-,q],([a],[e])]

[([c],[d]),[:,b],([c,g],[h]),[:],(2.7,6.9),[:-,q],([c],[d])]

[([c],[e]),[:,b],([c,g],[k]),[:],(2.7,8.1),[:-,r],([c],[e])]

[([d],[e]),[:,b],([h],[k]),[:],(6.9,8.1)],[:-,r],([d],[e])

5.4 Interval Generator

Real number intervals are generated using the methodology described in Sec-

tion 4.4. During generation process, we represent intervals as lists, where first

element corresponds to left endpoint and last element correspond to right end-

point. Cluster elements are ordered between two endpoints and are removed from

the set at the end of the process.

For the example we follow, Interval Generator takes the set {2.1, 2.7, 6.9, 8.1}
as input. The average distance is (8.1 − 2.1)/3 = 2.0, indicating that for each

element of a cluster, there must be another element from the same cluster where

the distance between these two elements is less than or equal to 2.0. The output

of Interval Generator for this input consists of two closed intervals:

I1 = [0.1, 4.7]

I2 = [4.9, 10.1]

5.5 Generalizer

Generalizer computes generalized clauses using the specific instances instanti-

ated by the Specializer together with the real number intervals generated by the

Interval Generator.

As discussed in previous two chapters, in generalization step, differences are

replaced with variables. The important point was to give the same name to
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same differences. To achieve this purpose, we index variables with integers and

use the index of the variables in the variable name. When generalizing real

number arguments, it is investigated whether there is an interval that covers

both constituents of the difference and those intervals are appended as literals to

the body.

Generalizer forms the set of generalized clauses for construction of the hy-

potheses. For the instances passed from the Generalizer, the following generalized

clauses are built by the Generalizer:

p(X0,b,[X0, X1],N) :- q(X0), real(N), between(N,0.1,4.7)

p(X0,b,X1,N) :- q(X0), real(N).

p(X0,b,X1,N) :- r(X0), real(N), between(N,4.9,10.1).

5.6 Clause Selector

Clause Selector constructs the resulting hypotheses as disjunction of the clauses

generated by Generalizer. Resulting disjunction is complete with respect to exam-

ple set. The selection criteria are applied in sequence as discussed in Section 4.5.

For the example followed, none of the general clauses include free variables.

But first and third clauses have three body literals while the second has two,

therefore they are preferred over the second. First and third clauses both have the

same number of arguments (3) and cover same number of examples (2) therefore

has equal priority. Using breadth-first search, first clause is selected and put

it into the hypotheses. Then, it is removed from the generalized set and the

examples it covers are removed from the example set.

At this stage, there are two uncovered examples,

[[d,:,b],[6.9]]

[[e,:,b],[8.1]]

and two generalized clauses left:

p(X0,b,X1,N) :- q(X0), real(N).

p(X0,b,X1,N) :- r(X0), real(N), between(N,4.9,10.1).
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We see that neither of the clauses contain free variables, first clause contains two

body literals while the second contains three and each of clauses cover the re-

maining two examples. Since InGen prefers the clauses having grater number of

body literals over the others, Clause Selector selects the second clause and puts

it into the hypotheses. At this step, hypotheses is:

p(X0,b,[X0, X1],N) :- q(X0), real(N), between(N,0.1,4.7).

p(X0,b,X1,N) :- r(X0), real(N), between(N,4.9,10.1).

The hypotheses covers all the examples given in the set, therefore selection pro-

cedure stops and the system gives this hypotheses as output.



Chapter 6

Experimentation

We evaluated the performance of our system with nominal datasets belonging

to family relations, grammar learning, the card game Pisti and the continuous

Mutagenesis dataset and compared the generated results with two concurrent

ILP learners, Progol and FOIL. The results show that InGen is competitive with

these state-of-art systems.

6.1 Experiments with Symbolic Arguments

6.1.1 Family relations

6.1.1.1 daughter relation

Consider a student studying for a Calculus final. For him, main factors that can

help to predict his success may be, number of the example problems he solves and

their closeness to final questions, the understanding of the concept explained in

lectures and finally (arguably) Mathematical intelligence of the student. With an

analogy, the success of an inductive learner on the broadness of the example set,

the quality of background knowledge and efficiency of the learner in the problem

domain.

58
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Our first experiment is learning daughter relation which describes the concept

of a person being daughter of another person. The example set and background

knowledge are as in Table 2.1.

In order to start learning, Progol system needs mode and type declarations.

That is, in addition to presentation of inputs in Prolog notation, Progol requires:

modeh(1,daughter(+person,+person))?

modeb(*,parent(-person,+person))?

modeb(*,parent(+person,-person))?

modeb(*,female(+person))?

as mode declatration and

person(nese).

person(ali).

person(senay).

...

as type declaration. Hovewer, even with this additional information, the most

specific clause produced by Progol for this input set is:

daughter(A,B) :- parent(B,A), parent(C,A), female(A).

and the output hypotheses produced is a single clause:

daughter(A,B) :- parent(B,A).

discarding the condition that A must be female, and is inconsistent. For the same

input examples presented in a similar way, FOIL gives the same result as output.

For the same example, InGen does not need any type or mode declaration. As

mentioned in the previoues chapter, the output hypotheses generated by InGen

for the daughter example set is:

daughter(X0, X1) :- parent(X1, X0), female(X0)

which is the correct description of the concept and shows that InGen is able to

find the correct concept description using only examples and background clauses.
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Example set (All positive) Background Clauses
granddaughter(nese, ali). parent(mehmet, senay). male(mehmet).
granddaughter(nese, gul). female(zehra). parent(gul, aylin).
granddaughter(senay, ahmet). parent(fatma, senay). parent(ahmet, mehmet).
granddaughter(senay, zehra). parent(halil, nese). parent(zehra, fatma).

father(halil, nese). female(nese).
parent(ali, halil). female(senay).

Table 6.1: Input clauses for learning granddaughter relation

6.1.1.2 granddaughter relation

The example set for this relation consists of four clauses that informs a person is

grandaughter of another person as in Table 6.1. The examples are instances of

nonrecursive relation, that is, the cases like if X is granddaughter of Y and Y is

granddaguhter Z, then X is granddaughter of Z are not present. The background

knowledge includes 15 instances of relevant and irrelevant clauses.

Progol needs the following mode declaration for granddaughter predicate.

:- modeh(1,granddaughter(+person,+person))?

and extracts the following most specific clause

granddaughter(A,B) :- parent(B,C), parent(C,A).

and gives it as the resulting hypotheses. female(A) is discarded again, leading to

inconsistency. FOIL was unable to answer for this simple input in more than 30

minutes on a work station with 400Mhz SUN-SPARC processor and we gave up

waiting for the output.

InGen computes the following generalizations in initial step:

granddaughter(nese, X0) :- parent(X0, X1)

granddaughter(senay, X0) :- parent(X0, X1)

granddaughter(X0, X1) :- female(X0), parent(X2, X0), parent(X1, X3)

granddaughter(X0, X1) :- female(X0), parent(X2, X0), parent(X1, X2)

First clause is generated from the generalization of first two examples and only

covers those two. The second clause is generated from the last two examples and

covers only those two. Each of last two generalizations cover the whole set. The

hypotheses produced by the learner is:
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Example set (All positive) Background Clauses
aunt(jane,henry). father(sam,henry). sister(jane,sam).
aunt(sally,jim). parent(sam,henry). sister(sally,sarah).
aunt(judy,jim). mother(sarah,jim). sister(judy,sarah).

parent(sarah,jim)

Table 6.2: Input clauses for learning aunt relation

granddaughter(X0, X1) - female(X0), parent(X2, X0), parent(X1, X2).

which is complete and correctly describes the concept. The last clause is preferred

over the third, because all of its variables are bound, where the third clause con-

tains the unbound variable X3.

6.1.1.3 aunt relation

The aunt relation is generated and used by Muggleton to test his system Progol.

The example set consists of three positive examples of the concept a person being

aunt of another one, and a background knowledge set that includes father, mother,

sister and parent relations that are related with the example set. This example

is more complex and has features that can mislead an ILP system because a new

variable (standing for the parent) must be introduced to correctly describe the

concept.

The example and background knowledge set are as in Table 6.2. For this

input, Progol can learn the relation:

aunt(A,B) :- parent(C,B), sister(A,C).

successfully. Furthermore Progol is capable of learning the same fact using the

non-ground background clauses:

parent(Parent,Child) :- father(Parent,Child).

parent(Parent,Child) :- mother(Parent,Child).

instead of:

parent(henry,sam).

parent(jim,sarah).

which Ingen is incapable of. FOIL was unable to answer for this input.
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Example set (All positive) Background Clauses
s([a man, sleeps]) np(a man). iverb(sleeps).
s([the boy, sleeps]). np(the man). tverb(walks).
s([the dog,walks]). np(a dog). tverb(hits)
s([a boy,walks]). np(the dog). tverb(takes)
s([a man,walks,a dog]). np(a boy)
s([the boy,walks,the cat]). np(the boy).
s([the man,hits,the ball]). np(the ball).
s([a boy,hits,a dog]). np(the house).
s([the man,hits,the ball,at,the house]). np(a picnic).
s([a boy,hits,a dog,at,a picnic]). np(a room).
s([the man,takes,the ball,to,the house]). np(the cat)
s([a boy,takes,a dog,to,a room]). iverb(walks).

Table 6.3: Input clauses for grammar learning

InGen produces the following clauses:

aunt(X0, X1) :- sister(X0, X2), parent(X2, X1).

aunt(X0, jim) :- sister(X0, sarah).

The first clause takes its root from the generalization of first and second examples

and the second clause takes its root from the generalization of last two. The

output is:

aunt(X0, X1) :- sister(X0, X2), parent(X2, X1).

which is complete and correctly describes the concept. The first clause is preferred

over the second since it covers all three examples while the second clause covers

the last two.

6.1.2 Grammar Learning

A popular application area for ILP is grammar learning, and it is defined as a

seperate research field as Learning Language in Logic in [7]. In our example,

there are twelve sentences, and each sentence is considered to be argument of

the sentence predicate as a list. Each phrase is considered as a constant symbol.

Background knowledge consists of the predicates denoting the phrase types.

The example and background knowledge set are as in Figure 6.3. Among
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many clauses generated, the learner hypotheses includes the following generaliza-

tions:

s([X0, sleeps]) :- np(X0).

s([X0, walks]) :- np(X0).

s([X0, walks, X1]) :- np(X0), np(X1).

s([X0, hits, X1]) :- np(X0), np(X1).

s([X0, hits, X1, at, X2]) :- np(X0), np(X1), np(X2).

s([X0, takes, X1, to, X2]) :- np(X0), np(X1), np(X2).

Considering that the variables with same type are same tokens, InGen produces

second level generalization and the result of this generalization is:

s([X0, Y0]) :- np(X0), iverb(Y0).

s([X0, Y0, X1]) :- np(X0), np(X1), tverb(Y0).

s([X0, Y0, X1, Y1, X2]) :- np(X0), np(X1), np(X2), tverb(Y0), prep(Y1).

which defines the structures of three regular English sentences. Note that the first

clause in the second pass correspond to the generalization of first two clauses in

the first pass, the second to third and fourth, the third to fifth and sixth in the

same manner.

The resulting hypotheses of Progol is same as the one produced by InGen for

this example.

6.2 Learning Pisti Game

Pisti is a card game played by two players, where each player holds one to four

cards at a time. The players put out their cards in turn. A player collects the

open cards if he puts out the same card that his opponent put in previous turn,

or he throws a jack. Some examples of collection conditions are:

previous card = (clubs, six), current card = (spades, six).

previous card = (spades, queen), current card = (hearts, queen).

previous card = (diamonds, seven), current card = (clubs, jack).

In this notation, we conclude that collection event occurs when curent card is a

jack or face of current card is same as the previous one. To represent this concept,
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we can consider the collection condition as a four-argument predicate, where first

two argument represent the suit and face of the previous card and the last two

represent those of the current card.

In this context, our example set is:

collect(clubs,queen,spades,queen).

collect(hearts,ace,diamonds,ace).

collect(spades,six,hearts,jack).

collect(clubs,eight,diamonds,jack).

collect(clubs,seven,spades,jack).

and we do not need any background knowledge.

