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Derivation of a parameter stabilizing training criterion for adaptive
neuro-fuzzy inference systems in motion control

M. Onder Efey, A. Murat Fiskiranz, and Okyay Kaynak}

This paper presents a novel training algorithm for adaptive neuro-fuzzy inference

systems. The algorithm combines the error back-propagatio n algorithm with the vari-

able structure systems approach. Expressing the parameter update rule as a dynamic

system in continuous time and applying sliding mode control (SMC) methodology to

the dynamic model of the gradient based training procedure results in the parameter
stabilizing part of training algorithm. The proposed combination therefore exhibits a

degree of robustness to the unmodelled multivariable internal dynamics of the gradient-

based training algorithm. With conventional training procedures, the excitation of this

dynamics during a training cycle can lead to instability, which may be diYcult to

alleviate owing to the multidimensionality of the solution space and the ambiguities
concerning the environmental conditions. This paper shows that a neuro-fuzzy model

can be trained such that the adjustable parameter values are forced to settle down

(parameter stabilization) while minimizing an appropriate cost function (cost optimi-

zation), which is based on state tracking performance. In the application example,

trajectory control of a two degrees of freedom direct drive robotic manipulator is

considered. As the controller, an adaptive neuro-fuzzy inference mechanism is used
and, in the parameter tuning, the proposed algorithm is utilized.

Nomenclature

cij centre of the membership function ·ij

d desired output

e observed output error

F output of the computationally intelligent

architecture

J cost function for tracking performance

JS cost of stability

K¿ proportional rate component parameter of the

switching scheme
~NN normalization operator in the adaptive

neuro-fuzzy inference system structure

N¿ change prescribed by the error back-

propagation algorithm

Q¿ constant rate component parameter of the

switching scheme

s¿ switching function for the parameter

TS sampling interval of update dynamics

uj jth input of the fuzzy inference system
V¿ Lyapunov function for the parameter ¿
w vector of ® ring strengths

wn vector of normalized ® ring strengths

¬i weighting factor

­ scaling factor for parameter stabilizing

law

" boundary layer parameter

± constant learning rate

²¿ variable learning rate for parameter ¿
·ij membership function of the jth input of the

ith rule

¼ij width of the membership function

¿ generic parameter of a computationally intel-

ligent system

¿* optimal value of the generic parameter

¢¿ change in the parameter ¿
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1. Introduction

Contrary to what is known in the realm of predicate

logic, representation of knowledge by fuzzy quantities

can provide extensive degrees of freedom if the task to

be achieved can be expressed better in words than in

numbers. The concept of fuzzy logic in this sense can

be viewed as a generalization of binary logic and refers

to the manipulation of knowledge with sets, whose

boundaries are unsharp. In the application domain,

the innovations in data mining, data fusion, sensor tech-

nology, recognition technology and fast microproces-

sors are ever increasingly encouraging the use of fuzzy

logic controllers, whose operating philosophy is suitable

to incorporate the expert knowledge into the design pro-

cedure. In conjunction with this, the interpretation of

the information content of fuzzy logic control (FLC) is

based on the subjective judgements, intuitions and the

experience of an expert. From this point of view, a suit-

able way of expressing the expert knowledge is the use of

IF antecedent, THEN consequent rules, which can

easily evaluate the necessary action to be executed for

the current state of the system under investigation.

Therefore the paradigm oŒers a possibility of designing

intelligent controllers operating in an environment, in

which the conditions are inextricably intertwined, sub-

ject to uncertainties and impreciseness.

One of the major problems in the training of fuzzy

logic controllers is the lack of stabilizing forces, the

existence of which prevents the unbounded growth in

the adjustable parameters. This is intimately related to

the analytic explanation of the internal dynamics of the

training strategy, which typically concern several tens of

variables even for the simple structures. Strictly

speaking, a method violating the stability requirements

is a potential danger from the safety point of view. In

this paper, the problem of training stability is elaborated

and an adaptive neuro fuzzy inference system is consid-

ered.

In the domain of fuzzy logic, behaviour of a system is

modelled through the use of linguistic descriptions.

