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Fractional Fuzzy Adaptive Sliding-Mode Control
of a 2-DOF Direct-Drive Robot Arm
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Abstract—This paper presents a novel parameter adjustment
scheme to improve the robustness of fuzzy sliding-mode control
achieved by the use of an adaptive neuro-fuzzy inference system
(ANFIS) architecture. The proposed scheme utilizes fractional-
order integration in the parameter tuning stage. The controller
parameters are tuned such that the system under control is driven
toward the sliding regime in the traditional sense. After a com-
parison with the classical integer-order counterpart, it is seen that
the control system with the proposed adaptation scheme displays
better tracking performance, and a very high degree of robustness
and insensitivity to disturbances are observed. The claims are
justified through some simulations utilizing the dynamic model
of a 2-DOF direct-drive robot arm. Overall, the contribution of
this paper is to demonstrate that the response of the system under
control is significantly better for the fractional-order integration
exploited in the parameter adaptation stage than that for the
classical integer-order integration.

Index Terms—Adaptive fuzzy control, fractional order control,
sliding mode control.

I. INTRODUCTION

THE NOTION of adaptiveness has been a core issue in
many instances in feedback control. Many approaches

have been considered for obtaining a better response from
a closed-loop system that is equipped with a parameter tun-
ing mechanism. Model reference adaptive control (MRAC)
and self-tuning control (STC) are the examples that are now
considered in the textbooks of adaptive control [1]. In its
essence, the need for adaptation is related either to the changing
process parameters or to the uncertainties. While the vari-
ants of MRAC and STC are proposed, the discovery of error
backpropagation stimulated the researchers and engineers who
have reported successful applications of online learning neural
controllers (see [2]) and adaptive fuzzy control schemes [3].
The latter have become particularly popular as they exploit
the verbal descriptions and verbal quantifications of the phys-
ical phenomena in a hierarchically rule-based structure [4].
Given a task to be accomplished, the process describing the
best evolution of the adjustable parameters is the process of
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learning, which is sometimes called adaptation, tuning, ad-
justment, or optimization, all referring to the same reality in
the context of fuzzy control. Many approaches have been pro-
posed, namely, gradient descent, Levenberg–Marquardt tech-
nique, conjugate gradient method, Lyapunov-based techniques
are just to name a few; a good treatment can be found in [4]
and [5].

A successful application of fuzzy information processing is
the realm of fuzzy sliding-mode control (FSMC). Numerous
important results have been reported. In [6] and [7], fuzzy logic
is used to obtain an adaptive boundary layer, and it is shown
that the proposed method successfully alleviates the difficulties
caused by the unmodeled dynamics. Palm [6] presents the
extension of the boundary layer design to systems of order
greater than two. Erbatur et al. [8] consider the robot dynam-
ics studied in this paper and utilize the concept of fuzziness
for reducing the adverse effects of chattering. In [9], several
control points are chosen on the sliding line, and optimal
moves of these points are designed via linguistic descriptions
of fuzzy logic ending up with a successful emergence of the
sliding regime. In [10], based on the limited state knowledge,
two adaptive fuzzy models to obtain the functions embodying
the system dynamics are developed, and the obtained func-
tions have been utilized in sliding-mode control of a multi-
input–multi-output plant. The adaptation of the reaching law
parameter is proposed in [11], where a quicker reaching with
suppressed oscillations in the response of a flexible robot is
demonstrated with a comparison with classical sliding-mode
controller. Kaynak et al. [12] present a thorough survey on
computationally intelligent systems improving the performance
of sliding-mode controllers. More recently, the FSMC frame-
work has been applied to estimate the nonlinear terms in the
dynamics of a robot [13], to synchronize two chaotic gyros
[14], and to control a nonaffine system, a pneumatic valve
in [15].

A common feature of all these methods and the cited research
is the fact that the differentiation and integration, or shortly
differintegration, of quantities are performed in integer order,
i.e., D := d/dt for the differentiation with respect to t and
I = D−1 for the integration over t in the traditional sense. A
significantly different branch of mathematics, called fractional
calculus, suggests operators Dβ’s with β ∈ �, [16], [17], and
it becomes possible to write Df = D1/2(D1/2f). Expectedly,
Laplace and Fourier transforms in fractional calculus are avail-
able to exploit in closed-loop control system design, involved
with sβ or (jω)β generic terms, respectively.

Fractional calculus and dynamics described by fractional
differential equations (FDEs) are becoming more and more
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popular as the underlying facts about the differentiation and in-
tegration are significantly different from the integer-order coun-
terparts, and beyond this, many real-life systems are described
better by FDEs, e.g., heat equation, telegraph equation, and a
lossy electric transmission line are all involved with fractional-
order differintegration operators. A majority of works pub-
lished so far have concentrated on the fractional variants of
the PID controller, which has fractional-order differentiation
and fractional-order integration, implemented for the control
of linear dynamic systems, for which the issues of parameter
selection, tuning, stability, and performance are rather ma-
ture concepts utilizing the results from complex analysis and
frequency domain methods of control theory (see [18]) than
those involving the nonlinear models (see [19]) and parameter
changes in the approaches.

Parameter tuning in adaptive control systems is a central
part of the overall mechanism alleviating the difficulties as-
sociated with the changes in the parameters and uncertainties
that influence the closed-loop performance. Many remarkable
studies are reported in the past, and the field of adaptation
has become a blend of techniques of dynamical systems the-
ory, optimization, heuristics (intelligence), and soft computing.
Today, due to the advent of very high speed computers and
networked computing facilities, even within microprocessor-
based systems, tuning of system parameters based upon some
set of observations and decisions has greatly been facilitated.
In [1], an in-depth discussion for parameter tuning in contin-
uous and discrete time is presented. Particularly for gradient
descent rule for MRAC, which is considered in the integer
order in [1], it has been implemented in fractional order by
Vinagre et al. [20], where the integer-order integration is re-
placed with an integration of fractional order of 1.25, and by
Ladaci and Charef [21], where the good performance in noise
rejection is emphasized.