For Progol, mode declaration can be one of two cases:

modeh(1,collect(+suit,+face,+suit,#face))?

modeh(1,collect(+suit,+face,+suit,+face))?

In first case, the hypotheses induced by Progol is:

collect(clubs,queen,spades,queen).

collect(A,B,C,ace).

collect(A,B,C,jack).

The hypotheses, produced by the second case is:

collect(spades,six,hearts,jack).

collect(clubs,eight,diamonds,jack).

collect(clubs,seven,spades,jack).

collect(A,B,C,B).

So, Progol is not able to describe the concept correctly in either case. Note the

impossibility for Progol to construct correct hypotheses for this concept, since the

last argument can be a constant or a variable. Although FOIL constructed the

clause collect(A,B,C,D) :- B=D, its controller did not accept this clause be-

cause it is regarded as too inaccurate and a null hypotheses is returned indicating

no generalization can be made.

Hovewer, InGen learns the concept as follows:

collect(X0, X1, X2, jack).

collect(X0, X1, X2, X1).



CHAPTER 6. EXPERIMENTATION 65

which is complete and consistent with the game rules.

6.3 Experiments with Numeric Arguments

6.3.1 Mutagenesis

Predicting mutagenecity of an organic compound is important, since it is related

with the prediction of carcinogenesis. Mutagenesis dataset is originated by Oxford

University, and it contains features of 230 compounds [9]. 138 of these examples

are labeled as positive, meaning that they have mutagenecity and 92 of them are

labeled as negative, meaning no mutagenecity. The dataset is divided into two

categories. 188 examples are regression-friendly compounds and 42 are regression-

unfriendly. Predicting the label of regression-unfriendly compounds are harder

than predicting the regression-unfriendly ones. The regression-friendly example

set is called 188-dataset and consists of 125 positive and 63 negative examples.

Each compound is associated with four attributes in this dataset. These are:

• A numeric attribute correspoding to hydorphobicity of the compound

termed as logP.

• A numeric attribute correspoding to energy level of the lowest unoccupied

molecular orbital noted as lumo.

• A boolean attribute indicating whether the compound contains three or

more benzyl rings.

• A boolean attribute indicating whether the compound is element of a sub-

class acenthryles.

The example set is distributed into ten files as ground caluses, where clauses

starting with “:-” represent negative examples, and remaining ones represent

positive examples.
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Test Group Success rate with Success rate with
benzyl, acenthryles and benzyl, acenthryles and
hiydrophobicity features energy level features

1 63 47
2 79 74
3 74 74
4 68 58
5 84 52
6 68 42
7 84 68
8 75 79
9 74 53
10 77 53
Overall 76 60

Table 6.4: Experiment results of InGen for Mutagenecity dataset

active(d8).

active(d16).

:- active(d1).

:- active(d22).

The attributes are presented as background literals such as:

logp(d8, 3.46).

logp(d16, 4.44).

logp(d21, 3.52).

logp(d22, 5.09).

For experimentation, we combine these files to a single file such as:

active(3.46).

active(4.44).

:- active(3.52).

:- active(5.09).

and use it as the input to InGen test.

Different ILP learners such as Progol are tested on this dataset [9]. We also

tested our system with 188-dataset using the first two numeric attributes with

ten-fold cross validation and the results are as in Table 6.4.
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Success rate of Progol for mutagenecity dataset is %89 using all four features.

InGen classsifies the examples with %76 correctness using three features and we

that it needs to be enhanced with predicate invention to produce better results.



Chapter 7

Conclusion

Inductive Logic Programming is a relatively new research area that induces logic

programs from given example set and background knowledge. String generaliza-

tion is an application area of ILP. The Specific Generalization technique described

in [4] generates generalized strings that cover a given example set. The heuris-

tic is for the generalization of strings only, and does not consider the generic

background clauses.

The research outlined in this thesis is an initial attempt to build an ILP system

based on the specific generalization of strings proposed in [4]. Firstly, general-

ization with using arbitrary first-order background knowledge is integrated. This

is performed by considering the background clauses as sequences of strings, per-

forming the generalization in a loop, and parsing the generalization to generate

clauses. Secondly, the system is extended to generalize predicates with numeric

arguments. To perform numeric generalization, a modified version of hierarchical

clustering is used.

The experiments we performed demonstrate that the system has potential

usage. It could successfully learn the family relations such as daughter, aunt and

granddaughter, a card game, and possible grammatical structure of English sen-

tences. In the numeric case, we tested the system using the famous Mutagenesis

dataset and observed maximum success rate is %76. This shows that our system

68
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needs to be enhanced to invent new predicates for more efficient learning.

Although our system is capable of learning these concepts successfully, it is

not a perfect ILP system. There are several potential directions to study to make

our system compatible with concurrent ILP systems:

• We generalized numeric arguments only the less than and distance back-

ground knowledge. Several other mathematical relations may be used such

as power, root, exponent, etc.

• The system is capable of learning function-free ground clauses only. The

concept decription language may be enlarged to cover functional and non-

ground clauses.

• Our system is not capable of inventing new predicates, which may be nec-

essary for learning some concepts such as sorting.

• The system should be tested with dataset having several thousands of ex-

ample to see if it can work in real world cases.

As a conclusion, this work is an initial attempt for building an ILP system using

specific generalization based on LGG schema and it can be serve as a basis for

future research to construct an effective learner using the same notion.
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Appendix A

Test Input and Output Files

A.1 Daughter example

A.1.1 Progol

Input:

% Settings

:-set(posonly)?

% Mode declarations

:- modeh(1,daughter(+person,+person))?

:- modeb(*,parent(-person,+person))?

:- modeb(*,parent(+person,-person))?

:- modeb(*,female(+person))?

%Types

person(nese).

person(ali).

person(senay).

person(ahmet).

person(zehra).

person(halil).

75
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person(mehmet).

person(fatma).

person(ayse).

person(gul).

%Background knowledge

parent(mehmet,senay).

parent(fatma,senay).

parent(halil,nese).

parent(aylin,nese).

female(senay).

female(nese).

%Examples

daughter(senay,mehmet).

daughter(senay,fatma).

daughter(nese,halil).

daughter(nese,aylin).

Output:

Noise has been set to 100%

Example inflation has been set to 400%

The posonly flag has been turned ON

:- set(posonly)? - Time taken 0.00s

:- modeh(1,daughter(+person,+person))? - Time taken 0.00s

:- modeb(100,parent(-person,+person))? - Time taken 0.00s

:- modeb(100,parent(+person,-person))? - Time taken 0.00s

:- modeb(100,female(+person))? - Time taken 0.00s

Testing for contradictions

No contradictions found

Generalising daughter(senay,mehmet).

daughter(A,B) :- parent(B,A), parent(C,A), female(A).

Most-specific clause reduced by 1 literals

Most specific clause is

daughter(A,B) :- parent(B,A), female(A).
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Learning daughter/2 from positive examples

C:-0,16,15,0 daughter(A,B).

C:13,16,1,0 daughter(A,B) :- parent(B,A).

C:8,16,6,0 daughter(A,B) :- parent(C,A).

C:12,16,1,0 daughter(A,B) :- parent(B,A), female(A).

C:7,16,6,0 daughter(A,B) :- parent(C,A), female(A).

C:8,16,6,0 daughter(A,B) :- female(A).

6 explored search nodes

f=13,p=16,n=1,h=0

Result of search is

daughter(A,B) :- parent(B,A).

4 redundant clauses retracted

daughter(A,B) :- parent(B,A).

Total number of clauses = 1

Time taken 0.01s

A.1.2 FOIL

Input:

X: nese, senay.

Y: mehmet, fatma, halil, aylin.

daughter(X,Y)

senay,mehmet

senay,fatma

nese,halil

nese,aylin

.

female(X)

nese

senay
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.

parent(Y,X)

mehmet,senay

fatma,senay

halil,nese

aylin,nese

.

Output:

FOIL 6.4 [January 1996]

--------

Options:

no negated literals

verbosity level 3

Types X and Y are not compatible

Relation daughter

Relation *female

Relation *parent

Ordering constants of type X

Checking arguments of daughter

Checking arguments of parent

unordered

Ordering constants of type Y

Checking arguments of daughter

Checking arguments of parent

unordered

----------

daughter:

State (4/8,

10.0 bits available)

female(A) 4[4/8] gain 0.0

female tried 1/1] 0.0 secs
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parent(B,C) 4[4/8] A=+C XDet #

parent(B,A) 4[4/4] gain 3.4

parent tried 2/3] 0.0 secs

Save clause ending with parent(B,A) (cover 4, accuracy 100%)

Best literal parent(B,A) (2.6 bits)

Initial clause (0 errs): daughter(A,B) :- parent(B,A).

parent(B,A) essential

Clause 0: daughter(A,B) :- parent(B,A).

Clause 0 needed for senay,mehmet

daughter(A,B) :- parent(B,A).

A.1.3 InGen

Input is:

// Examples

daughter(senay,mehmet).

daughter(senay,fatma).

daughter(nese,halil).

daughter(nese,aylin).

// Background literals

parent(mehmet,senay).

parent(fatma,senay).

parent(halil,nese).

parent(aylin,nese).

female(senay).

female(nese).

Output is:

Initially:

daughter([senay, :, mehmet])

daughter([senay, :, X0]) :- parent([X0, :, senay])

daughter([X0, :, X1]) :- parent([X1, :, X0]), female(X0)

daughter([X0, :, X1]) :- parent([X2,:,X0]), female(X0), parent([X1,:,X0])
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daughter([senay, :, fatma])

daughter([nese, :, halil])

daughter([nese, :, X0]) :- parent([X0, :, nese])

daughter([nese, :, aylin])

------------------------------------------------------------

Result of first pass:

daughter([X0, :, X1]) :- parent([X1, :, X0]), female(X0)

------------------------------------------------------------

Result of second pass:

daughter([X0, :, X1]) :- parent([X1, :, X0]), female(X0)

------------------------------------------------------------

Resulting Hypotheses:

daughter(X0, X1) :- parent(X1, X0), female(X0).

A.2 Granddaughter example

A.2.1 Progol

Input:

% Settings :-set(posonly)?

% Mode declarations

:- modeh(1,granddaughter(+person,+person))?

:- modeb(*,parent(-person,+person))?

:- modeb(*,parent(+person,-person))?

:- modeb(*,female(-person))?

%Types

person(nese).

person(ali).

person(senay).

person(ahmet).

person(zehra).



APPENDIX A. TEST INPUT AND OUTPUT FILES 81

person(halil).

person(mehmet).

person(fatma).

person(ayse).

person(gul).

%Background knowledge

parent(mehmet,senay).

parent(fatma,senay).

parent(halil,nese).

parent(ayse,nese).

parent(ali,halil).

parent(gul,ayse).

parent(ahmet,mehmet).

parent(zehra,fatma).

female(nese).

female(senay).

%Examples

granddaughter(nese,ali).

granddaughter(nese,gul).

granddaughter(senay,ahmet).

granddaughter(senay,zehra).

Output:

Noise has been set to 100%

Example inflation has been set to 400%

The posonly flag has been turned ON

:- set(posonly)? - Time taken 0.00s

:- modeh(1,granddaughter(+person,+person))? - Time taken 0.00s

:- modeb(100,parent(-person,+person))? - Time taken 0.00s

:- modeb(100,parent(+person,-person))? - Time taken 0.00s

:- modeb(100,female(-person))? - Time taken 0.00s

Testing for contradictions
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No contradictions found

Generalising granddaughter(nese,gul).

granddaughter(A,B) :- parent(B,C), parent(C,A), parent(D,A), parent(E,D).

Most-specific clause reduced by 2 literals

Most specific clause is

granddaughter(A,B) :- parent(B,C), parent(C,A).

Learning granddaughter/2 from positive examples

C:-0,12,11,0 granddaughter(A,B).

C:4,12,6,0 granddaughter(A,B) :- parent(B,C).

C:8,12,1,0 granddaughter(A,B) :- parent(B,C), parent(C,A).

C:6,12,3,0 granddaughter(A,B) :- parent(B,C), parent(D,A).