Although the earliest work by Zadeh on fuzzy systems

has not received as much attention as it deserved in the

early 1960s, since then the methodology has become a

well-developed framework. The typical architectures of

fuzzy inference systems are those introduced by Wang

(1994, 1997), Takagi and Sugeno (1985) and Jang et al.

(1997). Wang (1994) constructed a fuzzy system having

Gaussian membership functions, a product inference

rule and a weighted average defuzzi® er. This architec-

ture is accepted as the standard method in most applica-

tions. Takagi and Sugeno (1985) changed the

defuzzi® cation procedure where dynamic systems were

used in the defuzzi® cation procedure. The potential

advantage of the method is that, under certain con-

straints, the stability of the system can be studied

(Passino and Yurkovich, 1998). Jang et al. (1997), pro-

posed an adaptive neuro-fuzzy inference system

(ANFIS), in which a polynomial was used as the defuz-

zi® er; see also the related literature (Nauck et al. 1997,

Efe and Kaynak 1999). The choice concerning the order
of the polynomial and the variables to be used in the

defuzzi® er are left to the designer.

In control engineering practice, stability and robust-

ness are of crucial importance. Because of this, the
implementation-oriented control engineering expert is

always in pursuit of a design, which provides accuracy

as well as insensitivity to environmental disturbances

and structural uncertainties. At this point, it must be

emphasized that these ambiguities can never be mod-

elled accurately. When the designer tries to minimize
the ambiguities by the use of a detailed model, then

the design becomes so tedious that its cost increases

dramatically. A suitable way of tackling with uncertain-

ties without the use of complicated models is to intro-

duce components based on variable structure systems

(VSS) theory into the system structure.
Variable structure control has successfully been

applied to a wide variety of systems having uncertainties

in the representative system models. The philosophy of

the control strategy is simple, being based on two goals.

First, the system is forced towards a desired dynamics
and, second, the system is maintained on that diŒeren-

tial geometry. In the literature, the former is named the

reaching mode, while the latter is called the sliding

mode. The control strategy borrows its name from the

latter dynamic behaviour, and is called sliding mode con-

trol (SMC).
The earliest notion of SMC strategy was constructed

on a second-order system in the late 1960s by

Emelyanov (1967). The work stipulated that a special

line could be de® ned on the phase plane, such that any

initial state vector can be driven towards the plane and
then can be maintained on it, while forcing the error

dynamics towards the origin. Since then, the theory

has greatly been improved and the sliding line has

taken the form of a multidimensional surface, called

the sliding surface, around which a switching control

action takes place.
Numerous contributions to VSS theory have been

made during the last decade, some of them are as fol-

lows. Hung et al. (1993) have reviewed the control

strategy for linear and nonlinear systems. In that

study, the switching schemes, putting the diŒerential
equations into canonical forms and generating simple

SMC-based systems, are considered in detail.

Application of the SMC scheme to robotic manipulators

and discussion on the quality of the scheme have been

presented in another study of Gao and Hung (1993).
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One of the crucial points in SMC is the selection of the

parameters of the sliding surface. Some studies devoted

to the adaptive design of sliding surfaces have shown

that the performance of control system can be re® ned

by interfacing it with an adaptation mechanism, which

regularly redesigns the sliding surface (Kaynak et al.

1984; Bekiroglu 1996). This eventually results in a

robust control system. The performance of the SMC

scheme is proven to be satisfactory in the face of

external disturbances and uncertainties in the system

model representation. The latest studies consider this

robustness property by equipping the system with com-

putationally intelligent methods. In some recent studies

(Erbatur et al. 1996, Byungkook and Ham 1998), fuzzy

inference systems are proposed for the SMC scheme.

The standard fuzzy system was studied, and the relevant

robustness analyses carried out. In particular, the work

presented by Byungkook and Ham (1998) emphasized

that the robustness and stability properties of soft-com-

puting-based control strategies can be analysed through

the use SMC theory. It is shown in the paper in this way

that the approach is robust, that is it can compensate the

de® ciencies caused by poor modelling of plant dynamics

and external disturbances.