In the related literature, the absence of methods designed
and implemented via fractional differintegration in robust and
nonlinear control is visible. The purpose of this paper is to
fill this gap to the extent that covers the following: 1) better
robustness and noise rejection capabilities than those utilizing
traditional integer-order operators; 2) better tracking capabil-
ity and better system response; 3) conditions for hitting in
finite time; and 4) sliding-mode control based on fractional-
order adaptation. The aforementioned features constitute the
major results and contributions of the paper advancing the
subject area to the fractional-order operator-based adaptation
schemes.

This paper is organized as follows. In the next section,
we briefly consider the conventional sliding-mode control for
multi-input–multi-output systems. Section III is devoted to the
adaptive neuro-fuzzy inference system (ANFIS) structure and
the relation between its inputs and output. The supervised
training of the ANFIS structure with fractional-order adaptation
scheme is presented in Section IV. The conditions for the sign
equivalence between the control error and the switching func-
tion are given in Section V, where the supervisory information
is extracted from the available quantities. The dynamics of the
plant is described in Section VI, and simulation results and the
concluding remarks are given at the end of this paper.

II. OVERVIEW OF SLIDING-MODE CONTROL

Consider a general dynamic system described by

θ
(ri)
i = fi(Θ) + f̃i(Θ) +

m∑
j=1

(gij(Θ) + g̃ij(Θ)) τj ,

i = 1, 2, . . . , n (1)

where Θ = (θ1, θ̇1, . . . , θ
(r1−1)
1 , θ2, θ̇2, . . . , θ

(r2−1)
2 , . . . , θn,

θ̇n, . . . , θ
(rn−1)
n )T is the state vector of the entire system, ri is

the order of the ith subsystem, fi(Θ) and gij(Θ) are scalar
functions of the state vector describing the nominal (known)
part of the dynamics, f̃i(Θ) and g̃ij(Θ) are the bounded
uncertainties on these functions, and the input vector T =
(τ1, τ2, . . . , τn)T is the manipulated variable. This system of
equations can be rewritten compactly as

Θ̇ = F (Θ) + F̃ (Θ) +
(
G(Θ) + G̃(Θ)

)
T (2)

where F (Θ) and F̃ (Θ) are
∑n

i=1 ri × 1 dimensional vectors,
and G(Θ) and G̃(Θ) are

∑n
i=1 ri × n dimensional matrices.

The designer has the nominal plant dynamics given by Θ̇ =
F (Θ) + G(Θ)T.

Standard approach for the design of a sliding-mode controller
entails a switching function defined as

s = (s1, s2, . . . , sn)T

=Λ(Θ − Θd) (3)

where Θd = (θd,1, θ̇d,1, . . . , θ
(r1−1)
d,1 , θd,2, θ̇d,2 , . . . , θ

(r2−1)
d,2 ,

. . . , θd,n, θ̇d,2, . . . , θ
(rn−1)
d,n )T is the vector of desired states,

and the locus described by s = 0 corresponds to the sliding
manifold or the switching hypersurface. The entries of Λ are
chosen such that the ith component of the switching manifold
has the structure

si =
(

d

dt
+ λi

)ri−1

(θi − θd,i), i = 1, 2, . . . , n (4)

where λi > 0. Choosing a Lyapunov function candidate as in
(5) and setting the control vector as given in (6), one gets the
equality in (7), provided that the inverse (ΛG(Θ))−1 exists

V =
1
2
sTs (5)

τSMC = −(ΛG(Θ))−1 Λ
(
F (Θ) − Θ̇d

)
− (ΛG(Θ))−1 Q sgn(s) (6)

ṡ = −PQ sgn(s) + (P−I)Λ
(
Θ̇d−F (Θ)

)
+ ΛF̃ (Θ)

(7)

where P := Λ(G + G̃)(ΛG)−1, which is very close to the
identity matrix, and Q is a positive definite diagonal matrix
chosen by the designer. If one sets T := τ SMC, then the system
enters the sliding mode after a reaching phase.

The expression in (7) can be interpreted as follows:

1) If there are no uncertainties, i.e., F̃ = 0 and G̃ = 0, then
we have ṡ = −Q sgn(s), and sTṡ < 0 is satisfied with
any positive definite Q. In this case, we have P = I, and
this result is straightforward.
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2) If only G̃ = 0, we obtain ṡ = −Q sgn(s) + ΛF̃ , and
sTṡ < 0 is satisfied if Q is a positive definite diagonal
matrix and the ith entry in the diagonal of Q is greater
than the supremum value of the ith row of |ΛF̃ |. This
would preserve the sign of s in the presence of the
term ΛF̃ , and the numerical computation would require
the bounds of the uncertainties. In this case, we have
P = I too.

3) In the most general case, where neither of F̃ nor G̃ is zero,
the expression in (7) is obtained. In this case, depending
on the uncertainties influencing the input gains (G̃’s), the
matrix P is very close to the identity matrix, and utilizing
the uncertainty bounds, the matrix Q can be chosen such
that the sign of s is preserved and sTṡ < 0 is satisfied.

With an appropriate choice of Q, sTṡ < 0 can be obtained
for ‖s‖ > 0, and this result indicates that the error vector
defined by the difference Θ − Θd is attracted by the subspace
characterized by s = 0 and moves toward the origin according
to what is prescribed by s = 0. The motion during s �= 0 is
called the reaching mode, whereas the motion when s = 0
is called the sliding mode. During the latter dynamic mode,
the closed-loop system exhibits certain degrees of robustness
against the modeling uncertainties, yet the system is sensitive
to noise as the sign of a quantity that is very close to zero
determines the control action heavily.