C:4,12,6,0 granddaughter(A,B) :- parent(C,A).

5 explored search nodes

f=8,p=12,n=1,h=0

Result of search is

granddaughter(A,B) :- parent(B,C), parent(C,A).

3 redundant clauses retracted

granddaughter(A,B) :- parent(B,C), parent(C,A).

Total number of clauses = 1

Time taken 0.01s

A.2.2 FOIL

Input:

X: nese, senay.

Y: ali, gul, ahmet, zehra.

Z1: mehmet, fatma, halil, aylin, ali, gul, ahmet, zehra.

Z2: senay, nese, halil, ayse, mehmet, fatma.

granddaughter(X,Y)

nese,ali

nese,gul
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senay,ahmet

senay,zehra

.

female(X)

nese

senay

.

parent(Z1,Z2)

mehmet,senay

fatma,senay

halil,nese

aylin,nese

ali,halil

gul,ayse

ahmet,mehmet

zehra,fatma

.

FOIL failed to give output for this test set.

A.2.3 InGen

Input:

//Examples

granddaughter(nese,ali).

granddaughter(nese,gul).

granddaughter(senay,ahmet).

granddaughter(senay,zehra).

//Background clauses

parent(mehmet,senay).

parent(fatma,senay).

parent(halil,nese).

parent(ayse,nese).
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parent(ali,halil).

parent(gul,ayse).

parent(ahmet,mehmet).

parent(zehra,fatma).

female(nese).

female(senay).

Output:

Initially:

granddaughter([nese, :, ali])

granddaughter([nese, :, X0]) :- parent([X0, :, X1])

granddaughter([X0,:,X1]) :- parent([X2,:,X0]),female(X0),parent([X1,:,X2])

granddaughter([X0,:,X1]) :- parent([X2,:,X0]),female(X0),parent([X1,:,X3])

granddaughter([nese, :, gul])

granddaughter([senay, :, ahmet])

granddaughter([senay, :, X0]) :- parent([X0, :, X1])

granddaughter([senay, :, zehra])

------------------------------------------------------------

Result of first pass:

granddaughter([X0,:,X1]) :- parent([X2,:,X0]),female(X0),parent([X1,:,X2])

------------------------------------------------------------

Result of second pass:

granddaughter([X0,:,X1]) :- parent([X2,:,X0]),female(X0),parent([X1,:,X2])

------------------------------------------------------------

Resulting Hypotheses:

granddaughter(X0,X1) :- parent(X2,X0),female(X0),parent(X1,X2).

------------------------------------------------------------
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A.3 Aunt example

A.3.1 Progol

Input:

% Settings

:- set(posonly)?

% Mode declarations :- modeh(1,aunt(+person,+person))?

:- modeb(*,parent(-person,+person))?

:- modeb(*,parent(+person,-person))?

:- modeb(*,sister(+person,-person))?

% Types

person(jane).

person(henry).

person(sally).

person(jim).

person(sam).

person(sarah).

person(judy).

% Background knowledge

parent(Parent,Child) :- father(Parent,Child).

parent(Parent,Child) :- mother(Parent,Child).

father(sam,henry).

mother(sarah,jim).

sister(jane,sam).

sister(sally,sarah).

sister(judy,sarah).

% Examples

aunt(jane,henry).

aunt(sally,jim).

aunt(judy,jim).

Output:
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Noise has been set to 100%

Example inflation has been set to 400%

The posonly flag has been turned ON

:- set(posonly)? - Time taken 0.00s

:- modeh(1,aunt(+person,+person))?

:- modeb(100,parent(-person,+person))?

:- modeb(100,parent(+person,-person))?

:- modeb(100,sister(+person,-person))?

Testing for contradictions

No contradictions found

Generalising aunt(jane,henry).

Most specific clause is

aunt(A,B) :- parent(C,B), sister(A,C).

Learning aunt/2 from positive examples

C:-0,12,11,0 aunt(A,B).

C:5,12,5,0 aunt(A,B) :- parent(C,B).

C:8,12,1,0 aunt(A,B) :- parent(C,B), sister(A,C).

C:6,12,3,0 aunt(A,B) :- parent(C,B), sister(A,D).

C:5,12,5,0 aunt(A,B) :- sister(A,C).

5 explored search nodes

f=8,p=12,n=1,h=0

Result of search is

aunt(A,B) :- parent(C,B), sister(A,C).

3 redundant clauses retracted

aunt(A,B) :- parent(C,B), sister(A,C).

Total number of clauses = 1

Time taken 0.01s

A.3.2 FOIL

Input: X: jane, sally, judy.

Y: henry, jim.
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Z: sam, sarah.

aunt(X,Y)

jane,henry

sally,jim

judy,jim

.

female(X)

jane

sally

judy

.

parent(Z,Y)

sam,henry

sarah,jim

.

sister(X,Z)

jane,sam

sally,sarah

judy,sarah

.

FOIL failed to give output for this test set.

A.3.3 InGen

Input:

//Examples:

aunt(jane,henry).

aunt(sally,jim).

aunt(judy,jim).

//Background Literals:

father(sam,henry).
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parent(sam,henry).

mother(sarah,jim).

parent(sarah,jim)

sister(jane,sam).

sister(sally,sarah).

sister(judy,sarah).

Output:

Initially:

aunt([jane, :, henry])

aunt([X0, :, X1]) :- sister([X0, :, X2]), parent([X2, :, X1])

aunt([sally, :, jim])

aunt([X0, :, jim]) :- sister([X0, :, sarah])

aunt([judy, :, jim])

------------------------------------------------------------

Result of first pass:

aunt([X0, :, X1]) :- sister([X0, :, X2]), parent([X2, :, X1])

------------------------------------------------------------

Result of second pass:

aunt([X0, :, X1]) :- sister([X0, :, X2]), parent([X2, :, X1])

------------------------------------------------------------

Resulting Hypotheses:

aunt(X0, X1) :- sister(X0, X2), parent(X2, X1).

------------------------------------------------------------

A.4 Grammar example

A.4.1 Progol

Input:

% Grammar learning problem. Learns s/2, a simple English language phrase

grammar.
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:- modeh(1,s(+wlist,-wlist1))?

:- modeb(1,det(+wlist,-wlist))?

:- modeb(1,prep(+wlist,-wlist))?

:- modeb(1,noun(+wlist,-wlist))?

:- modeb(1,tverb(+wlist,-wlist))?

:- modeb(1,iverb(+wlist,-wlist))?

:- modeb(*,np(+wlist,-wlist))?

:- modeb(*,vp(+wlist,-wlist))?

:- set(i,5)?

:- set(c,5)?

:- set(h,10000000)?

:- set(posonly)?

% Types wlist([]).

wlist([W|Ws]) :- word(W), wlist(Ws).

wlist1([]).

word(a). word(at). word(ball). word(big). word(dog).

word(hits). word(house). word(in). word(man).

word(on). word(small). word(takes). word(the). word(to). word(walks).

:- [wpair]?

% Background knowledge

np(S1,S2) :- det(S1,S3), noun(S3,S2).

np(S1,S2) :- det(S1,S3), adj(S3,S4), noun(S4,S2).

det([a|S],S).

det([the|S],S).

det([every|S],S).

vp(S1,S2) :- tverb(S1,S2).

vp(S1,S2) :- tverb(S1,S3), prep(S3,S2).

noun([man|S],S).

noun([dog|S],S).

noun([house|S],S).

noun([ball|S],S).

tverb([hits|S],S).

tverb([takes|S],S).
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tverb([walks|S],S).

iverb([barks|S],S).

iverb([hits|S],S).

iverb([takes|S],S).

iverb([walks|S],S). prep([at|S],S).

prep([to|S],S).

prep([on|S],S).

prep([in|S],S).

prep([from|S],S).

% Positive examples

s([a man,sleeps],[]).

s([the boy,sleeps],[]).

s([the dog,walks],[]).

s([a boy,walks],[]).

s([a man,walks,a dog],[]).

s([the boy,walks,the cat],[]).

s([the man,hits,the ball],[]).

s([a boy,hits,a dog],[]).

s([the man,hits,the ball,at,the house],[]).

s([a boy,hits,a dog,at,a picnic],[]).

s([the man,takes,the ball,to,the house],[]).

s([a boy,takes,a dog,to,a room],[]).

Overall output for Progol is too long for this experiment. The summary of

the output is:

:- modeh(1,s(+wlist,-wlist1))? - Time taken 0.00s

:- modeb(1,det(+wlist,-wlist))? - Time taken 0.00s

:- modeb(1,prep(+wlist,-wlist))? - Time taken 0.00s

:- modeb(1,noun(+wlist,-wlist))? - Time taken 0.00s

:- modeb(1,tverb(+wlist,-wlist))? - Time taken 0.00s

:- modeb(1,iverb(+wlist,-wlist))? - Time taken 0.00s

:- modeb(100,np(+wlist,-wlist))? - Time taken 0.00s
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:- modeb(100,vp(+wlist,-wlist))? - Time taken 0.00s

:- set(i,5)? - Time taken 0.00s

:- set(c,5)? - Time taken 0.00s

:- set(h,10000000)? - Time taken 0.00s

Noise has been set to 100%

Example inflation has been set to 400%

The posonly flag has been turned ON

:- set(posonly)? - Time taken 0.00s

Cannot find wpair.pl

:- wpair? - Time taken 0.00s

Testing for contradictions

No contradictions found

Generalising s(a,man,hits,the,ball,at,the,dog,).

Most specific clause is

s(A,B) :- det(A,C), np(A,D), noun(C,D), tverb(D,E), iverb(D,E),

vp(D,E), det(E,F), np(E,G), prep(G,H), noun(F,G), det(H,I), np(H,B).

...

...

8 redundant clauses retracted

s(A,B) :- np(A,C), tverb(C,D), np(D,E), prep(E,F), np(F,B).

s(A,B) :- det(A,C), np(A,D), vp(D,E), np(E,B).

s(A,B) :- np(A,C), iverb(C,B).

Total number of clauses = 3

Time taken 1.00s

A.4.2 InGen

Input:

//Examples:

s([a man,sleeps]).

s([the boy,sleeps]).

s([the dog,walks]).
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s([a boy,walks]).

s([a man,walks,a dog]).

s([the boy,walks,the cat]).

s([the man,hits,the ball]).

s([a boy,hits,a dog]).

s([the man,hits,the ball,at,the house]).

s([a boy,hits,a dog,at,a picnic]).

s([the man,takes,the ball,to,the house]).

s([a boy,takes,a dog,to,a room]).