The objective of this paper is to develop a stable

training procedure for ANFISs, which will enforce the

adjustable parameters to settle down to a steady-state

solution while minimizing an appropriate cost function.

This is achieved by performing a suitable mixture of

gradient-based parametric displacements (Rumelhart et

al.) and VSS-based stabilizing parametric displacements.

This paper is organized as follows. In } 2 the conven-

tional method followed in the gradient-based optimiza-

tion techniqueis summarized. In } 3 the derivation of the

SMC-based parameter stabilizing law is presented. In

} 4, the ANFIS architecture is considered and the

relevant formulation for the approach is given, and } 5

is devoted to the plant to be controlled in this study.

This is followed by the simulation studies in } 6.

Conclusions constitute } 7.

2. Training of neuro-fuzzy systems using gradient

descent

In this section, a widely used technique of parameter

adjustment is brie¯ y reviewed. The method was ® rst

formulated by Rumelhart et al. (1986) and is known

as error backpropagation in the related literature. The

approach has successfully been applied to a wide variety

of optimization problems. Using the nomenclature given

at the beginning of the paper, the algorithm can be

stated as follows:

e ˆ d ¡ F…¿; u†; …1†

J ˆ 1
2
e2; …2†

¢¿ ˆ ¡²¿
@J

@¿
: …3†

The observation error in (1) is used to minimize the cost

function in (2) by utilizing the rule described by (3):

¢¿ ˆ ²¿e
@F…¿; u†

@¿
: …4†

The minimization proceeds iteratively as given in (4), for

which the sensitivity derivative with respect to the gen-

eric parameter ¿ is needed. It is apparent that the

method is applicable to the architectures in which the

outputs are diŒerentiable with respect to the subject of
optimization.

3. Synthesis of the parameter stabilizing criteria by

using the variable structure systems approach

A continuous-time dynamic model of the parameter
update rule prescribed by the gradient descent technique

can be written as follows (in the analysis presented, the

dot over a parameter should be understood as the time

derivative):

¢ _¿¿ ˆ ¡ 1

TS

¢¿ ‡
²¿

TS

N¿: …5†

The above model is composed of the sampling time

denoted by TS, the gradient-based non-scaled parameter

change denoted by N¿ ˆ e …F…¿; u†=†¿ and a scaling

factor denoted by ²¿, for the selection of which a

detailed analysis is presented in the subsequent discus-
sion. Using the Euler ® rst-order approximation for the

derivative term, one obtains the following relation,

which obviously validates the constructed model in (5):

¢¿…k ‡ 1† ¡ ¢¿…k†
TS

ˆ ¡ ¢¿…k†
TS

‡
1

TS

²¿N¿…k†: …6†

This leads to the following representation:

¢¿…k ‡ 1† ˆ ²¿N¿…k†: …7†

If (4) and (7) are compared, the equivalence between the

continuous and discrete forms of the update dynamics is
seen. The value of the sampling period to be used is a

determining factor in validating the dynamic model in

(5). Assuming that the signal exciting the system in (5)

has smooth characteristics between successive sampling

instants, the dynamic model in (5) can be used as an

approximate model. This necessitates a su� ciently
small sampling period. However, there is a trade-oŒ

because the cost of reducing the sampling time causes

an increase in the total number of arithmetic operations

to be performed during a training course.
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The synthesis of the parameter stabilizing component

is based on the integration of the system in (5) with VSS

methodology. In the design of variable structure con-

trollers, one method that can be followed is the reaching

law approach (Hung et al. 1993). For the use of this
theory in the stabilization of the training dynamics, let

us de® ne the switching function as follows

s¿ ˆ ¢¿ ¡ ¢¿d ˆ ¢¿: …8†

Since the order of the system in (5) is one, the switching
function in (8) is selected as of zero order (Young et al.

1999), and it does not use any diŒerentiated quantity.

The design strategy in VSS technique requires the

desired values of the system state, which can be denoted

by ¢¿d. However, since the aim of the design is based

on the minimization of parametric displacements in
time, the desired value of the ¢¿ quantity is zero.