It is straightforward to show that a hitting to si = 0 occurs,
and the hitting time (th,i) for the ith subsystem satisfies the
inequality th,i ≤ (|si(0)|/Qii). One can refer to [22]–[24] for
an in-depth discussion on sliding-mode control. Our goal will
be to obtain the sliding regime by utilizing an ANFIS structure
introduced next.

III. ANFIS

Fuzzy logic offers one natural way for representing knowl-
edge that is similar to human reasoning. Partitioning the input
space by the use of fuzzy membership functions, determining
the local conclusions through rules, and utilizing a flexible
method of combining the localized information result in a
highly interpretable and useful model that acts globally. ANFIS,
in this respect, is one of the widely known architectures ex-
ploiting the power of connectionist structures while maintaining
the verbal nature through membership functions and inference
mechanisms [25], [26].

In Fig. 1, the general structure of a fuzzy inference system
is shown. The crisp inputs are fuzzified through the computa-
tion of membership functions. This practically maps the input
space to a feature space characterized by fuzzy sets. In the
inference engine, computed membership values for each rule

Fig. 1. Structure of a fuzzy inference system.

Fig. 2. Internal structure of ANFIS.

are converted into a firing strength that indicates the activation
level of the rule. The parameters of the membership functions
and auxiliary parameters are stored in the knowledge base, and
a defuzzifier maps the feature vector to a scalar output value,
which is crisp.

In Fig. 2, the internal structure of ANFIS is shown. As shown
also in the figure, defining wi and Ωi as the firing strength of
the ith rule and the normalized firing strength of the ith rule,
respectively, the input–output relation of the ANFIS structure
with the product inference, the first-order Sugeno-type defuzzi-
fier, and the rule-base structure containing R rules as presented
hereafter is described compactly in (8a)–(8d) (see [27]). Note
that Ui, Vi, and Wi stand for the fuzzy sets characterized
by the membership functions, that yi in the ith rule is the
local conclusion suggested by the rule, and that n1, n2, and
nm correspond to the number of linguistic labels for the first,
second, and mth input variables, respectively (see the equation
found at the bottom of the page).

IF u1 is U1 AND u2 is V1 AND · · · AND um is W1 THEN y1 = z1

IF u1 is U1 AND u2 is V1 AND · · · AND um is W2 THEN y2 = z2
...

...
IF u1 is Un1 AND u2 is Vn2 AND · · · AND um is Wnm

THEN yR = zR
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In (8a), the firing strengths for each rule are computed, and
the vector of firing strengths is normalized in (8b). The rule
conclusions, which are in the form of a linear combination of
the input variables augmented by a constant bias (φi,m+1),
are given in (8c), and the weighted average-type defuzzifier
yielding the crisp output is described in (8d).

wi =
m∏

j=1

μij(uj), i = 1, 2, . . . , R, j = 1, 2, . . . ,m

(8a)

Ωi =
wi∑R

k=1 wk

(8b)

zi =φi,m+1 +
m∑

j=1

φijuj (8c)

τ =
R∑

i=1

Ωizi. (8d)

In (8a) and (8c), uj corresponds to the jth entry of the input
vector u = (u1, u2, . . . , um). According to (8d), it is seen that
the ANFIS structure has single output. With these in mind, the
output of the ANFIS structure can be paraphrased as

τ = ΩTΦv (9)

where Ω := (Ω1,Ω2, . . . ,ΩR)T is the vector of normalized
firing strengths, Φ is an R × (m + 1)-dimensional matrix con-
taining the adjustable parameters (φij) of the defuzzifier, and
v = (v1, v2, . . . , vm+1)T = (u 1 )T. Our ultimate goal is to
adjust the defuzzifier parameters of the ANFIS structure by the
fractional tuning scheme such that a desired ANFIS output is
obtained.

Although the functional details shown in Fig. 1 are common
in most fuzzy models, the specific reasons for choosing the
ANFIS structure are as follows. The defuzzification stage of
the ANFIS structure prescribes a function [see (8c)] activated
at the degree of a firing strength of a rule it belongs to. Every
such function that acts as the conclusion of a rule offers sig-
nificant degrees of freedom in the adjustable parameter space.
Although this can be interpreted as an advantage, it constitutes
a disadvantage as the initialization of the defuzzifier parameters
is more difficult than the simpler fuzzy models. Therefore,
an approach utilizing the redundancy of the ANFIS structure
without letting the designer be troubled with the initializations
is one strong motivation of this paper.

IV. SUPERVISED TRAINING OF ANFIS VIA

FRACTIONAL-ORDER ADAPTATION SCHEME

Given 0 < β < 1, with zero lower terminal, the Riemann–
Liouville definition of the βth-order fractional derivative oper-
ator 0D

β
t is defined by

f (β)(t) = 0D
β
t f(t)

=
1

Γ(1 − β)
d

dt

t∫
0

(t − ξ)−βf(ξ)dξ (10)

where Γ(·) is the Gamma function, which is defined as Γ(β) =∫ ∞
0 e−ttβ−1dt, generalizing the factorial for noninteger argu-

ments. According to this definition, the derivative of a time
function f(t) = tα, where α > −1 and t ≥ 0, is evaluated as

0D
β
t tα =

Γ(α + 1)
Γ(α + 1 − β)

tα−β . (11)

Likewise, the Riemann–Liouville definition of the βth-order
fractional integration operator having zero lower terminal, 0I

β
t ,

is given by

0I
β
t f(t) =

1
Γ(β)

t∫
0

(t − ξ)β−1f(ξ)dξ. (12)

The material presented in the sequel is based on the
aforementioned definitions of fractional differentiation and
integration, as well as the following integration rules describing
the integral of a derivative σ(β) and a constant c:

0I
β
t σ(β) = σ(t) − σ(β−1)(0)

tβ−1

Γ(β)
(13)

0I
β
t c = c

tβ

Γ(1 + β)
. (14)

An in-depth discussion can be found in [16], [17], and [28]. In
the rest of this section, we assume that the target output of the
ANFIS structure is known so that the output error is available
for parameter tuning process. However, this assumption will be
removed in Section V.

