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Abstract. In this paper, a novel parameter tuning strategy for a class of controllers is discussed. The
mathematical background of the algorithm is based on variable structure systems theory, which is well
known with its robustness to systems having uncertainties and imprecision in the representative model.
Since the course of modeling is concerned primarily with the dominant behavior, the nonlinearities existing
in the system dynamics, external disturbances and plant-model mismatches require the control engineers to
design controllers, which adapt the design parameters to alleviate the stated difficulties. The method
introduced in this study is applicable to controller structures, whose outputs are linear in the adjustable
parameters. In order to demonstrate the performance of the proposed technique, control of a cement milling
circuit is studied with time-varying set values, time-varying plant parameters and a considerable amount of
observation noise.
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1. INTRODUCTION

Nonlinear behavior, uncertainties and the existence of
external disturbances constitute the prime difficulties,
which are frequently encountered and which are to be
alleviated by a suitably designed control strategy.
Among many approaches, design based on
linearization maintains its popularity since the field of
nonlinear control still does not offer systematized
procedures. Cement mill circuit discussed in this paper
is one particular example revealing a highly nonlinear
behavior. The linearization technique for such systems
restricts the designer to focus on some predefined
operating conditions, i.e. the operating range of the
controller gets narrower and another crucial problem
arise. Namely, the instabilities that can occur during
the transition between local regions of the state space.
The solution is either to increase the number of local
regions, which increases the computational cost and
decreases the realization feasibility, or to use learning
control strategies.

In the literature, learning control has widely been
studied and numerous works have been presented in
connection with VSS based learning design [1-3]. The

background of the study in this paper goes firstly to the
work presented by Sira-Ramirez et al [1], in which, a
sliding mode strategy for adaptive learning in an
Adaptive Linear Element (ADALINE) has been
discussed. The proposed method has been applied for
the inverse dynamics identification of a Kapitsa
pendulum by assuming the bounds of uncertainty
constant. Yu et al [2] has developed an adaptive
uncertainty bound dynamics. In the above mentioned
references, the need for the availability of the target
signal [1] and due to the noisy observations, the
gradually increasing behavior of the uncertainty bound
parameter [2] constitute the fundamental problems
restricting the physical applicability. In [3], Parma et al
propose another technique for using VSS theory in
learning. Beyond the need for having the target signal,
the method practically suffers from the evaluation of
some numerical derivatives. More explicitly, if there is
noise on the measured quantities, the user must either
filter the signals, which would necessitate a costly
hardware, or be confined to noise-free operating
environments.

Although there are direct methods for designing the
learning strategy, one might focus of the improvements
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on an existing strategy by utilizing the VSS technique.
In [4-5], Efe et al demonstrate that the gradient based
strategies can be modeled approximately as dynamical
systems and a VSS based stabilization technique can
be developed to reduce the marginally stable behavior
taking place around origin. In essence, the algorithm
presented in [4-5] aims to reduce the noise sensitivity
of the gradient techniques. The drawback of what is
discussed in these references is the large computational
cost.

From this point of view, it should be clear that the
quantification of learning, together with strict design
considerations is a complex problem, which is not at
the stage of analytic generalization. However, in some
studies, the qualitative analysis can be incorporated
into the design yielding satisfactory results [6].

In this paper, a dynamical model for the learning
strategy in the weights of an ADALINE controller is
developed. The method is based on the work in [1,6].
The primary difference from [1] is the use for control
purpose, and that from [6] is the composition of the
input signal driving the controller. Here, the controller
is driven by the tracking error, the integral of the
tracking error and a constant bias whereas in [6], the
derivative of the tracking error is used instead of the
integral action.

The organization of this paper is as follows: The
following section describes the dynamics of the plant
under control. The third section presents the proposed
form of the learning strategy. The simulation results
are discussed in the fourth section and the concluding
remarks are given at the end of the paper.