Therefore the switching function in (8) suitably ful® ls

the design requirements of VSS strategy. The adopted

reaching law is described by

_ss¿ ˆ ¡
Q¿

TS

tanh
s¿

"

± ²
¡

K¿

TS

s¿ ˆ ¢ _¿¿: …9†

This selection corresponds to the constant plus propor-

tional rate reaching mode dynamics. Details of the selec-

tion of reaching laws have been given by Hung et al.

(1993).
In (9), Q¿ and K¿ are the gains, and " is the width of

the boundary layer. Equating (9) and (5) and solving for

¢¿ yields the following:

¢¿ ˆ ²¿N¿ ‡ Q¿ tanh
s¿

"

± ²
‡ K¿s¿: …10†

With the solution given in (10), the update dynamics are

forced to behave as de® ned by (9), which is actually

stable dynamics de® ned by the adopted switching func-

tion. In the derivations presented below, a key point is

the fact that the system described by (5) is also driven by

²¿, which is known as the learning rate in the related

literature. Now we demonstrate that some special selec-

tion of this quantity leads to a rule that minimizes the

magnitude of parametric displacement. Let us de® ne the

following quantity in order to keep analytic comprehen-
sibility:

A¿ ˆ Q¿ tanh
¢¿

"

³ ´
‡ K¿ ¢¿: …11†

Now we have a model described by (5), and a solution

formulated by (10). If one chooses a positive de® nite

Lyapunov function as given by

V¿ ˆ 1
2
s2
¿ ˆ 1

2
…¢¿†2; …12†

the time derivative of this function must be negative

de® nite for stability in the parameter change (¢¿)

dynamics:

_VV¿ ˆ …¢¿†…¢ _¿¿†: …13†

Clearly the stability in parametric change space implies

convergence in the system parameters.

If (5) and (10) are substituted into (13), the following

constraint is obtained for stability in the Lyapunov
sense.

²2
¿ ‡ 1

N¿

…A¿ ¡ ¢¿†²¿ ¡ 1

N2
¿

A¿ ¢¿ < 0: …14†

Equation (14) can be rewritten in a more tractable form

as follows:

²¿ ‡ 1

N¿

A¿

³ ´
²¿ ¡ 1

N¿
¢¿

³ ´
< 0: …15†

Since A¿ and ¢¿ have the same signs, the roots of (15)

clearly have opposite signs. The expression on the left-

hand side assumes negative values between the roots.
Therefore, in order to satisfy the inequality in (15), the

learning rate must satisfy the constraint given by

0 < ²¿ < min

­­­­­
1

N¿

¢¿

­­­­­;

­­­­­¡ 1

N¿

A¿

­­­­­

Á !

: …16†

In (16), the interval of learning rate is restricted to posi-

tive values. This is because compatibility between the
gradient-based approaches and the proposed approach

must be preserved. An appropriate selection of ²¿ could

be as follows:

²¿ ˆ ­ min

­­­­­
1

N¿

¢¿

­­­­­;

­­­­­¡ 1

N¿

A¿

­­­­­

!

; 0 < ­ < 1:

Á
…17†

By substituting the learning rate formulated in (17) into
the stabilizing solution given in (10), the stabilizing com-

ponent ¢¿VSS of the parameter change formula is

obtained as

¢¿VSS ˆ ­ min …j¢¿j; jA¿j† sgn …N¿† ‡ A¿; …18†

where ¢¿ on the right-hand side is the ® nal update value
yet to be obtained. The law introduced in (18) minimizes

the cost of stability, which is the Lyapunov function

de® ned by (12). The question now reduces to the fol-

lowing: can this law minimize the cost de® ned by (2)?

The answer is obviously not, because the stabilizing cri-
teria in (18) is derived from the displacement of the par-

ameter vector denoted by ¢¿, whereas the minimization

of (2) is achieved when ¿ tends to ¿* regardless of what

the displacement is. In order to minimize (2), the par-

ameter change anticipated by gradient-based optimiza-

tion technique, which is reviewed in } 2, should
somehow be integrated into the ® nal form of parameter

update mechanism. As introduced in } 2, the error back-

propagation (EBP) algorithm evaluates a parameter

change as given by
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¢¿EBP ˆ ±N¿; …19†

where ± is the constant learning rate in the conventional
sense. Combining the laws (18) and (19) in a weighted

average, the following eventual parameter update law is

obtained.

