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Abstract The aim of adaptive sliding mode control is to maintain some robust-

ness with a set of performance indications, and to observe non-drifting evolution

of tunable parameters. This work demonstrates that a fractional adaptation law can

achieve this better than its integer order counterpart. A 2DOF Scara robot is utilized

to justify the claims.

1 Introduction

Fractional calculus and dynamics described by fractional differential equations are

becoming more and more popular as the underlying facts about the differentiation

and integration is significantly different from the integer order counterparts and be-

yond this, many real life systems are described better by fractional differential equa-

tions, e.g. heat equation, telegraph equation and a lossy electric transmission line are

all involved with fractional order operators. Two of the highly valuable references

for this subject field are [8] and [9], where some discussion is devoted to fractional

order PID controller, i.e. PIλ Dµ , is presented to some extent. A majority of works

published so far has concentrated on fractional variants of the PID controller imple-

mented for the control of linear systems, for which the issues of parameter selection,

tuning, stability and performance are rather mature concepts (See [6]) than those in-

volving the nonlinear models and nonlinearities in the approaches (See [7]).

Parameter tuning in adaptive control systems is a central part of the overall mech-

anism alleviating the difficulties associated with the changes in the parameters that

influence the closed loop performance. Numerous remarkable studies are reported

in the past and the field of adaptation has become a blend of techniques of dynam-

ical systems theory, optimization and heuristics (intelligence). Today, the advent
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of very high speed computers and networked computing facilities, even within mi-

croprocessor based systems, tuning of system parameters based upon some set of

observations and decisions has greatly been facilitated. In [1], an in depth discus-

sion for parameter tuning in continuous and discrete time is presented. Particularly

for gradient descent rule for model reference adaptive control, which is considered

in the integer order in [1], has been implemented in fractional order by [10], where

the integer order integration is replaced with an integration of fractional order 1.25

and by [5] where the good performance in noise rejection is emphasized.

The contribution of this work is to present a nonlinear adaptation law in fractional

order and to emphasize the advantages like the elimination of drifts in the adjustable

parameters and better system response. In the next section, we introduce the plant

dynamics. In the third section, the sliding mode control through fractional order

adaptation is given. Simulation results and the concluding remarks constitute the

last part of the paper.

2 Robot Dynamics and the Control Problem

The dynamics of the system under control is given by M(θ )θ̈ +V (θ , θ̇ ) = τ −η ,

where θ = (θ1 θ2)
T vector of angular positions and θ̇ = (θ̇1 θ̇2)

T is the vector of

angular velocities. In above, τ = (τ1 τ2)
T is the vector of control inputs (torques)

and η = (η1 η2)
T is the vector of friction forces. The terms M and V are given

below:

M =

(

p1 + 2p3 cos(θ2) p2 + p3 cos(θ2)
p2 + p3 cos(θ2) p2

)

, V =

(

−θ̇2(2θ̇1 + θ̇2)p3 sinθ2

θ̇ 2
1 p3 sinθ2

)

(1)

where p1 = 3.31655 + 0.18648Mp, p2 = 0.1168 + 0.0576Mp and p3 = 0.16295 +
0.08616Mp. Here, Mp denotes the payload mass. The details of the plant model can

be found in [2, 3]. The constraints regarding the plant dynamics are |τ1| ≤ 245N,

|τ2| ≤ 39.2N, and the friction terms are η1 = 4.9sgn(θ̇1) and η2 = 1.67sgn(θ̇2).
The control problem is to force the system states to a predefined and differen-

tiable trajectories within the workspace of the robot. More explicitly e1 = θ1 − r1,

e2 = θ2 − r2 and the (integer order) time derivatives of these error terms are desired

to converge the origin of the phase space.

3 Sliding Mode Control Through A Fractional Order

Adaptation Scheme

Theorem: Let r1 and r2 be continuous and differentiable reference trajectories. Let

the switching function for each link be defined by
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sp,i = ėi + λiei, i = 1,2, λi > 0 (2)

Let

τi = φT

i ui, i = 1,2 (3)

be the controller of the i-th link with φi = (φi,1 φi,2 φi,3)
T being the adjustable

parameter set for the i-th controller and ui = (ei ėi 1)T being the vector signal

exciting the i-th controller. Define τd,i as a control signal forcing the desired system

response at i-th link and ∀i ∈ {1,2} let

|
∞

∑
k=1

Γ (1 + β )

Γ (1 + k)Γ (1− k + β )
(φ

(β−k)
i )Tu

(k)
i | ≤ B1 (4)

|τ(β )
d,i | ≤ B2, ∀i ∈ {1,2} (5)

|τi| ≤ B3, ∀i ∈ {1,2} (6)

The adaptation law

φ
(β )
i = − ui

uTi ui

Kisgn(σi) (7)

with σi := τi −τd,i drives the parameters of the i-th controller to values such that the

plant under control enters the sliding mode, hitting in finite time satisfying

K −B1

Γ (1 + β )
t
β
h,i ≤

|σ (β−1)
i (0)|+ |τ(β−1)

d,i (0)|
Γ (β )

t
β−1
h,i + |τd,i(th,i)| (8)

is observed if K > B1 +B2 is satisfied.