//Background Literals:

tverb(hits).

np(a man).

np(a cat).

tverb(walks).

np(the man).

np(the cat).

tverb(takes).

np(a dog).

np(a boy).

np(the dog).

np(the boy).

iverb(sleeps).

np(a house).

np(a room).

iverb(walks).

np(the house).

np(the room).

np(a ball).

np(a picnic).

prep(at).

np(the ball).

prep(to).

prep(in).
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Output:

Initially:

s([a man, sleeps])

s([X0, sleeps]) :- np(X0)

s([a man, X0])

s([the boy, sleeps])

s([the boy, X0])

s([the dog, walks])

s([X0, walks]) :- np(X0)

s([X0, walks, X1]) :- np(X0)

s([a boy, walks])

s([a boy, X0])

s([a man, walks, a dog])

s([X0, walks, X1]) :- np(X0), np(X1)

s([X0, a dog])

s([X0, a dog, X1])

s([the boy, walks, the cat])

s([the man, hits, the ball])

s([X0, hits, X1]) :- np(X0), np(X1)

s([the man, hits, the ball, X0])

s([X0, hits, X1]) :- np(X0)

s([the man, X0, the ball, X1]) :- tverb(X0)

s([a boy, hits, a dog])

s([a boy, hits, a dog, X0])

s([a boy, X0, a dog, X1]) :- tverb(X0)

s([the man, hits, the ball, at, the house])

s([X0, hits, X1, at, X2]) :- np(X0), np(X1), np(X2)

s([the man, X0, the ball, X1, the house]) :- tverb(X0), prep(X1)

s([a boy, hits, a dog, at, a picnic])

s([the man, takes, the ball, to, the house])

s([X0, takes, X1, to, X2]) :- np(X0), np(X1), np(X2)

s([a boy, takes, a dog, to, a room])

------------------------------------------------------------
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Result of first pass:

s([X0, hits, X1, at, X2]) :- np(X0), np(X1), np(X2)

s([X0, takes, X1, to, X2]) :- np(X0), np(X1), np(X2)

s([X0, walks, X1]) :- np(X0), np(X1)

s([X0, hits, X1]) :- np(X0), np(X1)

s([X0, sleeps]) :- np(X0)

s([X0, walks]) :- np(X0)

------------------------------------------------------------

Result of second pass:

s([X0, hits, X1, at, X2]) :- np(X0), np(X1), np(X2)

s([X0, Y0, X1, Y1, X2]) :- np(X0), np(X1), np(X2), tverb(Y0), prep(Y1)

s([X0, takes, X1, to, X2]) :- np(X0), np(X1), np(X2)

s([X0, walks, X1]) :- np(X0), np(X1)

s([X0, Y0, X1]) :- np(X0), np(X1), tverb(Y0)

s([X0, hits, X1]) :- np(X0), np(X1)

s([X0, sleeps]) :- np(X0)

s([X0, Y0]) :- np(X0), iverb(Y0)

s([X0, walks]) :- np(X0)

------------------------------------------------------------

Resulting Hypotheses:

s([X0, Y0, X1, Y1, X2]) :- np(X0), np(X1), np(X2), tverb(Y0), prep(Y1).

s([X0, Y0, X1]) :- np(X0), np(X1), tverb(Y0).

s([X0, Y0]) :- np(X0), iverb(Y0).

A.5 Pisti example

A.5.1 Progol

Input: % Settings

:-set(posonly)?

% Mode declarations
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:- modeh(1,collect(+suit,+face,+suit,+face))?

%Types

suit(clubs).

suit(spades).

suit(hearts).

suit(diamonds).

face(ace).

face(two).

face(three).

face(four).

face(five).

face(six).

face(seven).

face(eight).

face(nine).

face(ten).

face(jack).

face(queen).

face(king).

%Examples

collect(clubs,queen,spades,queen).

collect(hearts,ace,diamonds,ace).

collect(spades,six,hearts,jack).

collect(clubs,eight,diamonds,jack).

collect(clubs,seven,spades,jack).

Output:

Noise has been set to 100%

Example inflation has been set to 400%

The posonly flag has been turned ON

:- set(posonly)? - Time taken 0.00s

:- modeh(1,collect(+suit,+face,+suit,+face))? - Time taken 0.00s

Testing for contradictions
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No contradictions found

Generalising collect(clubs,queen,spades,queen).

Most specific clause is

collect(A,B,C,B).

Learning collect/4 from positive examples

C:13,8,2,0 collect(A,B,C,B).

C:-0,20,19,0 collect(A,B,C,D).

2 explored search nodes

f=13,p=8,n=2,h=0

Result of search is

collect(A,B,C,B).

2 redundant clauses retracted

Generalising collect(spades,six,hearts,jack).

Most specific clause is

collect(A,B,C,D).

Learning collect/4 from positive examples

C:-4,16,18,0 collect(A,B,C,D).

1 explored search nodes

f=-4,p=16,n=18,h=0

No compression

Generalising collect(clubs,eight,diamonds,jack).

Most specific clause is

collect(A,B,C,D).

Learning collect/4 from positive examples

C:-4,16,18,0 collect(A,B,C,D).
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1 explored search nodes

f=-4,p=16,n=18,h=0

No compression

Generalising collect(clubs,seven,spades,jack).

Most specific clause is

collect(A,B,C,D).

Learning collect/4 from positive examples

C:-4,16,18,0 collect(A,B,C,D).

1 explored search nodes

f=-4,p=16,n=18,h=0

No compression

collect(spades,six,hearts,jack).

collect(clubs,eight,diamonds,jack).

collect(clubs,seven,spades,jack).

collect(A,B,C,B).

Total number of clauses = 4

Time taken 0.01s

A.5.2 FOIL

Input:

R: clubs, spades, hearts, diamonds. S: ace, two, three, four, five,

six, seven, eight, nine, ten, jack, queen, king.

collect(R,S,R,S) clubs,queen,spades,queen hearts,ace,diamonds,ace spades,six,hear

clubs,eight,diamonds,jack clubs,seven,spades,jack . Output:

Options:
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no negated literals

verbosity level 3

Types R and S are not compatible

Relation collect

Ordering constants of type R

Checking arguments of collect

arguments 1,3 are consistent

Finding maximal consistent set

best so far collect:1>3

Final order:

diamonds hearts spades clubs

Ordering constants of type S

Checking arguments of collect

arguments 2,4 are not consistent

Finding maximal consistent set

Final order:

ace two three four five six seven eight nine ten jack queen king

----------

collect:

State (5/2704, 67.6 bits available)

A=C 0[0/1] [5/5] abandoned(0%)

B=D 2[2/208] gain 5.4

= tried 2/2 0.0 secs

Best literal B=D (2.0 bits)

Note B=D
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State (2/208, 34.5 bits available)

A=C 0[0/1] [2/2] abandoned(1%)

= tried 1/1 0.0 secs

No literals

Initial clause (206 errs): collect(A,B,C,D) :- B=D.

B=D essential

Clause too inaccurate (2/208)

** Warning: the following definition

** does not cover 5 tuples in the relation

Time 0.0 secs

A.5.3 InGen

Input is:

//Examples:

collect(clubs,queen,spades,queen).

collect(hearts,ace,diamonds,ace).

collect(diamonds,three,clubs,three).

collect(spades,six,hearts,jack).

collect(hearts,eight,diamonds,jack).

collect(clubs,seven,spades,jack).

//There are no background literals

Output is:
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Initially:

collect([clubs, :, queen, :, spades, :, queen])

collect([X0, :, X1, :, X2, :, X1])

collect([clubs, :, X0, :, spades, :, X1])

collect([hearts, :, ace, :, diamonds, :, ace])

collect([hearts, :, X0, :, diamonds, :, X1])

collect([diamonds, :, three, :, clubs, :, three])

collect([spades, :, six, :, hearts, :, jack])

collect([hearts, :, eight, :, diamonds, :, jack])

collect([X0, :, X1, :, X2, :, jack])

collect([clubs, :, seven, :, spades, :, jack])

------------------------------------------------------------

Result of first pass:

collect([X0, :, X1, :, X2, :, X1])

collect([X0, :, X1, :, X2, :, jack])

------------------------------------------------------------

Result of second pass:

collect([X0, :, X1, :, X2, :, X1])

collect([X0, :, X1, :, X2, :, jack])

------------------------------------------------------------

Resulting Hypotheses:

collect(X0, X1, X2, X1).

collect(X0, X1, X2, jack).

A.6 Tests on Mutagenesis Dataset

We used tewlve input files of Mutagenesis dataset to test our system. Ten of the

files include example literals (They are divided by the authors possibly for cross

validation). The example file contents are as follows:

File: s1.pl:

active(d18). active(d26). active(d28).
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active(d51). active(d63). active(d67).

active(d107). active(d127). active(d137).

active(d151). active(d174). active(d178).

active(d85). active(d92). :- active(d38).

:- active(d84). :- active(d100). :- active(d116).

:- active(d160).

File: s2.pl:

active(d10). active(d61). active(d86).

active(d94). active(d105). active(d128).

active(d173). active(d183). active(d29).

:- active(d42). :- active(d147). :- active(d186).

:- active(d3). :- active(d5). :- active(d39).

:- active(d78). :- active(d142). :- active(d182).

:- active(d185).

File: s3.pl:

active(d46). active(d52). active(d57).

active(d80). active(d82). active(d125).

active(d152). active(d169). active(d21).

active(d22). active(d108). active(d180).

:- active(d119). :- active(d34). :- active(d65).

:- active(d66). :- active(d143). :- active(d154).

:- active(d181).

File: s4.pl:

active(d1). active(d12). active(d20).

active(d31). active(d83). active(d115).

active(d164). active(d165). active(d166).

active(d184). active(d16). active(d99).

active(d102). active(d145). active(d161).
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active(d170). :- active(d114). :- active(d19).

:- active(d133).

File: s5.pl:

active(d6). active(d15). active(d69).

active(d71). active(d87). active(d95).

active(d104). active(d109). active(d177).

active(d187). active(d44). active(d93).

active(d97). active(d106). :- active(d132).

:- active(d141). :- active(d73). :- active(d76).

:- active(d113).

File: s6.pl:

active(d25). active(d45). active(d54).

active(d58). active(d75). active(d101).

active(d140). active(d149). active(d159).

active(d171). active(d8). active(d47).

active(d121). active(d134). :- active(d70).

:- active(d77). :- active(d111). :- active(d62).

:- active(d179).

File: s7.pl:

active(d13). active(d24). active(d43).

active(d64). active(d72). active(d79).

active(d90). active(d122). active(d126).

active(d163). active(d172). active(d30).

active(d37). :- active(d2). :- active(d17).

:- active(d120). :- active(d130). :- active(d131).

:- active(d129).

File: s8.pl:
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active(d11). active(d27). active(d53).

active(d56). active(d68). active(d146).

active(d33). active(d74). :- active(d188).

:- active(d7). :- active(d9). :- active(d14).

:- active(d36). :- active(d40). :- active(d123).

:- active(d135). :- active(d150). :- active(d155).

:- active(d175).

File: s9.pl:

active(d4). active(d41). active(d49).

active(d50). active(d59). active(d96).

active(d117). active(d136). active(d153).

active(d23). active(d32). active(d158).

active(d167). active(d176). :- active(d98).

:- active(d88). :- active(d124). :- active(d139).

:- active(d168).

File: s10.pl:

active(d48). active(d60). active(d112).

active(d148). active(d157). active(d35).

active(d81). active(d91). active(d103).

active(d118). active(d162). :- active(d89).

:- active(d138). :- active(d144). :- active(d55).

:- active(d110). :- active(d156).

The background knowledge files we used are:

File: logp.pl:

logp(d8, 3.46). logp(d16, 4.44). logp(d21, 3.52).

logp(d22, 5.09). logp(d23, 5.07). logp(d29, 2.42).

logp(d30, 5.07). logp(d32, 3). logp(d33, 4.23).

logp(d35, 3.06). logp(d37, 4.18). logp(d44, 4.53).
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logp(d47, 5.02). logp(d74, 5.87). logp(d81, 1.49).

logp(d85, 5.07). logp(d91, 3.01). logp(d92, 5.28).

logp(d93, 5.87). logp(d97, 3.95). logp(d99, 2.72).

logp(d102, 2.4). logp(d103, 4.69). logp(d106, 4.34).

logp(d108, 4.69). logp(d118, 6.57). logp(d121, 4.18).

logp(d134, 4.73). logp(d145, 2.68). logp(d158, 3.08).

logp(d161, 5.61). logp(d162, 3). logp(d167, 4.44).

logp(d170, 2.52). logp(d176, 2.74). logp(d180, 6.07).

logp(f4, -0.47). logp(f5, 0.95). logp(d2, 1.44).

logp(d17, 0.87). logp(d42, 1.77). logp(d70, 0.47).

logp(d77, 2.68). logp(d89, 1.77). logp(d98, 1.65).

logp(d111, 1.56). logp(d114, 2.68). logp(d119, 3.26).

logp(d120, 1.77). logp(d130, 1.73). logp(d131, 2.83).

logp(d132, 1.74). logp(d138, 1.77). logp(d141, 3.05).

logp(d144, 2.9). logp(d147, 1.94). logp(d186, 2.07).

logp(d188, 3.51). logp(d189, 2.29). logp(d196, 3.51).

logp(e4, 2.5). logp(e5, 1.85). logp(e8, 2.03).

logp(e12, 1.58). logp(e14, 2.39). logp(e18, 3.12).

logp(e22, 2.55). logp(e25, 4.78). logp(e26, 5.06).

logp(d1, 4.23). logp(d4, 4.69). logp(d6, 3.92).

logp(d10, 4.62). logp(d11, 4.23). logp(d12, 3.63).

