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Neural Network Assisted Computationally Simple
PI�D� Control of a Quadrotor UAV
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Abstract—The applications of Unmanned Aerial Vehicles
(UAVs) require robust control schemes that can alleviate distur-
bances such as model mismatch, wind disturbances, measurement
noise, and the effects of changing electrical variables, e.g., the loss
in the battery voltage. Proportional Integral and Derivative (PID)
type controller with noninteger order derivative and integration
is proposed as a remedy. This paper demonstrates that a neural
network can be trained to provide the coefficients of a Finite
Impulse Response (FIR) type approximator, that approximates
to the response of a given analog PI D controller having time
varying action coefficients and differintegration orders. The
results obtained show that the neural network aided FIR type
controller is very successful in driving the vehicle to prescribed
trajectories accurately. The response of the proposed scheme is
highly similar to the response of the target PI D controller and
the computational burden of the proposed scheme is very low.

Index Terms—Fractional order control, unmanned aerial vehi-
cles, neural networks.

I. INTRODUCTION

A RECENT trend in control of industrial systems is to de-
scribe the networking, layers of the control hierarchy, and

the communication capabilities of a complicated system by ex-
ploiting versatile software tools, intelligent sensors and methods
devised specifically for fault tolerance and handling of safety
critical issues and components, [1]–[3]. The lowest level of this
structure is established typically by Proportional Integral and
Derivative (PID) type controllers, a novel form of which is dis-
cussed in this paper.

PID type controllers have been standard tools in industry due
to their practicality. The availability of well established rules
for tuning the parameters of the controller is another reason
making them preferable in real-time applications. Fractional
order PI D controller is a generalization of the integer order
PID controller exploiting the richness offered by the nonin-
teger orders of the Laplace variable . Denoting as the
transfer function associated to it, an analog PI D controller is
described as given below

(1)
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The history of fractional calculus dates back to the letter from
L’Hôpital to Leibniz in 1695 asking the meaning of a deriva-
tive of order . It was not soon after this but the during the
last few decades, the fractional order operators have been made
possible to use in automatic control systems. Considering the
operator , one could define the operators with
a noninteger . Further, for , one obtains differen-
tiators, while yields integrators. In the literature, these
operators are called differintegration operators and two widely
used definitions are by Riemann–Liouville in (2) and by Caputo
in (3), where the lower limit of time is zero in both, [4]–[6]

(2)

(3)

where and is an integer. Defining as the
Laplace transform and as the Laplace variable, it is possible
to write and such an approach makes it possible
to write transfer functions in fractional orders, define the state
space systems in fractional order and determine their solutions
under various types of operating conditions, [6]–[9]. Clearly, in
a significant volume of research outcomes reported so far, the
linearity is an underlying assumption in the analysis and design
of fractional order control systems. This paper focuses on the
approximate realization of analog PI D controller via neural
networks and an unmanned aerial vehicle platform is utilized to
justify the claims.