Theorem 4.1: Let τ and τd be the output of the ANFIS
structure and the target output, respectively. Let the following
boundedness conditions hold:∣∣∣∣∣∣

∞∑
k=1

R∑
i=1

m+1∑
j=1

k∑
h=0

(
k

h

)(
β

k

)
Ω(h)

i v
(k−h)
j φ

(β−k)
ij

∣∣∣∣∣∣ ≤ B1 (15)

∣∣∣∣∣
∞∑

k=1

Γ(1 + β)
Γ(1 + k)Γ(1 − k + β)

σ(k)σ(β−k)

∣∣∣∣∣ ≤ B2|σ| (16)

∣∣∣τ (β)
d

∣∣∣ ≤ B3. (17)

The adaptation law

Φ(β) = − ΩvT

‖v‖2‖Ω‖2
Ksgn(σ) (18)

with σ := τ − τd being the output error, drives the adjustable
parameters of the ANFIS to values such that a hitting in finite
time satisfying

K−B1

Γ(1+β)
tβh ≤

∣∣σ(β−1)(0)
∣∣+∣∣∣τ (β−1)

d (0)
∣∣∣

Γ(β)
tβ−1
h +|τd(th)| (19)

is observed if K > B1 + B2 + B3 is satisfied.
Proof: Note that observing s = 0 corresponds to the fact

that the states of the system are on the sliding manifold. σ = 0,
on the other hand, corresponds to the fact that a control signal
that eventually results in s = 0 is being produced. The course
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of σ = 0 covers the regime described by s = 0, and therefore,
the dynamical conclusions of having σ = 0 are different from
s = 0.

Define

Υ :=
∞∑

k=1

R∑
i=1

m+1∑
j=1

k∑
h=0

(
k

h

)(
β

k

)
Ω(h)

i v
(k−h)
j φ

(β−k)
ij

and choose a Lyapunov function candidate V (t) := σ(t)2.
According to the Leibniz rule of fractional differentiation, the
βth-order time derivative of V (t) can be expanded as follows:

dβV

dtβ
= V (β) = σ(β)σ + P (20)

where

P :=
∞∑

k=1

Γ(1 + β)
Γ(1 + k)Γ(1 − k + β)

σ(k)σ(β−k).

Now, check whether the quantity σ(β)σ is negative or not. With
these expressions, we have

σ(β)σ =
(
τ (β)−τ

(β)
d

)
σ

=
(
(ΩTΦv)(β)−τ

(β)
d

)
σ

=

⎛
⎜⎝

⎛
⎝ R∑

i=1

m+1∑
j=1

Ωivjφij

⎞
⎠

(β)

−τ
(β)
d

⎞
⎟⎠ σ

=

⎛
⎝

⎛
⎝ ∞∑

k=0

R∑
i=1

m+1∑
j=1

(
β

k

)
(Ωivj)(k)φ

(β−k)
ij

⎞
⎠−τ

(β)
d

⎞
⎠ σ

=

⎛
⎝

⎛
⎝ R∑

i=1

m+1∑
j=1

(Ωivj)φ
(β)
ij

⎞
⎠

+

⎛
⎝ ∞∑

k=1

R∑
i=1

m+1∑
j=1

(
β

k

)
(Ωivj)(k)φ

(β−k)
ij

⎞
⎠−τ

(β)
d

⎞
⎠ σ

=

⎛
⎝

⎛
⎝ R∑

i=1

m+1∑
j=1

Ωiφ
(β)
ij vj

⎞
⎠

+

⎛
⎝ ∞∑

k=1

R∑
i=1

m+1∑
j=1

k∑
h=0

(
k

h

)(
β

k

)

× Ω(h)
i v

(k−h)
j φ

(β−k)
ij

)
−τ

(β)
d

)
σ

=
(
ΩTΦ(β)v

)
σ+

(
Υ−τ

(β)
d

)
σ

=
(
ΩT

(
− ΩvT

‖v‖2‖Ω‖2
Ksgn(σ)

)
v
)

σ+
(
Υ−τ

(β)
d

)
σ

= −Ksgn(σ)σ+
(
Υ−τ

(β)
d

)
σ

≤−K|σ|+|Υ| |σ|+
∣∣∣τ (β)

d

∣∣∣ |σ|
≤ (−K+B1+B3)|σ|. (21)

The last inequality lets us write

V (β) ≤ (−K + B1 + B3)|σ| + P
≤ (−K + B1 + B3)|σ| + B2|σ|
= (−K + B1 + B2 + B3)|σ|
< 0 since K > B1 + B2 + B3. (22)

Clearly, V (β) < 0 for |σ| > 0, and this proves that the trajecto-
ries in the phase space are attracted by the subspace described
by σ = 0.

In its essence, the aforesaid conclusion is to question whether
the reaching law characterized by σ(β) = −Ksgn(σ) forces
σ → 0 as time progresses. One could find the answer to
this question by writing σ = −KIβsgn(σ) and rearranging
this expression by taking the integer-order time derivative as
σ̇ = −KIγsgn(σ), where γ = β − 1. Under these conditions,
it is reported that sgn(Iγsgn(σ)) = sgn(σ) if −1 < γ < 1
[29]. This result clearly implies that the phase space of a
sliding-mode control system enforcing the reaching law σ(β) =
−Ksgn(σ) has an attractor characterized by σ = 0 as σσ̇ < 0
for σ �= 0.