Proof The block diagram of the control system is depicted in Fig. 1.

Remark 1: The integer order version of this problem is studied in [4], where the

crux of the approach is to extract a quantified error on the applied control signal

utilizing the available measurements. In this reference, the map Ψ(·) is a mono-

tonically increasing function of its argument and a common choice for it is a unit

function, i.e. σi = sp,i. The practical interpretation of this choice is the adoption of

the distance from the switching line as a measure to penalize the control action. That

is to say, set of all control signals driving the error vector toward the sliding hyper-

surface is denoted by τd,i and the error on the control signal (See [4]) described by

τi − τd,i is a monotonically increasing function along the sp,i axis. Such a selection

with a tuning mechanism minimizing the value of spi
naturally forces the emergence

of sliding mode in the conventional sense.

Define ϒi := ∑∞
k=1

Γ (1+β )
Γ (1+k)Γ (1−k+β )(φ

(β−k)
i )Tu

(k)
i and check whether the quantity

σ
(β )
i σi for every i is negative or not. With these expressions, we have
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Fig. 1 Block diagram of the control system.

σ
(β )
i σi =

(

τ
(β )
i − τ

(β )
d,i

)

σi =
(

(φ
(β )
i )Tui

)

σi +
(

ϒi − τ
(β )
d,i

)

σi

= −K sgn(σi)σi +
(

ϒi − τ
(β )
d,i

)

σi ≤−K |σi|+ |ϒi| |σi|+ |τ(β )
d,i | |σi|

≤ (−K +B1 +B2)|σi| ≤ 0 Since K > B1 +B2 (9)

This proves that the trajectories in the phase space are attracted by the subspace

described by σi = 0. Since 0D
β
t f (t) = 1

Γ (1−β )
d
dt

∫ t
0(t − ξ )−β f (ξ )dξ = f (β )(t),

claiming σ
(β )
i σi < 0 for stability is equivalent to the following

σ
(β )
i (t)σi(t) =

σi(t)

Γ (1−β )

d

dt

∫ t

0

σi(ξ )

(t − ξ )β
dξ (10)

Obtaining σ
(β )
i (t)σi(t) < 0 can arise in the following cases. In the first case,

σi(t) > 0 and the integral
∫ t

0
σi(ξ )

(t−ξ )β dξ is monotonically decreasing. In the second

case σi(t) < 0 and the integral
∫ t

0
σi(ξ )

(t−ξ )β dξ is monotonically increasing. In both

cases, the signal |σi(t)| is forced to converge the origin faster than t−β . A natural

consequence of this is to observe a very fast reaching phase as the signal t−β is a

very steep function around t ≈ 0.

When plotted, it is seen that the reaching force read along the vertical axis is

excessive initially and as |σ | approaches zero, this force gradually decreases and

this property leads to very fast reaching and large control signals during the early

instants of control applications. Now we must prove that first hitting to the switching

function occurs in finite time, denoted by th,i. Evaluate σ
(β )
i utilizing (7) as given

below.

σ
(β )
i = −K sgn(σi)+ϒi− τ

(β )
d,i (11)
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Applying the fractional integration defined as 0I
β
t f (t) = 1

Γ (β )

∫ t
0(t − ξ )β−1 f (ξ )dξ

with final time t = th,i to both sides of (11) one gets

σi(th,i)−σ
(β−1)
i (0)

t
β−1
h,i

Γ (β )
=

−K sgn(σi(0))

Γ (1 + β )
t
β
h,i +0 I

β
th,i

(

ϒi − τ
(β )
d,i

)

(12)

Noting that σi(t) = 0 when t = th,i, multiplying both sides of (12) by sgn(σi(0)), we

have

−σ
(β−1)
i (0)sgn(σi(0))

t
β−1
h,i

Γ (β )
=

−K

Γ (1 + β )
t
β
h,i +0 I

β
th,i

(sgn(σi(0))ϒi)−0 I
β
th,i

(sgn(σi(0))τ
(β )
d,i )

(13)