In [4]–[6] and [8], fundamental issues regarding the fractional
calculus, fractional differential equations and a viewpoint from
the systems and control engineering are elaborated and several
exemplar cases are taken into consideration. One such applica-
tion area focuses on PID control with derivative and integral
actions having fractional orders, i.e., PI D control is imple-
mented. In the literature, several applications of PI D con-
trollers have been reported. The early notion of the scheme is
reported by Podlubny, [10]. In [11] and [12], tuning of the con-
troller parameters is considered when the plant under control
is a fractional order one. Ziegler–Nichols type tuning rules are
derived in [13] and rules for industrial applications are postu-
lated in [14]. The application of fractional order PID controllers
in chemical reaction systems is reported in [15], the issues re-
garding the frequency domain are considered in [16]. Clearly,
the cited volume of works demonstrates that the interest to PID
control is growing also in the direction of fractional order ver-
sions. Unsurprisingly the reason for this is the widespread use
of the variants of PID controller and the confidence of the engi-
neers in industry.
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Having this picture in front, the realization of fractional order
PI D controllers have become a critical issue. In essence, the
problem is to realize the operator either in continuous time
or in discrete time. Several numerical techniques have been pro-
posed as a remedy to this problem. In [17], a thorough investi-
gation of the rational approximations of fractional order oper-
ators is presented, discrete and continuous time cases are ad-
dressed, and a comparison in frequency domain is given. In
[18] and [19], Crone approximation is focussed on. The method
schedules a set of poles and zeros to approximate a desired oper-
ator in frequency domain. For a better match, one needs to con-
sider large number as the approximation order yet this causes
a significant increase in the computational complexity. Further,
increasing the approximation order may practically result in a
transfer function that is difficult to realize due to the numer-
ical problems. In [20], analogue realizations based on continued
fraction expansions are elaborated and relations to nested mul-
tiple loop control systems are established. In this paper, we pro-
pose artificial neural networks for emulating the analog PI D
controller as a whole for a given set of action coefficients ( ,
and ) and differintegration orders ( and ). In [21], a special
case of what is presented here is elaborated. A particular neural
network structure is proposed to imitate the classical PID con-
troller. The motivation here is to obtain a universal PI D con-
troller module approximating to the response of a target module
at a particular sampling period, which is ms in this paper.
As the test bed, we choose a quadrotor type unmanned vehicle
platform and a Finite Impulse Response (FIR) type filter to ap-
proximate the response of a given under 1 ms of sampling.
To calculate the necessary FIR filter coefficients, we adopt a
neural network-based solution that is described next.

This paper is organized as follows. Section II describes used
neural network structure and the necessary details in generating
the training data. Section III presents the dynamic model of the
quadrotor and describes the control problem. The Cartesian con-
troller and the results obtained through a set of simulations are
presented in Section IV and concluding remarks as well as a
summary of the contributions are given at the end of this paper.

II. NEURAL NETWORK ASSISTED APPROXIMATION TO

PI D CONTROLLER

Consider the feedforward neural network structure shown in
Fig. 1. The structure is called feedforward as the flow of infor-
mation has a one-way nature. Let an input vector and output
vector at time be defined as
and , respectively. An
input output pair, shortly a pair or sample, is defined as

. Consider there are pairs in a given data
set, which we call training set. Based on this, the response of

Fig. 1. A feedforward neural network structure with single hidden layer.

a neural network to a set of input vectors can be evaluated and
the total cost over the given set can be defined as follows:

(4)

where is the target output corresponding to the th output
of the neural network that responds to th pattern. The cost in
(4) is also called the mean squared error (MSE) measure. Sim-
ilarly, is the response of the neural network to . In (4),
the generic symbol stands for the set of all adjustable param-
eters, i.e., the synaptic strengths , or biases at time .
The input output relation of a -hidden layer neural network
with hyperbolic tangent type neuronal activation scheme can be
given as follows:

(5)

where and . Assume there are a total of ad-
justable parameters denoted by the vector .
Each entry of the parameter vector corresponds to a unique
parameter in an ordered fashion. The update law is given
in (6), where stands for the discrete time index. Here,

with
being a small residual, and with

and being the error vector as given in (7) and Jacobian,
respectively. The error vector contains the errors computed
via for every training pair, and the
Jacobian contains the partial derivatives of each component of

with respect to every parameter in shown in (6) and (7) at
the bottom of the page. Based on these definitions, the update
law based on Levenberg–Marquardt optimization technique
can be constructed as

(8)

where is a user-defined scalar design parameter
for improving the rank deficiency problem of the matrix

and is an identity matrix of dimensions

(6)

(7)
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Fig. 2. Neural network assisted FIR approximator to generalize PI D con-
troller. Here, � stands for the delay operator in time.

. It is important to note that for small , (8) approxi-
mates to the Gauss–Newton method, and for large , the tuning
law becomes the standard error backpropagation algorithm with
a step size . Therefore, Levenberg–Marquardt method
establishes a good balance between error backpropagation and
Gauss–Newton strategies and inherits the prominent features of
both algorithms in eliminating the rank deficiency problem with
improved convergence. An elegant comparison is presented
in [23], where the concept of optimality, different network
configurations, learning algorithms, connectivity issues, and
size issues are discussed in detail.