logp(d13, 4.44). logp(d15, 4.69). logp(d18, 3.06).

logp(d20, 3.4). logp(d24, 6.79). logp(d25, 3.43).

logp(d26, 2.17). logp(d27, 5.87). logp(d28, 4.11).

logp(d31, 4.44). logp(d41, 4.83). logp(d43, 4.69).

logp(d45, 1.46). logp(d46, 6.57). logp(d48, 4.23).

logp(d49, 2.29). logp(d50, 2.58). logp(d51, 6.01).

logp(d52, 6.01). logp(d53, 3.35). logp(d54, 6.24).

logp(d56, 2.52). logp(d57, 3.26). logp(d58, 3.01).

logp(d59, 5.07). logp(d60, 2.3). logp(d61, 4.68).

logp(d63, 2.79). logp(d64, 2.84). logp(d67, 4.66).

logp(d68, 5.87). logp(d69, 3.71). logp(d71, 6.01).

logp(d72, 3.37). logp(d75, 3.52). logp(d79, 4.73).
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logp(d80, 4.69). logp(d82, 4.18). logp(d83, 3.51).

logp(d86, 5.07). logp(d87, 3.83). logp(d90, 5.87).

logp(d94, 4.69). logp(d95, 2.55). logp(d96, 4.18).

logp(d101, 6.26). logp(d104, 6.26). logp(d105, 1.84).

logp(d107, 4.18). logp(d109, 6.07). logp(d112, 3.81).

logp(d115, 2.74). logp(d117, 3.26). logp(d122, 5.41).

logp(d125, 4.99). logp(d126, 2.29). logp(d127, 3.26).

logp(d128, 3.36). logp(d136, 4.66). logp(d137, 4.44).

logp(d140, 2.52). logp(d146, 2.68). logp(d148, 3.36).

logp(d149, 2.29). logp(d151, 1.75). logp(d152, 4.44).

logp(d153, 3.85). logp(d157, 4.19). logp(d159, 4.19).

logp(d163, 4.44). logp(d164, 4.44). logp(d165, 4.69).

logp(d166, 4.42). logp(d169, 1.49). logp(d171, 3).

logp(d172, 2.06). logp(d173, 3.26). logp(d174, 4.44).

logp(d177, 2.29). logp(d178, 1.77). logp(d182, 1.99).

logp(d183, 4.44). logp(d184, 4.44). logp(d187, 5.41).

logp(d190, 2.13). logp(d191, 4.35). logp(d194, 0.88).

logp(d197, 1.58). logp(e1, 5.87). logp(e2, 6.16).

logp(e27, 5.87). logp(f1, 1.01). logp(f2, 0.96).

logp(f3, 0.23). logp(f6, -0.04). logp(d3, 1.86).

logp(d5, 1.89). logp(d7, 3.99). logp(d9, 1.64).

logp(d14, 1.77). logp(d19, 1.84). logp(d34, 3.24).

logp(d36, 3.43). logp(d38, 3.77). logp(d39, 1.87).

logp(d40, 3.19). logp(d55, 3.43). logp(d62, 1.36).

logp(d65, 2.83). logp(d66, 2.68). logp(d73, 2.68).

logp(d76, 2.24). logp(d78, 4.27). logp(d84, 2.61).

logp(d88, 1.53). logp(d100, 2.68). logp(d110, 3).

logp(d113, 1.84). logp(d116, 1.8). logp(d123, 4.49).

logp(d124, 1.89). logp(d129, 1.46). logp(d133, 7.13).

logp(d135, 2.74). logp(d139, 2.72). logp(d142, 6.68).

logp(d143, 2.35). logp(d150, -0.02). logp(d154, 1.59).

logp(d155, 1.72). logp(d156, 1.92). logp(d160, 2.78).

logp(d168, 2.03). logp(d175, 7.84). logp(d179, 2.73).
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logp(d181, 0.53). logp(d185, 1.89). logp(d192, 5.41).

logp(d193, 5.41). logp(d195, 3.61). logp(e3, 2.86).

logp(e6, 2.5). logp(e7, 2.13). logp(e9, 1.69).

logp(e10, 2.13). logp(e11, 1.9). logp(e13, 2.41).

logp(e15, 5.41). logp(e16, 3.09). logp(e17, 4.78).

logp(e19, 1.38). logp(e20, 1.38). logp(e21, 6.57).

logp(e23, 2.55). logp(e24, 5.41).

File: lumo.pl:

lumo(d8, -1.437). lumo(d16, -2.172). lumo(d21, -1.665).

lumo(d22, -1.602). lumo(d23, -2.164). lumo(d29, -2.837).

lumo(d30, -2.005). lumo(d32, -2.562). lumo(d33, -1.591).

lumo(d35, -1.176). lumo(d37, -1.428). lumo(d44, -1.265).

lumo(d47, -1.88). lumo(d74, -1.689). lumo(d81, -1.937).

lumo(d85, -2.113). lumo(d91, -2.032). lumo(d92, -1.208).

lumo(d93, -1.729). lumo(d97, -1.361). lumo(d99, -2.159).

lumo(d102, -3.172). lumo(d103, -1.487). lumo(d106, -1.607).

lumo(d108, -1.676). lumo(d118, -1.8). lumo(d121, -2.68).

lumo(d134, -1.951). lumo(d145, -1.178). lumo(d158, -1.34).

lumo(d161, -2.221). lumo(d162, -2.687). lumo(d167, -2.31).

lumo(d170, -2.113). lumo(d176, -1.304). lumo(d180, -2.182).

lumo(f4, -1.645). lumo(f5, -1.526). lumo(d2, -1.429).

lumo(d17, -0.529). lumo(d42, -1.19). lumo(d70, -1.786).

lumo(d77, -1.029). lumo(d89, -1.028). lumo(d98, -1.598).

lumo(d111, -1.687). lumo(d114, -1.148). lumo(d119, -1.995).

lumo(d120, -0.937). lumo(d130, -0.93). lumo(d131, -1.538).

lumo(d132, -1.499). lumo(d138, -1.157). lumo(d141, -1.228).

lumo(d144, -1.288). lumo(d147, -0.937). lumo(d186, -0.574).

lumo(d188, -0.872). lumo(d189, -3.025). lumo(d196, -1.092).

lumo(e4, -0.746). lumo(e5, -1.089). lumo(e8, -1.117).

lumo(e12, -1.834). lumo(e14, -1.36). lumo(e18, -1.538).

lumo(e22, -1.636). lumo(e25, -1.748). lumo(e26, -1.82).
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lumo(d1, -1.246). lumo(d4, -1.591). lumo(d6, -3.406).

lumo(d10, -1.387). lumo(d11, -1.254). lumo(d12, -1.627).

lumo(d13, -2.292). lumo(d15, -1.698). lumo(d18, -1.861).

lumo(d20, -1.764). lumo(d24, -1.728). lumo(d25, -1.398).

lumo(d26, -2.072). lumo(d27, -1.801). lumo(d28, -1.558).

lumo(d31, -2.055). lumo(d41, -1.6). lumo(d43, -1.57).

lumo(d45, -2.227). lumo(d46, -1.804). lumo(d48, -1.616).

lumo(d49, -2.808). lumo(d50, -1.932). lumo(d51, -2.184).

lumo(d52, -2.189). lumo(d53, -2.155). lumo(d54, -1.464).

lumo(d56, -2.234). lumo(d57, -2.242). lumo(d58, -1.991).

lumo(d59, -2.14). lumo(d60, -2.468). lumo(d61, -1.556).

lumo(d63, -3.768). lumo(d64, -2.338). lumo(d67, -1.536).

lumo(d68, -1.766). lumo(d69, -1.929). lumo(d71, -2.095).

lumo(d72, -1.448). lumo(d75, -1.87). lumo(d79, -1.26).

lumo(d80, -1.329). lumo(d82, -2.71). lumo(d83, -1.145).

lumo(d86, -1.918). lumo(d87, -1.488). lumo(d90, -1.62).

lumo(d94, -1.585). lumo(d95, -2.434). lumo(d96, -2.871).

lumo(d101, -1.598). lumo(d104, -1.546). lumo(d105, -1.749).

lumo(d107, -2.791). lumo(d109, -2.284). lumo(d112, -1.208).

lumo(d115, -1.161). lumo(d117, -2.142). lumo(d122, -1.61).

lumo(d125, -1.256). lumo(d126, -2.718). lumo(d127, -2.196).

lumo(d128, -2.149). lumo(d136, -1.685). lumo(d137, -2.263).

lumo(d140, -1.751). lumo(d146, -1.102). lumo(d148, -2.158).

lumo(d149, -2.87). lumo(d151, -1.411). lumo(d152, -2.191).

lumo(d153, -1.151). lumo(d157, -1.623). lumo(d159, -1.742).

lumo(d163, -1.974). lumo(d164, -2.306). lumo(d165, -1.522).

lumo(d166, -1.709). lumo(d169, -2.17). lumo(d171, -2.508).

lumo(d172, -1.487). lumo(d173, -2.328). lumo(d174, -2.209).

lumo(d177, -2.614). lumo(d178, -1.213). lumo(d182, -1.366).

lumo(d183, -2.294). lumo(d184, -2.074). lumo(d187, -1.276).

lumo(d190, -0.798). lumo(d191, -2.138). lumo(d194, -0.857).

lumo(d197, -1.293). lumo(e1, -1.767). lumo(e2, -1.35).

lumo(e27, -1.845). lumo(f1, -1.785). lumo(f2, -1.851).
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lumo(f3, -1.412). lumo(f6, -1.503). lumo(d3, -1.456).

lumo(d5, -1.59). lumo(d7, -1.144). lumo(d9, -0.982).

lumo(d14, -1.289). lumo(d19, -1.478). lumo(d34, -1.451).

lumo(d36, -1.24). lumo(d38, -1.228). lumo(d39, -1.443).

lumo(d40, -1.266). lumo(d55, -1.177). lumo(d62, -0.923).

lumo(d65, -1.952). lumo(d66, -0.959). lumo(d73, -0.648).

lumo(d76, -1.069). lumo(d78, -1.276). lumo(d84, -1.256).

lumo(d88, -1.605). lumo(d100, -1.034). lumo(d110, -2.14).

lumo(d113, -1.491). lumo(d116, -1.37). lumo(d123, -1.056).

lumo(d124, -1.596). lumo(d129, -1.592). lumo(d133, -1.492).

lumo(d135, -1.562). lumo(d139, -1.019). lumo(d142, -1.474).

lumo(d143, -1.046). lumo(d150, -0.995). lumo(d154, -1.362).

lumo(d155, -1.737). lumo(d156, -0.854). lumo(d160, -1.691).

lumo(d168, -1.112). lumo(d175, -1.616). lumo(d179, -1.889).

lumo(d181, -0.727). lumo(d185, -2.09). lumo(d192, -1.429).

lumo(d193, -1.478). lumo(d195, -1.465). lumo(e3, -0.56).

lumo(e6, -0.868). lumo(e7, -1.05). lumo(e9, -1.321).

lumo(e10, -1.125). lumo(e11, -1.358). lumo(e13, -1.306).

lumo(e15, -1.723). lumo(e16, -1.351). lumo(e17, -1.755).

lumo(e19, -1.392). lumo(e20, -1.447). lumo(e21, -1.717).

lumo(e23, -1.808). lumo(e24, -1.113).