¢¿ ˆ ¬1 ¢¿VSS ‡ ¬2 ¢¿EBP

¬1 ‡ ¬2

: …20†

The parameter update formula given by (20) carries

mixed information containing both the parametric con-

vergence, which is introduced by VSS part, and the cost
minimization, which is due to the EBP technique. The

balancing in this mixture is left to the designer by an

appropriate selection of ¬1 and ¬2, which are non-nega-

tive weight values. If the value of ¬1 is increased, the

VSS based update rule is given more importance. On the

other hand, increasing ¬2 causes the EBP part to dom-
inate the mixed displacement value. In the extreme

cases, in which ¬1 ˆ 0 or ¬2 ˆ 0, the eŒect of one of

the components disappears. More explicitly, setting ¬1

to zero leads to the ordinary EBP technique and the

problems of unbounded parameter growth arise, on
the other hand, setting ¬2 to zero eliminates the eŒect

of EBP part, that is the learning ability of the algorithm

is inactivated. Therefore, learning with small parameter

change eŒort can be achieved by suitably setting the

weight parameters ¬1 and ¬2.

4. Application to adaptive neuro-fuzzy inference

systems

ANFISs are realized by an appropriate combination of

neural and fuzzy systems. This hybrid combination

enables one to utilize both the verbal and the numeric
power of intelligent systems. As is known from the

theory of fuzzy systems, diŒerent fuzzi® cation and

defuzzi® cation mechanisms with diŒerent rule-based

structures can result in various solutions to a given

task. This paper considers the ANFIS structure with
the ® rst-order Sugeno model containing nine rules.

Gaussian membership functions with the product infer-

ence rule are used at the fuzzi® cation level. Fuzzi® er

outputs are the ® ring strengths for each rule. The

vector of the ® ring strengths is normalized and the

resulting vector is defuzzi® ed by utilizing the ® rst
order Sugeno model. The structure for two inputs and

one output is illustrated in ® gure 1. The rule structure is

as follows for a system having m inputs and one output:

IF u1 is Ui;1 and u2 is Ui;2 and . . . um is Ui;m;

THEN fi ˆ qi;1u1 ‡ ¢ ¢ ¢ ‡ qi;mum ‡ qi;m ‡ 1:

In the IF part of this representation, lower-case vari-

ables denote the inputs, and capital variables stand for

the fuzzy sets corresponding to the domain of each lin-

guistic label. The ANFIS output is clearly a linear func-
tion of the adjustable defuzzi® er parameters denoted by

qi;j. The system that is considered in this study uses

Gaussian membership functions as described by

·ij…uj† ˆ exp ¡
uj ¡ cij;

¼ij

³ ´2
" #

; …21†

where cij and ¼ij characterize the centre and width re-

spectively of the jth membership function of the ith rule.

The initial values of the membership functions are
selected such that the region of interest is covered appro-

priately. The overall realization performed by the system

considered is given by

F ˆ

X#rules

iˆ1

fi

Y#inputs

jˆ1

·ij…uj†

X#rules

iˆ1

Y#inputs

jˆ1

·ij…uj†
ˆ

Xrules

iˆ1

fiwni; …22†

where linear functions of input variables are used for

defuzzi® cation with the algebraic product aggregation

method. In (22), the vector of ® ring strengths denoted

by w is normalized and the resulting vector is repre-

sented by wn:

wni ˆ

Y#inputs

jˆ1

·ij…uj†

X#rules

kˆ1

Y#inputs

jˆ1

·kj…uj†
: …23†

With the de® nition given in (23), and the realization

described by (22), the adjustable parameter set is
selected as follows.

¿ ˆ fcij; ¼ij; qi;jgiˆ1;...;rules; jˆ1;...;inputs …24†

The relevant back-propagated error values are given by
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Figure 1. Architecture of the ANFIS.