2. CEMENT MILLING CIRCUIT

A cement milling circuit depicted in Fig. 1 is an
industrial process, which takes raw material as input
and which produces cement having the desired
fineness. The raw material enters to the classifier after
grinding process in the mill. The classifier separates
the incoming material into two parts. The refused
material i.e. the material that is not in the desired
fineness is sent back to the mill for regrinding.
Accepted material goes to the other stages of the
production as the output of the cement milling circuit.
The fineness of the output material is adjusted in the
supervisory level by setting either the desired product
flow rate or tailings (refused material) flow rate and
mill load [7-8].

The most common control technique for the cement
milling circuit uses the proportional and integral
control actions (PI). In this control technique, there are
one controller output and one desired controlled

variable, which are mostly classifier speed and tailings
flow rate respectively. The drawback of such a control
method is the fact that there is no control over the feed
flow rate and correspondingly on the mill load. In
practice, the mill load is an important variable because
it determines the energy consumption and the
efficiency of the circuit. Moreover, the excess load
which is resulted by PI control in the mill causes the
interruption of the grinding process.

Another method for controlling cement milling circuits
uses the linearized mathematical model of the circuit
with two controller outputs (feed flow rate and
classifier speed) and two controlled variables (mill
load, either product flow rate or tailings flow rate) [7-
8]. The problems related to the linearization have
already been mentioned.

A recent contribution to the cement milling circuit
control focuses on a multivariable nonlinear predictive
control technique [8]. Although this technique gives
satisfactory performance in terms of robustness and
stability, the design of the controller depends strictly
on the mathematical model of the plant.

The mathematical representation of the cement milling
circuit is described in (1)-(3). Clearly, as given in (4)-
(5), the dynamics is highly nonlinear and involve strict
interdependencies between the variables.
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In these equations, z is the mill load (tons). The
variables yf and yr represent product flow rate (tons/h)
and tailing flow rate (tons/h) respectively. The control
inputs to the system are denoted by u and v, which are
feed flow rate (tons/h) and classifier speed (r/min)
respectively. The hardness of the material in the mill is
denoted by d. This quantity can independently vary and
its value is determined according to a reference
hardness value taken as unity.
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Magni et al [8] has developed the model above. In this
reference, the model is validated and the responses
have comparatively been presented. Briefly, the model
validation is made by matching the step responses of
the mathematical model and the real system. In the
above equations, the dynamics describing the behavior
of the mill load, product flow rate and tailing flow rate
are stated. The control problem is to maintain a desired
mill load together with a desired product flow rate,
which are the two of the states selected in this paper
and in [8]. It should be noted that the third state
variable is automatically determined by the other two.
Therefore, the designer might choose the tailings
instead of the product flow rate. Since the efficiency of
the process in terms of energy consumption and
production is dependent on the load on the mill, the
mill load must be one of the states that is to be kept
under control.

3. NONLINEAR LEARNING CONTROL
APPROACH

It should be apparent to the reader that the system
described above has two control inputs, and the
designer is to come up with two controllers. Since the
structures of the controllers are the same in this paper,
we present the approach generically.

In this section, it is assumed that the physical
constraints on the controller outputs put a bound on
adjustable parameter magnitudes (RGR�BG), time

derivative of the input vector ( Ω<Ω
�

� B ) and the time

derivative of the desired output of the controller
(

d
Bd ττ

�

� < ).

The controller is described in (7), in which the
adjustable parameter vector is as described in (8), and
the input vector driving the controller is given in (9).
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In above, e is the error on the mill load for the first
controller. Similarly for the second controller, e
represents the error on the product flow rate. Defining
the error at the output of the generic controller as in
(10), one can consider the Lyapunov function in (11)
as a suitable function for describing the learning
performance. The time derivative of the function is as
given by (12).
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Proposition: For a controller structure described in (7),
the adoption of the parameter tuning strategy as in (14)
leads to the stability in the sense of Lyapunov.
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Proof: If (14) is substituted into (13), the error
dynamics in (15) is obtained. Using the bounds of the
uncertainties mentioned at the beginning of the section
leads to (16).