Since the input and the output of a PI D controller is mea-
surable, the setting described above fits in the problem we would
like to solve perfectly. Two different viewpoints can be fol-
lowed in developing an emulator for a given PI D controller.
The first one is the traditional scheme, i.e., for a preselected
delay depth in input and a preselected delay depth in output,
an input vector is formed and the neural network aims at pre-
dicting the next output, [22]. For the problems like the one con-
sidered here, the prediction performance of the neural network
heavily depends upon the delay depths, i.e., the larger the depths
the better the result. In addition to this, feeding back the output
of such a neural network is highly vulnerable to the accumu-
lating output errors leading eventually instabilities. Therefore,
this scheme is not suitable for the PI D controller emulation.
The second alternative is to use the neural network in between
the two spaces, namely the space of action coefficients denoted
by and the space of emulator model
parameters denoted by . The second
method is useful as it is based on a mapping in between two fea-
ture spaces linked to each other via the chosen neural network.

As described by (9), we set a FIR type approximator model
having the parameter set and collect the
training data from the specified analog PI D controller. The
input to the neural model is from and the output is the set of
coefficients required to operate the FIR structure in (9). In order
to ensure the descriptiveness of the samples in and , a
number of trials have to be done and the mapping results have
to be recorded to build the training data set. For each case, the
identification toolbox of Matlab is utilized in determining the
parameters of the chosen FIR-based model. A block structure
of the emulator based on the below model is depicted in Fig. 2,
where the role of neural network is seen to provide the required
set of coefficients in

(9)

Fig. 3. Schematic view and variable definitions of a quadrotor type UAV.

TABLE I
PHYSICAL PARAMETERS OF THE QUADROTOR UAV

Clearly, when the structure of the approximator is fixed, such
a scheme indicates that a PI D controller can be generalized
at a certain level of accuracy and we choose an approximator
having the structure given by (9), which observes the error and
its past three values. We claim that the method proposed here is
practically valuable as its computational burden is very low as
a delay depth of 3 is highly promising to obtain good results on
a test setup described next.

III. QUADROTOR DYNAMICS

The vehicle considered in this study is illustrated in Fig. 3
and the physical parameters are listed in Table I. The dynam-
ical equations describing the quadrotor rotorcraft are given in
(10)–(15), where the first three of these equations describe the
dynamics in the Cartesian space, whereas the last three express
the dynamics in the Euler angles, i.e., the attitude. In (16)–(19),
the other variables and inputs seen in the UAV dynamics are
given

(10)

(11)

(12)

(13)

(14)

(15)
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Fig. 4. The structure of the control system.

where and stand for the angular
speed of the th propeller

(16)

(17)

(18)

(19)

The control problem here is to drive the UAV toward a pre-
defined trajectory in the 3D space by generating an appropriate
sequence of Euler angles, which need to be controlled as well.
The latter is called attitude control and the command signals to
which are produced by the Cartesian controller.

As seen from the definitions of s in (17)–(18), and the vari-
ables in Fig. 3, the dynamics involving Euler angles have a dif-
ferential nature. If the angular speed of a propeller is smaller
than the one along the same axis, than a rotation occurs in the
direction from fast one to slow one. With such a mechanism, it
becomes possible to realize any motion by appropriately sched-
uling the angular speeds of the propellers. On the other hand,
keeping the differences of the propellers lying on the same axis
constant, increasing or decreasing the angular speeds result in
the same motion taking place at different altitudes. According
to this discussion, one sees that the motion in the Cartesian space
is obtained by suitably driving the Euler angles to their desired
values. The control scheme has therefore two stages. The outer
control loop computes the desired Euler angles, and the inner
control loop (the attitude controller) computes s to observe
the desired motion.