Nqi; j
ˆ

ewniuj; 1 4 j 4 m ‡ 1;

wqni ; j ˆ m ‡ 1;

»
…25†

Nci;j
ˆ e… fi ¡ F†wni2

uj ¡ cij

¼2
ij

; …26†

N¼ij
ˆ e… fi ¡ f †w2

ni

…uj ¡ cij†2

¼3
ij

: …27†

Using the quantities formulated in (25)± (27), the part of

the update value that is responsible for the minimization
of the tracking error can be formulated as given in (19).

The parameter stabilizing part of the training signal is

evaluated by the use of (11) and (18). The ® nal form of

the mixed training criteria can now be constructed as a

weighted average of the prescribed values described by
(20).

5. Plant model

In this study, a two-degrees-of-freedom direct drive

robotic manipulator, which is illustrated in ® gure 2, is

used as the test bed. Since the dynamics of such a
mechatronic system are modelled by nonlinear and

coupled diŒerential equations, precise output tracking

becomes a di� cult objective owing to the strong inter-

dependence between the variables involved.
Furthermore, the ambiguities concerning the friction-

related dynamics in the plant model make the design

much more complicated. Therefore the methodology

adopted must use the methods of computational intelli-

gence in some sense.
The general form of the robot dynamics is described

by

M �³³ ‡ V…³; _³³† ˆ ½ ¡ fc …28†

where M…³†, V…³; _³³†, ½…t† and fc stand for the state

varying inertia matrix, the vector of Coriolis terms, the

applied torque inputs and the friction terms respectively.

The plant parameters are given in table 1 in standard

units.
If the angular positions and angular velocities are

de® ned as the state variables of the system, four coupled

and ® rst order diŒerential equations can de® ne the

model in state space. The terms seen in (28) are given

explicitly by

M…³† ˆ p1 ‡ 2p3 cos …³2†
p2 ‡ p3 cos …³2†

p2 ‡ p3 cos …³2†
p2

µ ¶
; …29†

V…³; _³³† ˆ
¡ _³³2…2 _³³1 ‡ _³³2†p3 sin …³2†

_³³2
1p3 sin …³2†

" #

: …30†

In the above, p1 ˆ 2:0857, p2 ˆ 0:1168 and p3 ˆ 0:1630.

The details of the plant model have been presented in

the Direct Drive Manipulator R&D Package User Guide

(IMI 1992).

6. Simulation studies

In the simulation studies presented, the plant introduced

in } 5 is controlled by the ANFIS analysed in } 4. The

main objective is to keep the update dynamics in a stable

region. This is achieved through a suitable combination
of gradient based optimization technique and the

strategy based on the VSS theory. For this purpose,

the control system structure is as illustrated in ® gure 3.

The reference velocity trajectory, described by

_³³d1;2 ˆ sin
2pt

5

³ ´
…31†

and depicted in ® gure 4, is used in all simulations with
zero initial errors. The settings used in the simulations

are given in table 2.

The results presented concern the tuning of all adjus-

table parameters of the ANFIS structure during the
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Figure 2. Physical view of the direct-drive robotic manipulator.

Table 1. Manipulator parameters.