File: ind1.pl:

ind1(d1,ind1). ind1(d2,noind1). ind1(d3,noind1).

ind1(d4,ind1). ind1(d5,noind1). ind1(d6,ind1).

ind1(d7,noind1). ind1(d8,ind1). ind1(d9,noind1).

ind1(d10,ind1). ind1(d11,ind1). ind1(d12,ind1).

ind1(d13,ind1). ind1(d14,noind1). ind1(d15,ind1).

ind1(d16,ind1). ind1(d17,noind1). ind1(d18,ind1).

ind1(d19,noind1). ind1(d20,ind1). ind1(d21,noind1).

ind1(d22,ind1). ind1(d23,ind1). ind1(d24,ind1).

ind1(d25,ind1). ind1(d26,noind1). ind1(d27,ind1).
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ind1(d28,ind1). ind1(d29,ind1). ind1(d30,ind1).

ind1(d31,ind1). ind1(d32,noind1). ind1(d33,ind1).

ind1(d34,noind1). ind1(d35,ind1). ind1(d36,noind1).

ind1(d37,noind1). ind1(d38,noind1). ind1(d39,noind1).

ind1(d40,noind1). ind1(d41,ind1). ind1(d42,noind1).

ind1(d43,ind1). ind1(d44,ind1). ind1(d45,noind1).

ind1(d46,ind1). ind1(d47,ind1). ind1(d48,ind1).

ind1(d49,ind1). ind1(d50,noind1). ind1(d51,ind1).

ind1(d52,ind1). ind1(d53,ind1). ind1(d54,ind1).

ind1(d55,noind1). ind1(d56,ind1). ind1(d57,noind1).

ind1(d58,ind1). ind1(d59,ind1). ind1(d60,noind1).

ind1(d61,ind1). ind1(d62,noind1). ind1(d63,noind1).

ind1(d64,ind1). ind1(d65,noind1). ind1(d66,noind1).

ind1(d67,ind1). ind1(d68,ind1). ind1(d69,ind1).

ind1(d70,noind1). ind1(d71,ind1). ind1(d72,ind1).

ind1(d73,noind1). ind1(d74,ind1). ind1(d75,noind1).

ind1(d76,noind1). ind1(d77,noind1). ind1(d78,noind1).

ind1(d79,ind1). ind1(d80,ind1). ind1(d81,noind1).

ind1(d82,ind1). ind1(d83,ind1). ind1(d84,noind1).

ind1(d85,ind1). ind1(d86,ind1). ind1(d87,ind1).

ind1(d88,noind1). ind1(d89,noind1). ind1(d90,ind1).

ind1(d91,ind1). ind1(d92,ind1). ind1(d93,ind1).

ind1(d94,ind1). ind1(d95,noind1). ind1(d96,ind1).

ind1(d97,ind1). ind1(d98,noind1). ind1(d99,ind1).

ind1(d100,noind1). ind1(d101,ind1). ind1(d102,ind1).

ind1(d103,ind1). ind1(d104,ind1). ind1(d105,ind1).

ind1(d106,ind1). ind1(d107,ind1). ind1(d108,ind1).

ind1(d109,ind1). ind1(d110,noind1). ind1(d111,noind1).

ind1(d112,ind1). ind1(d113,noind1). ind1(d114,noind1).

ind1(d115,noind1). ind1(d116,noind1). ind1(d117,noind1).

ind1(d118,ind1). ind1(d119,noind1). ind1(d120,noind1).

ind1(d121,ind1). ind1(d122,ind1). ind1(d123,noind1).

ind1(d124,noind1). ind1(d125,ind1). ind1(d126,ind1).
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ind1(d127,noind1). ind1(d128,ind1). ind1(d129,noind1).

ind1(d130,noind1). ind1(d131,noind1). ind1(d132,noind1).

ind1(d133,ind1). ind1(d134,ind1). ind1(d135,noind1).

ind1(d136,ind1). ind1(d137,ind1). ind1(d138,noind1).

ind1(d139,noind1). ind1(d140,noind1). ind1(d141,noind1).

ind1(d142,ind1). ind1(d143,noind1). ind1(d144,noind1).

ind1(d145,noind1). ind1(d146,noind1). ind1(d147,noind1).

ind1(d148,ind1). ind1(d149,ind1). ind1(d150,noind1).

ind1(d151,noind1). ind1(d152,ind1). ind1(d153,ind1).

ind1(d154,noind1). ind1(d155,noind1). ind1(d156,noind1).

ind1(d157,ind1). ind1(d158,ind1). ind1(d159,ind1).

ind1(d160,noind1). ind1(d161,ind1). ind1(d162,noind1).

ind1(d163,ind1). ind1(d164,ind1). ind1(d165,ind1).

ind1(d166,ind1). ind1(d167,ind1). ind1(d168,noind1).

ind1(d169,noind1). ind1(d170,ind1). ind1(d171,noind1).

ind1(d172,noind1). ind1(d173,noind1). ind1(d174,ind1).

ind1(d175,ind1). ind1(d176,noind1). ind1(d177,ind1).

ind1(d178,noind1). ind1(d179,noind1). ind1(d180,ind1).

ind1(d181,noind1). ind1(d182,noind1). ind1(d183,ind1).

ind1(d184,ind1). ind1(d185,noind1). ind1(d186,noind1).

ind1(d187,ind1). ind1(d188,ind1). ind1(d189,noind1).

ind1(d190,noind1). ind1(d191,ind1). ind1(d192,ind1).

ind1(d193,ind1). ind1(d194,noind1). ind1(d195,noind1).

ind1(d196,ind1). ind1(d197,noind1). ind1(e1,ind1).

ind1(e2,ind1). ind1(e3,noind1). ind1(e4,noind1).

ind1(e5,noind1). ind1(e6,noind1). ind1(e7,noind1).

ind1(e8,noind1). ind1(e9,noind1). ind1(e10,noind1).

ind1(e11,noind1). ind1(e12,noind1). ind1(e13,noind1).

ind1(e14,noind1). ind1(e15,ind1). ind1(e16,noind1).

ind1(e17,ind1). ind1(e18,noind1). ind1(e19,ind1).

ind1(e20,ind1). ind1(e21,ind1). ind1(e22,ind1).

ind1(e23,ind1). ind1(e24,ind1). ind1(e25,ind1).

ind1(e26,ind1). ind1(e27,ind1). ind1(f1,noind1).
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ind1(f2,noind1). ind1(f3,noind1). ind1(f4,noind1).

ind1(f5,noind1). ind1(f6,noind1).

File: inda.pl

inda(d1,noinda). inda(d2,noinda). inda(d3,noinda).

inda(d4,noinda). inda(d5,noinda). inda(d6,noinda).

inda(d7,noinda). inda(d8,noinda). inda(d9,noinda).

inda(d10,noinda). inda(d11,noinda). inda(d12,noinda).

inda(d13,noinda). inda(d14,noinda). inda(d15,noinda).

inda(d16,noinda). inda(d17,noinda). inda(d18,noinda).

inda(d19,noinda). inda(d20,noinda). inda(d21,noinda).

inda(d22,noinda). inda(d23,inda). inda(d24,noinda).

inda(d25,noinda). inda(d26,noinda). inda(d27,noinda).

inda(d28,noinda). inda(d29,noinda). inda(d30,inda).

inda(d31,noinda). inda(d32,noinda). inda(d33,noinda).

inda(d34,noinda). inda(d35,noinda). inda(d36,noinda).

inda(d37,noinda). inda(d38,noinda). inda(d39,noinda).

inda(d40,noinda). inda(d41,noinda). inda(d42,noinda).

inda(d43,noinda). inda(d44,noinda). inda(d45,noinda).

inda(d46,noinda). inda(d47,noinda). inda(d48,noinda).

inda(d49,noinda). inda(d50,noinda). inda(d51,noinda).

inda(d52,noinda). inda(d53,noinda). inda(d54,noinda).

inda(d55,noinda). inda(d56,noinda). inda(d57,noinda).

inda(d58,noinda). inda(d59,inda). inda(d60,noinda).

inda(d61,noinda). inda(d62,noinda). inda(d63,noinda).

inda(d64,noinda). inda(d65,noinda). inda(d66,noinda).

inda(d67,noinda). inda(d68,noinda). inda(d69,noinda).

inda(d70,noinda). inda(d71,noinda). inda(d72,noinda).

inda(d73,noinda). inda(d74,noinda). inda(d75,noinda).

inda(d76,noinda). inda(d77,noinda). inda(d78,noinda).

inda(d79,noinda). inda(d80,noinda). inda(d81,noinda).

inda(d82,noinda). inda(d83,noinda). inda(d84,noinda).

inda(d85,inda). inda(d86,inda). inda(d87,noinda).
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inda(d88,noinda). inda(d89,noinda). inda(d90,noinda).

inda(d91,noinda). inda(d92,noinda). inda(d93,noinda).

inda(d94,noinda). inda(d95,noinda). inda(d96,noinda).

inda(d97,noinda). inda(d98,noinda). inda(d99,noinda).

inda(d100,noinda). inda(d101,noinda). inda(d102,noinda).

inda(d103,noinda). inda(d104,noinda). inda(d105,noinda).

inda(d106,noinda). inda(d107,noinda). inda(d108,noinda).

inda(d109,noinda). inda(d110,noinda). inda(d111,noinda).

inda(d112,noinda). inda(d113,noinda). inda(d114,noinda).

inda(d115,noinda). inda(d116,noinda). inda(d117,noinda).

inda(d118,noinda). inda(d119,noinda). inda(d120,noinda).

inda(d121,noinda). inda(d122,noinda). inda(d123,noinda).

inda(d124,noinda). inda(d125,noinda). inda(d126,noinda).

inda(d127,noinda). inda(d128,noinda). inda(d129,noinda).

inda(d130,noinda). inda(d131,noinda). inda(d132,noinda).

inda(d133,noinda). inda(d134,noinda). inda(d135,noinda).

inda(d136,noinda). inda(d137,noinda). inda(d138,noinda).

inda(d139,noinda). inda(d140,noinda). inda(d141,noinda).

inda(d142,noinda). inda(d143,noinda). inda(d144,noinda).

inda(d145,noinda). inda(d146,noinda). inda(d147,noinda).

inda(d148,noinda). inda(d149,noinda). inda(d150,noinda).

inda(d151,noinda). inda(d152,noinda). inda(d153,noinda).

inda(d154,noinda). inda(d155,noinda). inda(d156,noinda).

inda(d157,noinda). inda(d158,noinda). inda(d159,noinda).

inda(d160,noinda). inda(d161,noinda). inda(d162,noinda).

inda(d163,noinda). inda(d164,noinda). inda(d165,noinda).

inda(d166,noinda). inda(d167,noinda). inda(d168,noinda).

inda(d169,noinda). inda(d170,noinda). inda(d171,noinda).

inda(d172,noinda). inda(d173,noinda). inda(d174,noinda).

inda(d175,noinda). inda(d176,noinda). inda(d177,noinda).

inda(d178,noinda). inda(d179,noinda). inda(d180,noinda).

inda(d181,noinda). inda(d182,noinda). inda(d183,noinda).

inda(d184,noinda). inda(d185,noinda). inda(d186,noinda).
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inda(d187,noinda). inda(d188,noinda). inda(d189,noinda).

inda(d190,noinda). inda(d191,noinda). inda(d192,noinda).

inda(d193,noinda). inda(d194,noinda). inda(d195,noinda).

inda(d196,noinda). inda(d197,noinda). inda(e1,noinda).

inda(e2,noinda). inda(e3,noinda). inda(e4,noinda).

inda(e5,noinda). inda(e6,noinda). inda(e7,noinda).

inda(e8,noinda). inda(e9,noinda). inda(e10,noinda).

inda(e11,noinda). inda(e12,noinda). inda(e13,noinda).

inda(e14,noinda). inda(e15,noinda). inda(e16,noinda).

inda(e17,noinda). inda(e18,noinda). inda(e19,noinda).

inda(e20,noinda). inda(e21,noinda). inda(e22,noinda).

inda(e23,noinda). inda(e24,noinda). inda(e25,noinda).

inda(e26,noinda). inda(e27,noinda). inda(f1,noinda).

inda(f2,noinda). inda(f3,noinda). inda(f4,noinda).

inda(f5,noinda). inda(f6,noinda).

We merged example files and background files and produced 20 files as listed

below:

File: logp1.pl

active(true,noinda,3.06). active(false,noinda,2.17).

active(true,noinda,4.11). active(true,noinda,6.01).

active(false,noinda,2.79). active(true,noinda,4.66).

active(true,noinda,4.18). active(false,noinda,3.26).

active(true,noinda,4.44). active(false,noinda,1.75).

active(true,noinda,4.44). active(false,noinda,1.77).

active(true,inda,5.07). active(true,noinda,5.28).

:-active(false,noinda,3.77). :-active(false,noinda,2.61).

:-active(false,noinda,2.68). :-active(false,noinda,1.8).

:-active(false,noinda,2.78).