In spite of the physics-based dynamical representation above,
when the problem is considered at the practical level, it is seen
that the physical connection in between the UAV and the con-
trollers is maintained at the pwm level, a certain interval of
which is only appropriate to drive the electronic speed con-
trollers and we utilize a neural network-based nonlinear module
to convert the controller output to pwm signal and install another
module to the UAV side to convert a pwm signal to s appropri-
ately, [24]. The diagram of the control system with these com-
ponents is illustrated in Fig. 4. Though we omit the details re-
garding the handshaking, it is evident that it introduces further
nonlinearity to the dynamical representation and contributes to
the complexity of the control problem, yet its simulations be-
come convincingly realistic. In the next section, the details re-
garding the flight as well as the associated difficulties are dwelt
on in detail with reference to the diagram seen in Fig. 4.

Fig. 5. The excitation signal used to generate necessary data sets.

IV. SIMULATION RESULTS

As an illustrative example, we consider how a neural net-
work-based approximator could imitate an analog PI D con-
troller. For this purpose, we will collect some data to train a
simpler model and test both controllers for the same task. We
consider the performance and computational complexity issues
to validate our claims.

The first stage of the neural network assisted emulation of
PI D control scheme is to train a neural structure. In this study,
we choose a neural network that has a single hidden layer con-
taining 20 neurons in each with hyperbolic tangent type neu-
ronal activation function. The tuning algorithm summarized in
the second section is utilized to train the neural network and a
total of pairs have been used during the training,
200 for checking routine that stops the training and 100 for the
test results discussed with the forthcoming figures. During the
training, we chose

, and . The neural network aided FIR type
approximator described by (9) is utilized.

After many trials to find out both simple and good performing
network structure, during the training, we set and this
has led to the adjustment of a total of 204 parameters by the
training scheme. The epoch error has a decreasing nature and
we used the excitation signal shown in Fig. 5. The training takes
1983 epochs and it is stopped by the checking routine detecting
an increase in for five consecutive epochs. The final value for
the cost in (4) is obtained as , which is similar to
values obtained for slightly more complicated neural configu-
rations and is acceptable for our goals. To be more explicit, the
results for the testing data set are shown in Fig. 6, where it is seen
that the two curves standing for each target and predicted FIR
coefficient are almost indistinguishable. A better indication of
the performance is to check the relative error. For the th output
of the neural network structure, we define the relative error as
given in (20). The presented results confirm that the selected
training data is learned well and it represents the target process
accurately as is less than 3% for the entire data set (see
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Fig. 6. The prediction performance for all four outputs.

Fig. 7. The prediction performance in terms of the relative error in (20).

Fig. 7). Expectedly, the performance is peculiar to the selected
operating conditions such as the exciting signal shown in Fig. 5.
Although a healthier method might be to excite the model by
white noise, our goal is not to obtain a match for higher frequen-
cies that are not realizable by the propulsion-based actuation
considered here. The chosen signal in Fig. 5 fairly represents
the likely signals in a flight course of a quadrotor type UAV. We
choose the shown excitation sequence to train the neural net-
work and proceed to the validation tests

%

(20)

In the flight simulations, we consider few different param-
eter configurations to demonstrate how useful the proposed ap-
proach is. The proposed scheme is utilized in the attitude con-
trol loop (inner loop) and we use classical controllers in the
outer loop. The overall representation of the control system is
depicted in Fig. 4, where it is seen that the observed states are

TABLE II
SIMULATION SETTINGS

corrupted by noise and the control system has a nested structure.
Denote the reference Cartesian positions and velocities by

, and . We define and
choose the altitude controller as given in (21)

(21)

Substituting (21) into (10) and (11), and adopting the small
angle approximation would let us obtain the dynamics below

(22)

(23)

In the above dynamics, and can be regarded as
the control inputs for observing the desired motion in Cartesian
space. To achieve this, the following choices are done:

(24)

(25)

where we set and
after a number of experiments. Having derived the reference
values for the roll and the pitch angles, we utilize the
neural network-based PI D controller explained in Section II
and illustrated in Fig. 2 to track these Euler angles to obtain the
desired motion. The yaw motion is undesired and we set .
The simulations have been carried out with the settings given in
Table II, where it is seen that the neural network-based control
scheme is expected to alleviate the difficulties caused by large
initial errors. Following is an itemized list of issues concerning
the presented results.