Motor 1 rotor inertia I1 0.2670

Arm 1 inertia I2 0.3340

Motor 2 rotor inertia I3 0.0075

Motor 2 stator inertia I3 0.0400

Arm 2 inertia I4 0.0630

Motor 1 mass M1 73.0000

Arm 1 mass M2 9.7800

Motor 2 mass M3 14.0000

Arm 2 mass M4 4.4500

Arm 1 length L 1 0.3590

Arm 2 length L 2 0.2400

Arm 1 centre of gravity L 3 0.1360

Arm 2 centre of gravity L 4 0.1020

Axis 1 friction fc1 5.3000

Axis 2 friction fc2 1.1000

Torque limit 1 ½sat1 245.0000



learning process. The choice of the initial values of the

membership function parameters is made by trial and

error. In ® gures 5 and 6, the state tracking errors are

illustrated. In the former, VSS-based stabilizing criteria

are incorporated into the gradient technique while in the

latter, the results are obtained solely from the gradient-

based training procedure. Clearly, a comparison of the

error magnitudes suggests the use of the proposed tech-

nique. The second emphasis on the assessment of these

® gures is on the required time for observing a periodicity

in the error trends. This point is closely related to the

stabilizing property of the VSS-based information. As

can easily be seen from ® gure 5, the use of mixed update

values results in fast convergence with high tracking

precision. In ® gure 7, the produced control signals for

both links are illustrated. The smoothness observed in

the applied torques is another prominent feature of the

approach, which clearly prevents the excitation of the

high-frequency dynamics and produces physically

admissible control sequences whose limits are deter-

mined by the dynamics of the actuators.
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ANFIS 
CONTROLLER S 1  

_ 

 

STABLE 
TRAINER 

qd(t) 
q(t) 

t(t)=F(t) 

e(t) 

Parameter 
Update Signal 
Df(t) 

 
MANIPULATOR 

Figure 3. Control of the manipulator using the proposed

training method.

Figure 4. Reference position and velocity trajectories.

Figure 5. State tracking errors with the VSS-based criteria.

Figure 6. State tracking errors without the VSS-based criteria.

Table 2. The settings used in the simulations.

T S 2.5 ms

­ 0.1

± 0.02

¬1 3.0 for all i
¬2 2.0 for all i
Q 0.1

K 0.1

" 1.0

#rules (9 for each link)

#ANFIS inputs 2 (for each link)



In the training of the controllers, the sum of the

squared error values are de® ned to be the cost of

tracking whereas the squared sum of parametric changes

are de® ned to be the total cost of stability. These cost

functions are described by

J…t† ˆ 1
2
…e2

1 ‡ e2
2† …32†

and

JS…t† ˆ
X

¿

‰¢¿…t†Š2; …33†

and their time behaviours are illustrated in ® gure 7.

As can be inferred from ® gure 8, the parametric sta-

bilization performance of the proposed methodology is

highly promising. A remarkable property of the algor-
ithm presented is the fact that it operates on line.

Therefore, the di� culties that are likely to occur in

on-line learning and control are alleviated by the robust-

ness provided by the VSS technique. However, the use

of the proposed technique increases the computational
complexity compared with the cases in which the

ordinary EBP technique is utilized. For the applications

equipped with high-speed processors, the computational

burden can be alleviated and the above-mentioned con-

tribution of the proposed technique can be observed.

7. Conclusions

In this paper, a novel technique for improving the

learning performance of ANFIS is presented. An
approximate continuous-time dynamic model of the

EBP procedure is constructed and the VSS approach is

incorporated into the model of the parameter update

law. In this procedure, the gradient descent method is

responsible for the minimization of squared error in (32)
while the VSS-based law is responsible for reducing the

tendencies towards instability caused by the possible

instantaneous large displacements evaluated by the

gradient technique.

The conventional approaches suŒer from some handi-
caps, such as imperfect modelling, noisy observations or

time varying parameters. If the eŒects of these factors

are transformed to the cost hypersurface, whose dimen-

sionality is determined by the adjustable design par-

ameters, it is evident that the surface may have

directions along which the sensitivity derivatives
assume large values. In these cases, gradient based opti-

mization procedures are likely to evaluate large para-

metric displacements, which can eventually lead to a

locally divergent behaviour. In control engineering prac-

tice, such a behaviour constitutes a potential danger
from a safety point of view. The approach presented

in this paper takes care of the instantaneous ¯ uctuations

in parameter space. Since the VSS technique is well

known for its robustness to structural uncertainties

and environmental disturbances, an appropriate combi-
nation of the EBP technique and the VSS theory can

eliminate the handicaps stated above. The ¯ uctuations

that are most likely to occur in the parameter space

during training are dampened out. The combination is

therefore a good candidate for safe parameter tuning.

In the application example presented, the results con-
® rm the prominent features of the approach, which are

discussed in the previous section. The algorithm is

applicable to any neuro-fuzzy system model provided

that the model output is diŒerentiable with respect to

the parameter of interest.
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