File: logp2.pl

active(true,noinda,4.62). active(true,noinda,4.68).
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active(true,inda,5.07). active(true,noinda,4.69).

active(true,noinda,1.84). active(true,noinda,3.36).

active(false,noinda,3.26). active(true,noinda,4.44).

active(true,noinda,2.42). :-active(false,noinda,1.77).

:-active(false,noinda,1.94). :-active(false,noinda,2.07).

:-active(false,noinda,1.86). :-active(false,noinda,1.89).

:-active(false,noinda,1.87). :-active(false,noinda,4.27).

:-active(true,noinda,6.68). :-active(false,noinda,1.99).

:-active(false,noinda,1.89).

File: logp3.pl

active(true,noinda,6.57). active(true,noinda,6.01).

active(false,noinda,3.26). active(true,noinda,4.69).

active(true,noinda,4.18). active(true,noinda,4.99).

active(true,noinda,4.44). active(false,noinda,1.49).

active(false,noinda,3.52). active(true,noinda,5.09).

active(true,noinda,4.69). active(true,noinda,6.07).

:-active(false,noinda,3.26). :-active(false,noinda,3.24).

:-active(false,noinda,2.83). :-active(false,noinda,2.68).

:-active(false,noinda,2.35). :-active(false,noinda,1.59).

:-active(false,noinda,0.53).

File: logp4.pl

active(true,noinda,4.23). active(true,noinda,3.63).

active(true,noinda,3.4). active(true,noinda,4.44).

active(true,noinda,3.51). active(false,noinda,2.74).

active(true,noinda,4.44). active(true,noinda,4.69).

active(true,noinda,4.42). active(true,noinda,4.44).

active(true,noinda,4.44). active(true,noinda,2.72).

active(true,noinda,2.4). active(false,noinda,2.68).

active(true,noinda,5.61). active(true,noinda,2.52).

:-active(false,noinda,2.68). :-active(false,noinda,1.84).

:-active(true,noinda,7.13).
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File: logp5.pl

active(true,noinda,3.92). active(true,noinda,4.69).

active(true,noinda,3.71). active(true,noinda,6.01).

active(true,noinda,3.83). active(false,noinda,2.55).

active(true,noinda,6.26). active(true,noinda,6.07).

active(true,noinda,2.29). active(true,noinda,5.41).

active(true,noinda,4.53). active(true,noinda,5.87).

active(true,noinda,3.95). active(true,noinda,4.34).

:-active(false,noinda,1.74). :-active(false,noinda,3.05).

:-active(false,noinda,2.68). :-active(false,noinda,2.24).

:-active(false,noinda,1.84).

File: logp6.pl

active(true,noinda,3.43). active(false,noinda,1.46).

active(true,noinda,6.24). active(true,noinda,3.01).

active(false,noinda,3.52). active(true,noinda,6.26).

active(false,noinda,2.52). active(true,noinda,2.29).

active(true,noinda,4.19). active(false,noinda,3.0).

active(true,noinda,3.46). active(true,noinda,5.02).

active(true,noinda,4.18). active(true,noinda,4.73).

:-active(false,noinda,0.47). :-active(false,noinda,2.68).

:-active(false,noinda,1.56). :-active(false,noinda,1.36).

:-active(false,noinda,2.73).

File: logp7.pl

active(true,noinda,4.44). active(true,noinda,6.79).

active(true,noinda,4.69). active(true,noinda,2.84).

active(true,noinda,3.37). active(true,noinda,4.73).

active(true,noinda,5.87). active(true,noinda,5.41).

active(true,noinda,2.29). active(true,noinda,4.44).

active(false,noinda,2.06). active(true,inda,5.07).

active(false,noinda,4.18). :-active(false,noinda,1.44).

:-active(false,noinda,0.87). :-active(false,noinda,1.77).

:-active(false,noinda,1.73). :-active(false,noinda,2.83).
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:-active(false,noinda,1.46).

File: logp8.pl

active(true,noinda,4.23). active(true,noinda,5.87).

active(true,noinda,3.35). active(true,noinda,2.52).

active(true,noinda,5.87). active(false,noinda,2.68).

active(true,noinda,4.23). active(true,noinda,5.87).

:-active(true,noinda,3.51). :-active(false,noinda,3.99).

:-active(false,noinda,1.64). :-active(false,noinda,1.77).

:-active(false,noinda,3.43). :-active(false,noinda,3.19).

:-active(false,noinda,4.49). :-active(false,noinda,2.74).

:-active(false,noinda,-0.02). :-active(false,noinda,1.72).

:-active(true,noinda,7.84).

File: logp9.pl

active(true,noinda,4.69). active(true,noinda,4.83).

active(true,noinda,2.29). active(false,noinda,2.58).

active(true,inda,5.07). active(true,noinda,4.18).

active(false,noinda,3.26). active(true,noinda,4.66).

active(true,noinda,3.85). active(true,inda,5.07).

active(false,noinda,3.0). active(true,noinda,3.08).

active(true,noinda,4.44). active(false,noinda,2.74).

:-active(false,noinda,1.65). :-active(false,noinda,1.53).

:-active(false,noinda,1.89). :-active(false,noinda,2.72).

:-active(false,noinda,2.03).

File: logp10.pl

active(true,noinda,4.23). active(false,noinda,2.3).

active(true,noinda,3.81). active(true,noinda,3.36).

active(true,noinda,4.19). active(true,noinda,3.06).

active(false,noinda,1.49). active(true,noinda,3.01).

active(true,noinda,4.69). active(true,noinda,6.57).

active(false,noinda,3.0). :-active(false,noinda,1.77).

:-active(false,noinda,1.77). :-active(false,noinda,2.9).
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:-active(false,noinda,3.43). :-active(false,noinda,3.0).

:-active(false,noinda,1.92).

InGen output for the last test (when the examples in logp10.pl are used for

testing) is as follows:

Resulting Hypotheses:

active(X0, noinda, N28) :- real(N28), between(N28, 4.04, 4.25).

active(true, X0, N4) :- real(N4), between(N4, 4.9199996, 5.1600003).

active(X0, noinda, N18) :- real(N18), between(N18, 2.45, 2.5949998).

active(X0, noinda, N23) :- real(N23), between(N23, 2.93, 3.03).

active(true, noinda, N3) :- real(N3), between(N3, 4.7599998, 4.9).

active(false, noinda, N28) :- real(N28), between(N28, 4.04, 4.25).

active(false, noinda, N16) :- real(N16), between(N16, 2.045, 2.065).

active(true, noinda, N22) :- real(N22), between(N22, 2.835, 2.9099998).

active(true, noinda, N12) :- real(N12), between(N12, 6.72, 6.86).

active(false, noinda, N23) :- real(N23), between(N23, 2.93, 3.03).

active(true, noinda, N23) :- real(N23), between(N23, 2.93, 3.03).

active(true, noinda, N33) :- real(N33), between(N33, 4.3050003, 4.4100003).

active(true, noinda, N8) :- real(N8), between(N8, 5.7999997, 5.94).

active(true, noinda, N34) :- real(N34), between(N34, 4.51, 4.6000004).

active(true, noinda, N6) :- real(N6), between(N6, 5.3399997, 5.48).

active(true, noinda, N30) :- real(N30), between(N30, 2.2649999, 2.32).

active(true, noinda, N10) :- real(N10), between(N10, 6.1699996, 6.3300004).

active(false, noinda, N18) :- real(N18), between(N18, 2.45, 2.5949998).

active(true, noinda, N32) :- real(N32), between(N32, 3.8, 3.9199998).

active(true, noinda, N26) :- real(N26), between(N26, 3.64, 3.74).

active(true, noinda, N27) :- real(N27), between(N27, 3.8500001, 3.97).

active(true, noinda, N18) :- real(N18), between(N18, 2.45, 2.5949998).

active(true, noinda, N7) :- real(N7), between(N7, 5.54, 5.6800003).

active(true, noinda, N19) :- real(N19), between(N19, 2.6100001, 2.725).

active(true, noinda, N1) :- real(N1), between(N1, 3.5600002, 3.7).

active(true, noinda, N4) :- real(N4), between(N4, 4.9199996, 5.1600003).
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active(true, noinda, N11) :- real(N11), between(N11, 6.5, 6.6400003).

active(true, noinda, N31) :- real(N31), between(N31, 2.375, 2.49).

active(true, noinda, N15) :- real(N15), between(N15, 1.8199999, 1.85).

active(true, noinda, N5) :- real(N5), between(N5, 5.21, 5.3500004).

active(true, noinda, N29) :- real(N29), between(N29, 4.35, 4.465).

active(true, noinda, N2) :- real(N2), between(N2, 4.5499997, 4.8).

active(false, noinda, N21) :- real(N21), between(N21, 2.7849998, 2.81).

active(true, noinda, N9) :- real(N9), between(N9, 5.94, 6.1400003).

active(true, noinda, N28) :- real(N28), between(N28, 4.04, 4.25).

active(false, noinda, N17) :- real(N17), between(N17, 2.1000001, 2.205).

active(true, noinda, N24) :- real(N24), between(N24, 3.0549998, 3.1499999).

active(false, noinda, 3.26).

active(false, noinda, 1.75).

active(false, noinda, 1.77).

active(true, noinda, 3.36).

active(false, noinda, 1.49).

active(false, noinda, 3.52).

active(true, noinda, 3.4).

active(true, noinda, 3.51).

active(false, noinda, 2.74).

active(false, noinda, 2.68).

active(true, noinda, 3.43).

active(false, noinda, 1.46).

active(true, noinda, 3.46).

active(true, noinda, 3.37).

active(true, noinda, 3.35)

File lumo1.pl

active(true,noinda,-1.861). active(false,noinda,-2.072).

active(true,noinda,-1.558). active(true,noinda,-2.184).

active(false,noinda,-3.768). active(true,noinda,-1.536).

active(true,noinda,-2.791). active(false,noinda,-2.196).

active(true,noinda,-2.263). active(false,noinda,-1.411).
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active(true,noinda,-2.209). active(false,noinda,-1.213).

active(true,inda,-2.113). active(true,noinda,-1.208).

:-active(false,noinda,-1.228).:-active(false,noinda,-1.256).

:-active(false,noinda,-1.034).:-active(false,noinda,-1.37).

:-active(false,noinda,-1.691).

File lumo2.pl

active(true,noinda,-1.387). active(true,noinda,-1.556).

active(true,inda,-1.918). active(true,noinda,-1.585).

active(true,noinda,-1.749). active(true,noinda,-2.149).

active(false,noinda,-2.328). active(true,noinda,-2.294).

active(true,noinda,-2.837). :-active(false,noinda,-1.19).

:-active(false,noinda,-0.937).:-active(false,noinda,-0.574).

:-active(false,noinda,-1.456).:-active(false,noinda,-1.59).

:-active(false,noinda,-1.443).:-active(false,noinda,-1.276).

:-active(true,noinda,-1.474). :-active(false,noinda,-1.366).

:-active(false,noinda,-2.09).

File lumo3.pl

active(true,noinda,-1.804). active(true,noinda,-2.189).

active(false,noinda,-2.242). active(true,noinda,-1.329).

active(true,noinda,-2.71). active(true,noinda,-1.256).

active(true,noinda,-2.191). active(false,noinda,-2.17).

active(false,noinda,-1.665). active(true,noinda,-1.602).

active(true,noinda,-1.676). active(true,noinda,-2.182).

:-active(false,noinda,-1.995).:-active(false,noinda,-1.451).

:-active(false,noinda,-1.952).:-active(false,noinda,-0.959).

:-active(false,noinda,-1.046).:-active(false,noinda,-1.362).

:-active(false,noinda,-0.727).

File lumo4.pl

active(true,noinda,-1.246). active(true,noinda,-1.627).

active(true,noinda,-1.764). active(true,noinda,-2.055).

active(true,noinda,-1.145). active(false,noinda,-1.161).



APPENDIX A. TEST INPUT AND OUTPUT FILES 120

active(true,noinda,-2.306). active(true,noinda,-1.522).

active(true,noinda,-1.709). active(true,noinda,-2.074).

active(true,noinda,-2.172). active(true,noinda,-2.159).

active(true,noinda,-3.172). active(false,noinda,-1.178).

active(true,noinda,-2.221). active(true,noinda,-2.113).