Now, we must prove that first hitting to the switching func-
tion occurs in finite time, which is denoted by th. Evaluate σ(β)

utilizing (18) as given next

σ(β) = −Ksgn(σ) + Υ − τ
(β)
d . (23)

Applying the fractional integration operator described in (12) to
both sides of (23) and considering the particular result in (13)
with final time t = th, one gets

σ(th) − σ(β−1)(0)
tβ−1
h

Γ(β)

=
−Ksgn(σ(0))

Γ(1 + β)
tβh + 0I

β
th

(
Υ − τ

(β)
d

)
. (24)

Noting that σ(t) = 0 at t = th, multiplying both sides of (24)
by sgn(σ(0)), we have

−σ(β−1)(0)sgn(σ(0))
tβ−1
h

Γ(β)
=

−K
Γ(1 + β)

tβh

+ 0I
β
th

(sgn(σ(0))Υ) − 0I
β
th

(sgn(σ(0))τ (β)
d ). (25)

Due to the definition given in (12) and the result in (14),
we have

0I
β
th

(sgn(σ(0))Υ) ≤ 0I
β
th
|Υ|

≤ 0I
β
th
B1

= B1
tβh

Γ(1 + β)
. (26)

Similarly

0I
β
th

(
sgn(σ(0))τ (β)

d

)
= sgn(σ(0))0I

β
th

τ
(β)
d

= sgn(σ(0))

(
τd(th)−τ

(β−1)
d (0)

tβ−1
h

Γ(β)

)
.

(27)

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 2, 2008 at 17:20 from IEEE Xplore.  Restrictions apply.



1566 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 38, NO. 6, DECEMBER 2008

Substituting the results in (26) and (27) into (25), we obtain an
inequality given as

−σ(β−1)(0)sgn (σ(0))
tβ−1
h

Γ(β)
≤ −K

Γ(1 + β)
tβh + B1

tβh
Γ(1 + β)

− sgn (σ(0)) τd(th)

+ τ
(β−1)
d (0)sgn (σ(0))

tβ−1
h

Γ(β)
.

(28)

Straightforward manipulations will lead to the inequality in
(19). Clearly, the left-hand side of the inequality in (19) is a
nonconverging and monotonically increasing function of th.
On the other hand, the right-hand side of the inequality is a
monotonically decreasing function of th. Looking at the powers
of the arguments, one sees that an intersection is inevitable.
With these facts, the inequality is satisfied on the interval
th ∈ (0, α], where α is the point of intersection of the two
expressions lying on the left- and right-hand sides of (19).
According to this discussion, one can see that th ≤ α, and
particularly for β = 0.5, we have the following value:

α=

⎛
⎜⎜⎝|τd(th)|+

√
|τd(th)|2+4 K−B1

Γ(1+β)

|σ(β−1)(0)|+
∣∣τ(β−1)

d
(0)

∣∣
Γ(β)

2 K−B1
Γ(1+β)

⎞
⎟⎟⎠

2

.

(29)

Now, we turn our attention to the assumptions we made in
(15)–(17). Obviously, the assumptions are rather stringent. The
control system presented here would be globally stable if these
conditions hold true for the entire course of operation; however,
imposing such bounds makes the presented design valid only
within a local region. In the sequel, we present an example to
demonstrate that the mentioned local region is practically large
enough to observe a highly satisfactory performance.

V. CONDITIONS FOR OBTAINING sgn(σ)

In Section II, we summarize the conventional sliding-mode
control scheme for multi-input–multi-output systems of the
form (1). On the other hand, if we could know a supervisory
signal to compute σ, we would use it directly in the fractional
adaptation scheme given in (18). However, the nature of the
control systems does not provide such information; instead,
one has to develop strategies to observe a desired response
in the closed loop by utilizing available quantities. Therefore,
a critically important stage of the approach presented in this
paper is to extract an equivalent measure about the sign of
the error on the control signal to use in the parameter tuning
scheme. In other words, we need to develop a strategy, together
with a set of assumptions, such that our tuning scheme drives
the closed-loop system toward the behavior that can be obtained
via the conventional sliding-mode controller without knowing
the system parameters.

For this purpose, denote the response of the ANFIS con-
trollers by τA, which is n × 1, and set T := τA. Because there
are n subsystems, there are n ANFIS controllers. Consider the
difference

σ= τA−τSMC

= τA+(ΛG(Θ))−1Λ
(
F (Θ)−Θ̇d

)
+(ΛG(Θ))−1Q sgn(s)

=J sgn(s)+H (30)

where J := (ΛG(Θ))−1Q and H := τA + (ΛG(Θ))−1

Λ(F (Θ) − Θ̇d). Let J̃ be a diagonal matrix where J̃ii = Jii.
Let H̃ := H + (J − J̃) sgn(s). With these definitions, (30) can
be paraphrased as

σ = J̃ sgn(s) + H̃ (31)

whose rows can explicitly be written as

σi = J̃iisgn(si) + H̃i, i = 1, 2, . . . , n. (32)

The expression in (32) stipulates that if |H̃i| < J̃ii, then
sgn(σi) = sgn(si). In other words, aside from the three
bound conditions given [(15)–(17)], a fourth one is given as
follows:

0 ≤ |H̃i| < J̃ii, i = 1, 2, . . . , n. (33)

Note that one can obtain infinitely many different designs
of J, including those satisfying the set of inequalities earlier.
Aside from the components coming from the system dynamics
and the desired response, this depends also upon Λ and Q, the
choice of which can change the desired properties of the sliding
mode as well as the reaching mode. Therefore, one needs to
check whether J̃ii is positive or not.

Corollary: If the inequalities in (15)–(17), and (33) are satis-
fied, the tuning law in (18) enforces reaching σi = 0 for ∀i, and
this triggers the emergence of the sliding mode in the traditional
sense. However, the conditions derived in this section imply a
class of plants where such an induction could be valid. In the
next section, we give the dynamical description of a 2-DOF
robot.