• The UAV developed in the laboratory is powered by
Lithium-Polymer type batteries and it is shown that the
outrunner brushless DC motors claim very high currents
causing a significant reduction in the battery voltage. This
causes an uncertainty to be alleviated by the controller as
the same input (pwm) signal causes different lift forces
since the battery voltage drops in time [24]. Due to the
space limit, the details are not presented here but the
change in the battery voltage is simulated as an exponen-
tially converging value starting from 11.1 to 9.9 Volts in
130 s of flight. The difficulty alleviated here is the effect
of modulation on the measured battery voltage, which
seems to be corrupted heavily and which needs a low
pass filtering to guide the propulsion model providing the
handshaking at pwm level. As shown in Fig. 4, we use a
low-pass filter for removing the
spurious content from the measured battery voltage. For
details regarding the power loss in batteries refer to [24].
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• Aside from the initial conditions given in Table II, the re-
maining set of initial conditions are chosen to be zero,
i.e., the vehicle is motionless initially. Since the goal is
to demonstrate the performance of the proposed neural
PI D control scheme, it is adequate to assume nonzero
positional initial values for the Euler angles.

• In order to demonstrate the disturbance rejection capa-
bility, the angular speeds of the vehicle have been perturbed
additively to simulate the effect of weather conditions, such
as wind. As described by (26), the perturbations modify the
angular speeds according to the altitude. The effect of the
wind disturbances is simulated as an additive component
that adds up to the angular speeds prescribed by the con-
troller

(26)

where , , , and s.
• The observations are noisy, the state vector composed

of the positions and velocities are corrupted by noise
sequences of power , which is considerable to test
the performance of the proposed control scheme.

• Finally, the implementation of fractional order differinte-
gration operators within the analog PI D controller need
to be discussed. During the simulations, the numerical im-
plementation the output of the PI D controller is ob-
tained through the use of well known Crone approxima-
tion, which prescribes a series of poles and zeros to build
a transfer function approx-
imating the desired operator spectrally, [25]. We choose

and a frequency range covering 0.001–1000 rad/s
to realize these operators for the comparison studies.

We choose following controller parameters to justify that the
PI D controller and its neural network-based emulator per-
form similar in terms of performance. We utilize a second sub-
script to denote the variables associated with a particular Euler
angle. The parameters of the controller have been set after a re-
markably rich set of tests requesting a decrease in to weaken
the differentiating effect and to strengthen the integrative effect
by increasing as gets larger. Similarly, the same effects
are reflected to the derivative and integral coefficients
as seen below

(27)

(28)

(29)

(30)

Fig. 8. Change in the battery voltage and results for the Cartesian space vari-
ables for analog PI D and neural controllers.