:-active(false,noinda,-1.148).:-active(false,noinda,-1.478).

:-active(true,noinda,-1.492).

File lumo5.pl

active(true,noinda,-3.406). active(true,noinda,-1.698).

active(true,noinda,-1.929). active(true,noinda,-2.095).

active(true,noinda,-1.488). active(false,noinda,-2.434).

active(true,noinda,-1.546). active(true,noinda,-2.284).

active(true,noinda,-2.614). active(true,noinda,-1.276).

active(true,noinda,-1.265). active(true,noinda,-1.729).

active(true,noinda,-1.361). active(true,noinda,-1.607).

:-active(false,noinda,-1.499).:-active(false,noinda,-1.228).

:-active(false,noinda,-0.648).:-active(false,noinda,-1.069).

:-active(false,noinda,-1.491).

File lumo6.pl

active(true,noinda,-1.398). active(false,noinda,-2.227).

active(true,noinda,-1.464). active(true,noinda,-1.991).

active(false,noinda,-1.87). active(true,noinda,-1.598).

active(false,noinda,-1.751). active(true,noinda,-2.87).

active(true,noinda,-1.742). active(false,noinda,-2.508).

active(true,noinda,-1.437). active(true,noinda,-1.88).

active(true,noinda,-2.68). active(true,noinda,-1.951).

:-active(false,noinda,-1.786).:-active(false,noinda,-1.029).

:-active(false,noinda,-1.687).:-active(false,noinda,-0.923).

:-active(false,noinda,-1.889).

File lumo7.pl

active(true,noinda,-2.292). active(true,noinda,-1.728).
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active(true,noinda,-1.57). active(true,noinda,-2.338).

active(true,noinda,-1.448). active(true,noinda,-1.26).

active(true,noinda,-1.62). active(true,noinda,-1.61).

active(true,noinda,-2.718). active(true,noinda,-1.974).

active(false,noinda,-1.487). active(true,inda,-2.005).

active(false,noinda,-1.428). :-active(false,noinda,-1.429).

:-active(false,noinda,-0.529).:-active(false,noinda,-0.937).

:-active(false,noinda,-0.93). :-active(false,noinda,-1.538).

:-active(false,noinda,-1.592).

File lumo8.pl

active(true,noinda,-1.254). active(true,noinda,-1.801).

active(true,noinda,-2.155). active(true,noinda,-2.234).

active(true,noinda,-1.766). active(false,noinda,-1.102).

active(true,noinda,-1.591). active(true,noinda,-1.689).

:-active(true,noinda,-0.872). :-active(false,noinda,-1.144).

:-active(false,noinda,-0.982).:-active(false,noinda,-1.289).

:-active(false,noinda,-1.24). :-active(false,noinda,-1.266).

:-active(false,noinda,-1.056).:-active(false,noinda,-1.562).

:-active(false,noinda,-0.995).:-active(false,noinda,-1.737).

:-active(true,noinda,-1.616).

File lumo9.pl

active(true,noinda,-1.591). active(true,noinda,-1.6).

active(true,noinda,-2.808). active(false,noinda,-1.932).

active(true,inda,-2.14). active(true,noinda,-2.871).

active(false,noinda,-2.142). active(true,noinda,-1.685).

active(true,noinda,-1.151). active(true,inda,-2.164).

active(false,noinda,-2.562). active(true,noinda,-1.34).

active(true,noinda,-2.31). active(false,noinda,-1.304).

:-active(false,noinda,-1.598).:-active(false,noinda,-1.605).

:-active(false,noinda,-1.596).:-active(false,noinda,-1.019).

:-active(false,noinda,-1.112).
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File lumo10.pl

active(true,noinda,-1.616). active(false,noinda,-2.468).

active(true,noinda,-1.208). active(true,noinda,-2.158).

active(true,noinda,-1.623). active(true,noinda,-1.176).

active(false,noinda,-1.937). active(true,noinda,-2.032).

active(true,noinda,-1.487). active(true,noinda,-1.8).

active(false,noinda,-2.687). :-active(false,noinda,-1.028).

:-active(false,noinda,-1.157).:-active(false,noinda,-1.288).

:-active(false,noinda,-1.177).:-active(false,noinda,-2.14).

:-active(false,noinda,-0.854).

InGen output for the last test (when the examples in lumo10.pl are used for

testing) is as follows:

Resulting Hypotheses:

active(X0, noinda, N43) :- real(N43), between(N43, -1.8845, -1.851).

active(X0, noinda, N21) :- real(N21), between(N21, -2.0839999, -2.062).

active(X0, noinda, N19) :- real(N19), between(N19, -2.206, -2.13).

active(true, X0, N19) :- real(N19), between(N19, -2.206, -2.13).

active(X0, X1, N19) :- real(N19), between(N19, -2.206, -2.13).

active(X0, noinda, N38) :- real(N38), between(N38, -1.223, -1.198).

active(true, X0, N20) :- real(N20), between(N20, -2.123, -2.103).

active(X0, noinda, N44) :- real(N44), between(N44, -1.761, -1.7395).

active(X0, noinda, N13) :- real(N13), between(N13, -2.348, -2.318).

active(X0, noinda, N17) :- real(N17), between(N17, -2.252, -2.211).

active(X0, noinda, N62) :- real(N62), between(N62, -1.171, -1.1495).

active(X0, noinda, N25) :- real(N25), between(N25, -1.942, -1.919).

active(X0, noinda, N55) :- real(N55), between(N55, -1.49, -1.4825001).

active(false, noinda, N37) :- real(N37), between(N37, -1.314, -1.294).

active(true, noinda, N35) :- real(N35), between(N35, -1.35, -1.33).

active(false, noinda, N10) :- real(N10), between(N10, -2.572, -2.552).

active(true, noinda, N62) :- real(N62), between(N62, -1.171, -1.1495).

active(true, inda, N19) :- real(N19), between(N19, -2.206, -2.13).

active(false, noinda, N25) :- real(N25), between(N25, -1.942, -1.919).
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active(true, noinda, N5) :- real(N5), between(N5, -2.818, -2.798).

active(true, noinda, N46) :- real(N46), between(N46, -1.69, -1.688).

active(true, noinda, N51) :- real(N51), between(N51, -1.5915, -1.5905).

active(false, noinda, N64) :- real(N64), between(N64, -1.107, -1.092).

active(false, noinda, N59) :- real(N59), between(N59, -1.4284999, -1.418).

active(true, inda, N23) :- real(N23), between(N23, -2.015, -1.9950001).

active(false, noinda, N55) :- real(N55), between(N55, -1.49, -1.4825001).

active(true, noinda, N24) :- real(N24), between(N24, -1.984, -1.964).

active(true, noinda, N57) :- real(N57), between(N57, -1.4495, -1.4454999).

active(true, noinda, N13) :- real(N13), between(N13, -2.348, -2.318).

active(true, noinda, N53) :- real(N53), between(N53, -1.58, -1.566).

active(true, noinda, N42) :- real(N42), between(N42, -1.9514999, -1.941).

active(true, noinda, N8) :- real(N8), between(N8, -2.69, -2.67).

active(true, noinda, N58) :- real(N58), between(N58, -1.44, -1.4330001).

active(false, noinda, N11) :- real(N11), between(N11, -2.518, -2.498).

active(true, noinda, N3) :- real(N3), between(N3, -2.881, -2.86).

active(false, noinda, N44) :- real(N44), between(N44, -1.761, -1.7395).

active(false, noinda, N43) :- real(N43), between(N43, -1.8845, -1.851).

active(true, noinda, N41) :- real(N41), between(N41, -1.993, -1.9810001).

active(true, noinda, N56) :- real(N56), between(N56, -1.469, -1.46).

active(true, noinda, N33) :- real(N33), between(N33, -1.408, -1.388).

active(true, noinda, N49) :- real(N49), between(N49, -1.613, -1.606).

active(true, noinda, N60) :- real(N60), between(N60, -1.3615, -1.351).

active(true, noinda, N65) :- real(N65), between(N65, -1.733, -1.718).

active(true, noinda, N61) :- real(N61), between(N61, -1.286, -1.271).

active(true, noinda, N9) :- real(N9), between(N9, -2.624, -2.604).

active(false, noinda, N12) :- real(N12), between(N12, -2.444, -2.424).

active(true, noinda, N55) :- real(N55), between(N55, -1.49, -1.4825001).

active(true, noinda, N40) :- real(N40), between(N40, -2.105, -2.0925).

active(true, noinda, N25) :- real(N25), between(N25, -1.942, -1.919).

active(true, noinda, N45) :- real(N45), between(N45, -1.708, -1.6945).

active(true, noinda, N1) :- real(N1), between(N1, -3.416, -3.396).

active(true, noinda, N20) :- real(N20), between(N20, -2.123, -2.103).



APPENDIX A. TEST INPUT AND OUTPUT FILES 124

active(true, noinda, N17) :- real(N17), between(N17, -2.252, -2.211).

active(false, noinda, N39) :- real(N39), between(N39, -1.188, -1.168).

active(true, noinda, N2) :- real(N2), between(N2, -3.182, -3.162).

active(true, noinda, N21) :- real(N21), between(N21, -2.0839999, -2.062).

active(true, noinda, N29) :- real(N29), between(N29, -1.719, -1.699).

active(true, noinda, N31) :- real(N31), between(N31, -1.532, -1.512).

active(true, noinda, N14) :- real(N14), between(N14, -2.32, -2.296).

active(false, noinda, N62) :- real(N62), between(N62, -1.171, -1.1495).

active(true, noinda, N63) :- real(N63), between(N63, -1.1465, -1.1445).

active(true, noinda, N22) :- real(N22), between(N22, -2.065, -2.045).

active(true, noinda, N28) :- real(N28), between(N28, -1.776, -1.7540001).

active(true, noinda, N48) :- real(N48), between(N48, -1.637, -1.618).

active(true, noinda, N47) :- real(N47), between(N47, -1.686, -1.666).

active(true, noinda, N50) :- real(N50), between(N50, -1.6035, -1.597).

active(false, noinda, N30) :- real(N30), between(N30, -1.675, -1.655).

active(true, noinda, N67) :- real(N67), between(N67, -1.2655001, -1.243).

active(true, noinda, N7) :- real(N7), between(N7, -2.728, -2.7).

active(true, noinda, N36) :- real(N36), between(N36, -1.339, -1.319).

active(false, noinda, N17) :- real(N17), between(N17, -2.252, -2.211).

active(true, noinda, N27) :- real(N27), between(N27, -1.814, -1.791).

active(true, noinda, N4) :- real(N4), between(N4, -2.847, -2.827).

active(true, noinda, N15) :- real(N15), between(N15, -2.304, -2.274).

active(false, noinda, N13) :- real(N13), between(N13, -2.348, -2.318).

active(true, noinda, N44) :- real(N44), between(N44, -1.761, -1.7395).

active(true, noinda, N52) :- real(N52), between(N52, -1.5875001, -1.575).

active(true, inda, N26) :- real(N26), between(N26, -1.928, -1.908).

active(true, noinda, N34) :- real(N34), between(N34, -1.397, -1.377).

active(true, noinda, N38) :- real(N38), between(N38, -1.223, -1.198).

active(false, noinda, N38) :- real(N38), between(N38, -1.223, -1.198).

active(true, noinda, N18) :- real(N18), between(N18, -2.219, -2.1990001).

active(false, noinda, N32) :- real(N32), between(N32, -1.421, -1.401).

active(true, noinda, N16) :- real(N16), between(N16, -2.273, -2.253).

active(false, noinda, N19) :- real(N19), between(N19, -2.206, -2.13).
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active(true, noinda, N6) :- real(N6), between(N6, -2.8009999, -2.781).

active(true, noinda, N54) :- real(N54), between(N54, -1.537, -1.526).

active(false, noinda, N0) :- real(N0), between(N0, -3.7779999, -3.758).

active(true, noinda, N19) :- real(N19), between(N19, -2.206, -2.13).

active(true, noinda, N66) :- real(N66), between(N66, -1.56, -1.542).