VI. DYNAMICS OF THE ROBOT ARM

AND THE CONTROL PROBLEM

In this paper, we consider the following system to visualize
the contributions of this paper. The motivation for choosing
this system is the nonlinear and coupled nature of differen-
tial equations describing the behavior. Furthermore, the ad-
verse effects of noise, large initial conditions, and varying
payload conditions make the control problem a challenge
for conventional approaches.The dynamics of the robot is
given by

M(θ)θ̈ + C(θ, θ̇) = τ − η (34)
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where θ = ( θ1 θ2 )T is the vector of angular positions in
radians and θ̇ = ( θ̇1 θ̇2 )T is the vector of angular velocities
in radians per second. In (34), τ = ( τ1 τ2 )T is the vector of
control inputs (torques), and η = ( η1 η2 )T is the vector of
friction forces. The terms in (34) are given as follows:

M(θ) =
(

p1 + 2p3 cos(θ2) p2 + p3 cos(θ2)
p2 + p3 cos(θ2) p2

)
(35)

C(θ, θ̇) =
(
−θ̇2(2θ̇1 + θ̇2)p3 sin θ2

θ̇2
1p3 sin θ2

)
(36)

where p1 = 3.31655+0.18648Mp, p2 = 0.1168+0.0576Mp,
and p3 = 0.16295 + 0.08616Mp. Here, Mp denotes the pay-
load mass. The details of the plant model can be found in
[30] and [31]. The constraints regarding the plant dynamics
are |τ1| ≤ 245 N and |τ2| ≤ 39.2 N, and the friction terms are
η1 = 4.9sgn(θ̇1) and η2 = 1.67sgn(θ̇2).

The control problem is to force the system states to prede-
fined and differentiable trajectories within the workspace of the
robot. More explicitly, e1 = θ1 − θd,1 and e2 = θ2 − θd,2 and
the first-order (integer) time derivatives of these error terms are
desired to converge the origin of the phase space.

According to the presented analysis and the previous model,
the dynamics of the system under control can be cast into the
representation Θ̇ = F (Θ) + G(Θ)T, and we have (ΛG)−1 =
M(θ). More explicitly

(ΛG)−1Q =
(

Q11 (p1 + 2p3 cos(θ2)) sgn(s1)
Q22p3sgn(s2)

)

+
(

Q22 (p1 + p3 cos(θ2)) sgn(s2)
Q11 (p1 + p3 cos(θ2)) sgn(s1)

)
(37)

The aforementioned separation of terms suggests that J̃11 =
Q11(p1 + 2p3 cos(θ2)) > 0 and J̃22 = Q22p3 > 0 for every
possible angular state and payload condition. Clearly, the de-
vised approach is suitable for mechanical systems, robots, and
systems as they have a positive definite inertia matrix. In the
next section, we present the simulation studies comparatively
with the integer-order integration scheme in the parameter
adaptation stage.

VII. SIMULATION RESULTS

The presented approach is implemented for the plant intro-
duced in Section VI. The block diagram of the control system
is shown in Fig. 3, where it is seen that the state of the
system under control is measurable and that one ANFIS con-
troller is dedicated to produce each component of the control
signal T.

The membership functions of both ANFIS controllers are
chosen as shown in Fig. 4. This selection is made after a few
trials. Angular positions and velocities are measured, and the
controllers receive the relevant error in position and velocity for
each link. Three linguistic labels, namely, Negative, Zero, and
Positive, are chosen, and a total of R = 9 rules are contained in

Fig. 3. Block diagram of the control system.

Fig. 4. Membership functions utilized in both ANFIS structures.

the rule base. It is important to note that the membership func-
tions cover the entire space and that there is no subregion over
which a conclusion is not defined. This is critically important;
otherwise, ‖Ω‖2 may approach zero, and this would lead to
unnecessarily large tuning effort causing possible instabilities.
One may define more linguistic labels than what we choose
and obtain a better linguistic resolution for better performance.
Clearly, the need for utilizing finer rule resolution depends upon
the requirements of the problem in hand.

The right-hand side of (18) is computed, and the frac-
tional integration is achieved through the approximation called
CRONE, a French acronym for Commande robuste d’ordre
non-entier meaning robust fractional-order control. A fre-
quency range is set first, and a set of zeros and poles is orga-
nized in such a way that the desired order of differintegration is
approximated as follows:

s−β ≈
N∏

i=1

1 + s
ωzi

1 + s
ωpi

(38)

where s denotes the Laplace transform variable. In the previous,
ωzi

and ωpi
are adjusted automatically to yield the best match.

The interested reader is referred to [32] for the algorithm
scheduling these parameters. We choose N = 25 for obtaining
a good match, and (0.01, 100) rad/s as the frequency range
over which the approximation will be valid. The control system
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Fig. 5. Reference trajectories and the response of the robot.

runs for 20 s, and the reference trajectories shown in Fig. 5 are
used. The solid curves represent the reference trajectories,
whereas the dashed ones stand for the response of the robot.
During the operation, a 5-kg payload is grasped when t = 2 s
and is released when t = 5 s, and this is repeated when the robot
is motionless at t = 9 and 12 s. The manipulator is desired to
stay motionless after t = 15 s.

It should be noted that the payload scenario is a signifi-
cant disturbance changing the dynamics of the plant suddenly.
Another difficulty is the initial conditions that the ANFIS
controllers are supposed to alleviate. Initially, θd,1 = θd,2 = 0,
the system is motionless, and θ1(0) = π/3 and θ2(0) = −π/2,
which are large enough to test the performance of a control
scheme. The simulations are carried out with a time step of
2.5 ms, and K1 = 200 and K2 = 100 values are chosen after
just a few trials. The sliding lines for both links are set by
choosing λi = 1, where i = 1, 2. Other than these, in order to
avoid exciting any undesired chattering phenomenon associated
tightly with the discontinuous nature of the sign function,
we choose sgn(σ) ≈ (σ/|σ| + δ), with δ being the parameter
determining the slope around the origin. This paper considers
δ = 0.01 introducing a very thin boundary layer.

The discrepancies between the reference trajectories and the
system response are shown in Fig. 6, where an exponential
convergence is apparent even in the presence of noise corrupt-
ing the observed system states and the changes in the system
dynamics due to the payload variations.