As seen clearly from (27)–(29), the parameters associated to
the yaw axis controller are visibly different from the roll
and pitch axes controllers. The control of the yawing motion re-
quires a special care as it is a difficult task to obtain a satisfacto-
rily convergent response, [26]. The altitude has been chosen as
the primary variable changing the parameters of the controller
to be operated. Naturally, the weather conditions change as the
altitude changes and a switching to a new controller structure
is needed. We test the analog PI D controller and the pro-
posed scheme for the same operating conditions below. Under
the aforementioned conditions, the results shown in Fig. 8 are
obtained. The top left subplot illustrates three trajectories in the
Cartesian space, namely, the desired path, the path followed by
the use of the analog PI D controller described by (1), and the
path followed by the use of the proposed technique. The sim-
ulated value of the battery voltage is shown in the middle left
subplot and its filtered value is shown on the bottom left subplot.
The change in the battery voltage is compensated appropriately
and the error trends shown in the right column are obtained.
The time evolution of the errors for both the analog PI D con-
troller and the proposed controller, and it is seen that the errors
caused by the use of both controllers are almost indistinguish-
able in all every axis of the Cartesian space. This is one impor-
tant result as the proposed technique simplifies the realization
of the analog PI D controller via coefficient prediction. The
results in the attitude are shown in Fig. 9, where the time evo-
lution of the Euler angles and the tracking errors are depicted.
The results on emphasize that the desired angles prescribed by
(24)–(25) are followed precisely and the yaw angle is stabilized
very quickly. The time evolution of the control signals are com-
pared in Fig. 10, where the essential motion taking place during
the early stage of the simulation is captured accurately and the
evolution as time progresses is mainly dominated by the quickly
changing activity. The two control signals resemble each other
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Fig. 9. Results for the Euler angles (attitude) utilizing the proposed neural con-
troller.

Fig. 10. Time evolution of the applied control signals for both analog PI D
controller and proposed neural controller.

and this shows that the proposed controller is a good substitute
for the analog PI D controller.

Having such a promising picture in front of us, one naturally
wonders the computational burden of the proposed method. We
utilize a neural network having structure 3-20-1 and hyperbolic
tangent type activation functions and obtain the necessary pa-
rameters to run (9). Together with (9), the time necessary to
compute the output is less than 20 s over one million runs
executed on an ordinary 2.26 GHz laptop. The order at mi-
croseconds indicate that the proposed technique, when consid-
ered with the performance associated to it, is as capable as its

analog counterpart, which has a 0.15 s of propagation time over
same number of trials. This comparison clearly indicates that
the proposed technique is significantly simpler than the analog
PI D controller.

V. CONCLUDING REMARKS

Fractional order systems and control have become an impor-
tant research field as some of the applications produce much
promising results compared to their integer order counterparts.
With this motivation, this paper considers an application of
PI D controller emulated by an artificial neural network
aided linear model. Due to the powerful mapping capability of
neural structures and the availability of fast and useful training
schemes, the problem of implementing a PI D controller
could be considered as a neural network-based coefficient
scheduling problem. The paper explains the procedure for gen-
erating the training data with a brief on Levenberg–Marquardt
optimization technique and applies the proposed controller to
a quadrotor type UAV, which displays a nonlinear and inex-
tricably intertwined dynamics involved with winds, powering
uncertainties and measurement noise. The proposed model
effectively emulates the analog PI D controller and pro-
vides extensive flexibility for microprocessor or FPGA-based
real-time applications, [27]. The paper:

• Describes an easily reconfigurable PI D controller
module making it possible to prototype adaptive PI D
control systems.

• Advances the subject area to the development of PI D
controllers that are emulated by particular models having
a simple structure.

• Enriches the subject area with the models that predict the
coefficients of a prespecified structure (e.g., FIR based) in-
stead of emulating a PI D controller directly. The latter
necessitates more complicated models entailing the obser-
vation of a significant amount of past inputs and outputs
(see [28] for such a case) and refer to (2) and (3) to see the
influence of the course of time on the current output.

• Makes it possible to develop the PI D control ap-
plications with computational simplicity and precision
enabling real time embedded realization on commer-
cial-off-the-shelf microcontrollers.

• Advances the subject area to the applications having in-
dustrial nature and entailing PI D type controller for best
performance.

• Describes a technique that can be extended to a large class
of intelligent systems. Though not elaborated here, the ap-
plications that prefer other forms of intelligence, such as
fuzzy logic, support vector machines, radial basis function
networks or their hybrid combinations can be used for the
function provided by the neural network component of the
presented approach. Although we utilize neural networks
here, one could follow the presented scheme for any of the
above architectures.

In summary, the paper demonstrates that the coefficients of a
simple structure can be scheduled accurately to achieve a well
performing closed-loop control system involving nonlinearities,
noisy observations, uncertainties, and stringent performance
expectations.
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