Due to the above definition of fractional order integration, we have

0I
β
th,i

(sgn(σi(0))ϒi) ≤0 I
β
th,i
|ϒi| ≤0 I

β
th,i

B1 = B1

t
β
h,i

Γ (1 + β )
(14)

Similarly

0I
β
th,i

(

sgn(σi(0))τ
(β )
d,i

)

= sgn(σi(0))0I
β
th,i

τ
(β )
d,i

= sgn(σi(0))



τd,i(th,i)− τ
(β−1)
d,i (0)

t
β−1

h,i

Γ (β )



 (15)

Substituting the results in (14) and (15) into (13), we obtain an inequality given as

−σ
(β−1)
i (0)sgn(σi(0))

t
β−1

h,i

Γ (β )
≤ −K

Γ (1 + β )
t
β
h,i +B1

t
β
h,i

Γ (1 + β )

−sgn(σi(0))τd,i(th,i)+ τ
(β−1)
d,i (0)sgn(σi(0))

t
β−1
h,i

Γ (β )
(16)

Straightforward manipulations will lead to the inequality in (8). Clearly, the left

hand side of the inequality in (8) is a monotonically increasing function of th,i. On

the other hand, the right hand side of the inequality is a monotonically decreasing

function of th,i. With these facts, the inequality is satisfied on the interval th,i ∈ (0,α],
where α is the point of intersection of the two expressions lying on the left and

right hand sides of (8). According to this discussion, one can see that th,i ≤ α and

particularly for β = 0.5, we have the following value: α =

(

b+
√

b2+4ac

2a

)2

, where

a = K −B1

Γ (1+β )
, b = |τd,i(th,i)|, and c =

|σ (β−1)
i (0)|+|τ(β−1)

d,i
(0)|

Γ (β )
.
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Now we turn our attention to the assumptions we made in (4) through (6). Ob-

viously, the assumptions are rather demanding and stringent. The control system

presented here would be globally stable if these conditions hold true for the en-

tire course of operation, however, imposing such bounds make the presented design

valid only within a local region.

4 Simulation Results

The presented approach is implemented for the plant introduced in the second sec-

tion. The system run for 20 seconds of time and the reference trajectories shown

in Fig. 2 are used. The solid curves represent the reference trajectories while the

dashed ones stand for the response of the robot. During the operation, a 5kgs. of

payload is grasped when t = 2 sec. and released when t = 5 sec. and this is repeated

when the robot is motionless at t = 9 sec. and t = 12 sec. The manipulator is desired

to stay motionless after t = 15 sec.
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Fig. 2 Reference trajectories and the response of the robot

It should be noted that the payload scenario is a significant disturbance chang-

ing the dynamics of the plant suddenly. Another difficulty is the initial conditions

that the controllers are supposed to alleviate. Initially, θ1(0) = π
3

and θ2(0) = − π
2

,

which are large enough to test the performance of a controller. The discrepancies be-

tween the reference profiles and the system response are seen to convergence zero

exponentially.

The behavior in the phase space illustrated in Fig. 3 is another evidence of ro-

bustness of the control system and insensitivity to variations in the plant dynamics.
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Fig. 3 Behavior in the phase space

The time evolution of the controller parameters, which are all started from zero,

are seen to display a fast transient, the parameters settle down to constant values

shortly. If we remember the reference profiles, the system is desired to be motionless

after t > 15 sec., this means that the tuning activity during this time is subject to the

effects of noise. That is to say, the system is at a desired state but we would like to

figure out what how parameter tuning mechanism functions during this period. Any

possible undesired drift in the controller parameters are suppressed appropriately

yet these are not included here due to the space limit.

In Fig. 4, we demonstrate the results obtained with integer order version of the

same tuning scheme. In this case the phase space behavior is worse and the param-

eters do not evolve bounded.
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Fig. 4 The behavior in the phase space for the integer case, i.e. β = 1

In all results involving the fractional order integration operator, we utilize a 25th

order approximation to the operator over the frequency range 0.01 rad/sec and 1000

rad/sec. The order of the approximation may be seen as a disadvantage at the first

glance, however, the controller has few parameters to tune, therefore the computa-

tional load of the overall scheme due to the fractional operations is affordable even

with average speed microprocessors.
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5 Conclusions

In this paper, we propose a fractional order parameter tuning scheme, which was

utilized with integer order operators in the past literature. A two degrees of freedom

planar robot is utilized to justify the claims and a comparison with the integer or-

der version is presented. The presented form of the adaptation law provides better

parametric evolution that displays no drifts, better tracking capabilities and better

robustness and disturbance rejection capabilities than its integer order counterpart,

which is only computationally simple. Briefly, the fractional order tuning law out-

performs the tuning mechanisms exploiting integer order operators.
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