The behavior in the phase space shown in Fig. 7 is another
evidence of robustness of the control system and insensitivity
to variations in the plant dynamics.

In Fig. 8, the applied control signals are given with the
window graphs for better visualization of the initial transients.
Due to the large initial positional errors, the control efforts
during the first 100 ms have higher magnitudes than what comes
later. The effect of noisy observations on the control signal is
another conclusion that is worth mentioning.

A sum-squared value for the controller parameters, which are
all started from zero, are shown separately in Fig. 9, where it is
clearly visible that the norm values evolve bounded and settle

Fig. 6. State tracking errors.

Fig. 7. Behavior in the phase space.

Fig. 8. Applied control signals and their initial transients.

down to constant values. If we remember the reference profiles,
the system is desired to be motionless after t > 15 s. This means
that the tuning activity during this time is subject to the effects
of noise. That is to say, the system is at a desired state, but we
would like to figure out how the parameter tuning mechanism
functions during this period. According to Fig. 9, it is seen that
the value of trace(ΦTΦ) for the two ANFIS controllers stay
within constant values.
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Fig. 9. Time evolution of the controller parameters for base link (top) and
elbow link (bottom).

Fig. 10. Behavior in the phase space for the integer case, i.e., β = 1.

In Fig. 10, we demonstrate the results obtained with integer-
order version of the same tuning scheme. In this case, several
hits occur before the error vector gets trapped to the sliding
manifold, and we see the adverse effects of the changing pay-
load conditions as slight temporary deviations from the switch-
ing manifold. Clearly, a comparison of the cases β = 1 and
β = 0.5 under the identical operating conditions suggests the
use of the fractional-order form of the tuning law as it creates a
more smooth sliding motion than the integer-order one.

As a last issue, we focus on the time evolution of the variables
seen in (33) (Fig. 11). For Q = diag[100 500], the system is
simulated under the same initial conditions but with the con-
troller described in (6), i.e., with τSMC. Clearly, the conditions
in (33) are satisfied for the chosen Q. Indeed, one may choose
many different Q matrices satisfying the conditions in (33).

VIII. CONCLUSION

This paper discusses a fractional integration scheme for
FSMC. Due to its popularity and parametric redundancy, the
ANFIS structure is used as the controller, and it is shown that
the approach is applicable to multi-input–multi-output systems.

Fig. 11. Time evolution of the variables involved in (33).

The crux of the approach is the use of sign equality in between
the switching function defined for one subsystem and the
error on the relevant control signal. Because the latter is not
known due to the nature of the control problems, this paper
demonstrates the conditions under which one can mention such
equalities. For the fractional adaptation scheme, this paper
provides an upper bound for the hitting time, and parallel to the
claims, in the application example, it is shown that the presented
form of the adaptation law provides, compared to its integer-
order counterpart, which is only computationally simple, the
following:

1) better tracking capabilities;
2) better robustness and disturbance rejection capabilities;
3) better exploitation of the parametric redundancy provided

by ANFIS;
4) removal of the difficulty in assigning the initial values to

the defuzzifier parameters.

Briefly, according to the presented results, the fractional-order
tuning law outperforms the tuning mechanisms exploiting
integer-order operators.

By demonstrating the usefulness of fractional-order opera-
tors in adaptation mechanisms, this paper addresses a wide
range of applications from the field of adaptive control; more
specifically, the field of adaptive sliding-mode control is fo-
cused in this paper. Future work of the author aims to pro-
vide a rigorous proof for bounded evolution of the adjustable
parameters.

ACKNOWLEDGMENT

The author would like to thank Dr. D. Valério for his efforts
in developing the Matlab toolbox Ninteger v.2.3 (found at
http://mega.ist.utl.pt/dmov/ninteger/ninteger.htm) used in this
paper.

REFERENCES

[1] K. J. Åström and B. Wittenmark, Adaptive Control, 2nd ed. Reading,
MA: Addison-Wesley, 1995.

[2] K. S. Narendra and K. Parthasarathy, “Identification and control of dy-
namical systems using neural networks,” IEEE Trans. Neural Netw.,
vol. 1, no. 1, pp. 4–27, Mar. 1990.

[3] L. X. Wang, Adaptive Fuzzy Systems and Control, Design and Stability
Analysis. Englewood Cliffs, NJ: Prentice-Hall, 1994.

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 2, 2008 at 17:20 from IEEE Xplore.  Restrictions apply.



1570 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 38, NO. 6, DECEMBER 2008

[4] J.-S. R. Jang, C.-T. Sun, and E. Mizutani, Neuro-Fuzzy and Soft Comput-
ing. Englewood Cliffs, NJ: Prentice-Hall, 1997.

[5] S. Haykin, Neural Networks. New York: Macmillan, 1994.
[6] R. Palm, “Robust-control by fuzzy sliding mode,” Automatica, vol. 30,

no. 9, pp. 1429–1437, Sep. 1994.
[7] C. Bonivento, C. Fantuzzi, and L. Martini, “Adaptive fuzzy logic con-

troller synthesis via a sliding mode approach,” in Proc. 3rd Eur. Control
Conf., Rome, Italy, Sep. 5–8, 1995.

[8] K. Erbatur, O. Kaynak, A. Sabanovic, and I. Rudas, “Fuzzy adaptive
sliding mode control of a direct drive robot,” Robot. Auton. Syst., vol. 19,
no. 22, pp. 215–227, 1996.

[9] R. G. Berstecher, R. Palm, and H. D. Unbehauen, “An adaptive fuzzy
sliding-mode controller,” IEEE Trans. Ind. Electron., vol. 48, no. 1,
pp. 18–31, Feb. 2001.

[10] S. C. Tong and H. X. Li, “Fuzzy adaptive sliding-mode control for MIMO
nonlinear systems,” IEEE Trans. Fuzzy Syst., vol. 11, no. 3, pp. 354–360,
Jun. 2003.

[11] B. A. Bazzi and N. G. Chalhoub, “Fuzzy sliding mode controller for a
flexible single-link robotic manipulator,” J. Vib. Control, vol. 11, no. 2,
pp. 295–314, 2005.

[12] O. Kaynak, K. Erbatur, and M. Ertugrul, “The fusion of computationally
intelligent methodologies and sliding-mode control—A survey,” IEEE
Trans. Ind. Electron., vol. 48, no. 1, pp. 4–17, Feb. 2001.

[13] H. F. Ho, Y. K. Wong, and A. B. Rad, “Robust fuzzy tracking control
for robotic manipulators,” Simul. Model. Pract. Theory, vol. 15, no. 7,
pp. 801–816, 2007.

[14] H. T. Yau, “Chaos synchronization of two uncertain chaotic nonlinear
gyros using fuzzy sliding mode control,” Mech. Syst. Signal Process.,
vol. 22, no. 2, pp. 408–418, 2008.

[15] Z. Z. Chen, C. H. Shan, and H. L. Zhu, “Adaptive fuzzy sliding mode
control algorithm for a non-affine nonlinear system,” IEEE Trans. Ind.
Inf., vol. 3, no. 4, pp. 302–311, Nov. 2007.

[16] K. B. Oldham and J. Spanier, The Fractional Calculus. New York:
Academic, 1974.

[17] I. Podlubny, Fractional Differential Equations, 1st ed. New York:
Elsevier, 1998.

[18] D. Matignon, “Stability properties for generalized fractional differential
systems,” in Proc. ESAIM, 1998, vol. 5, pp. 145–158.

[19] S. Momani and S. Hadid, “Lyapunov stability solutions of fractional
integrodifferential equations,” Int. J. Math. Math. Sci., vol. 2004, no. 47,
pp. 2503–2507, 2004.

[20] B. M. Vinagre, I. Petras̆, I. Podlubny, and Y. Q. Chen, “Using fractional
order adjustment rules and fractional order reference models in model-
reference adaptive control,” Nonlinear Dyn., vol. 29, no. 1–4, pp. 269–
279, Jul. 2002.

[21] S. Ladaci and A. Charef, “On fractional adaptive control,” Nonlinear
Dyn., vol. 43, no. 4, pp. 365–378, Mar. 2006.

[22] V. I. Utkin, Sliding Modes in Control Optimization. New York: Springer-
Verlag, 1992.

[23] C. Edwards and S. K. Spurgeon, Sliding Mode Control Theory and Appli-
cations. New York: Taylor & Francis, 1998.

[24] W. Perruquetti and J. P. Barbot, Sliding Mode Control in Engineering.
New York: Marcel Dekker, 2002.

[25] Z. Hou, Q. Shen, and H. Li, “Nonlinear system identification based on
ANFIS,” in Proc. Int. Conf. Neural Netw. Signal Process., Beijing, China,
Dec. 14–17, 2003, pp. 510–512.

[26] S. Refaat and S. Nahavandi, “Nonlinear identification of pneumatic servo-
drive,” Int. J. Model. Simul., vol. 26, no. 1, pp. 11–16, Jan. 2006.

[27] T. Takagi and M. Sugeno, “Fuzzy identification of systems and its ap-
plications to modeling and control,” IEEE Trans. Syst., Man, Cybern.,
vol. SMC-15, no. 1, pp. 116–132, Jan. 1985.

[28] S. Das, Functional Fractional Calculus for System Identification and
Controls, 1st ed. Berlin, Germany: Springer-Verlag, 2008.

[29] B. M. Vinagre and A. J. Calderón, “On fractional sliding mode control,”
in Proc.7th CONTROLO, Lisbon, Portugal, Sep. 11–13, 2006.

[30] Direct Drive Manipulator R&D Package User Guide, Integrated Motions
Inc., Berkeley, CA, 1992.

[31] M. Ö. Efe and O. Kaynak, “A comparative study of soft computing
methodologies in identification of robotic manipulators,” Robot. Auton.
Syst., vol. 30, no. 3, pp. 221–230, Feb. 2000.

[32] D. Valèrio, Ninteger v.2.3 Fractional Control Toolbox for MatLab, 2005.

Mehmet Önder Efe (M’04–SM’07) was born in
Turkey, 1972. He received the B.Sc. degree from the
Istanbul Technical University, Istanbul, Turkey, in
1993, and the M.S. and Ph.D. degree from Bogaziçi
University, Istanbul, Turkey, in 1996 and 2000.

Between August 1996 and December 2000, he
was with the Mechatronics Research and Application
Center, Bogaziçi University, as a Research Assis-
tant. During 2001, he was a Postdoctoral Research
Fellow at the Electrical and Computer Engineering
Department (AML and ICES), Carnegie Mellon Uni-

versity, Pittsburgh, PA. Between January 2002 and July 2003, he was with
the Electrical Engineering Department, The Ohio State University, Columbus,
as a Postdoctoral Research Associate. He was with the Collaborative Center
of Control Science. During September 2003–June 2004, he was with the
Department of Mechatronics Engineering, Atilim University, Ankara, Turkey.
He was promoted to the Associate Professor position in April 2004. Since
August 2004, he has been with the Department of Electrical and Electronics
Engineering, TOBB Economics and Technology University, Ankara, Turkey.
He was the Head of the department between August 2004 and July 2007,
and he has been chairing the department since June 2008. He is the author or
coauthor of more than 100 technical publications focusing on the applications
of computational intelligence and systems and control theory.

Dr. Efe has been the Head of the IEEE CSS Turkey Chapter since January
2007. He serves as an Associate Editor for the Transactions of the Institute of
Measurement and Control, the International Journal of Industrial Electronics
and Control, and Advances in Fuzzy Systems.

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 2, 2008 at 17:20 from IEEE Xplore.  Restrictions apply.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues false
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