( ) d
T

cc Gee τζ �

�

� −Ω+−= sign (15)

( )
( ) cG

cd
T

c

eBBB

eGeV

d
    

 

ζ

τζ

τ −+<

−Ω+−=

Ω �
�

�

��

(16)

In order to have a negative time derivative for the
Lyapunov function in (11), the parameter ζ must
satisfy the following relation.

d
BBBG τζ

�
�

+> Ω (17)

The analysis presented aims to maintain the negative
definiteness of the Lyapunov function in (11), which is
an instantaneous cost measure. It is apparent that the
use of the presented analysis in control applications
entails the desired values of the controller outputs.
Therefore, for the applications in which the desired
signals are available, the method can easily be used
without any modification.

In this part, parallel to the philosophy of variable
structure controller design procedure, a switching
function is defined and described by (18). The symbol
e seen in (18) is the discrepancy between the reference
state value and observed state value. It should here be
noted that since the dynamics under investigation is a
first order one, the dimension of the sliding
hypersurface is equal to zero, which is apparent from
(18).
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s=e (18)

If one replaces ec of (14) with s of (18), it is possible to
prove that the Lyapunov function in (19) is minimized
in time and its time derivative is enforced to have
negative values due to the adjustment strategy in (14).

2

2

1
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For this case, the selection of ζ values must be
reasonably large for maintaining the sliding motion.
The details of the analysis are not included due to the
space limit. For an in-depth discussion, the reader is
referred to [6].

4. SIMULATION STUDIES

In the simulations, the proposed control strategy has
been utilized to produce the desired control inputs. For
this purpose, the plant is kept under an ordinary
feedback loop. In order to demonstrate the efficiency
of the approach, the observed state variables are
corrupted by a Gaussian distributed random sequence
having zero mean and variance equal to 0.0165.
Furthermore, the hardness parameter d has been set to
unity until t=2.1h, beyond this time the parameter
abruptly jumps up to 1.34. The simulation stepsize has
been chosen as 18 seconds, and the final time has been
set to 9 hours. The values of the controller parameters
and the system states are initialized as follows:
yf(0)=120; yr(0)=0; z(0)=55; Gp1(0)=-5; Gc1(0)=-5;
Gp2(0)=10; Gc2(0)=10; e1(0)=0; e2(0)=0. The
uncertainty bound parameters are selected as: ζyf=12
and ζz=17. In order to reduce the effect of chattering,
the sign function has been replaced with a smooth
equivalent described as:

( )
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sign
+

≈
x

x
x (20)

In addition to these, the desired value of the mill
load (z) is set to 75 tons, and the behavior in Fig. 2 is
obtained. The desired value of the product flow rate
(yfd) is set to 120 tons/h and the result in Fig.3 is
observed. As mentioned earlier, the tailings flow rate
(yr) settles down to the solution imposed by the other
two state variables and is depicted in Fig. 4. In Figs. 5-
6, the error on the mill load and the error on the
product flow rate is illustrated. Clearly, the behavior is
convergent and small magnitude deviations occur due
to the noise in the observed state variables. Fig. 7
displays the behavior of the applied feed flow rate (u),
and the behavior of the applied classifier speed (v) is
depicted in Fig. 8. Lastly, the time evolution of the
adjustable controller parameters are illustrated in Fig.

9. Note that the parameters evolve convergently and
remain bounded.

5. CONCLUSIONS

In this paper, a nonlinear learning control technique is
discussed. The method is based on VSS theory, which
is well known with its robustness to unmodeled
dynamics and disturbances. The proposed scheme has
been tested on a validated mathematical model of a
cement milling circuit [7-8], which is highly nonlinear,
and which has three state variables with two control
inputs.

The results presented demonstrate that the proposed
technique is useful in control of such complex systems
both in the sense of tracking accuracy and in the sense
of robustness and computational simplicity.
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Figure 1. Block diagram of the cement milling circuit
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Figure 2. Behavior of the mill load (z)
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Figure 3. Behavior of the product flow rate (yf)
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Figure 4. Behavior of the tailings flow rate (yr)
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Figure 5. The error on the mill load
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Figure 6. Ther error on the product flow rate
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Figure 7. Behavior of the applied feed flow rate (u)
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Figure 8. Behavior of the applied classifier speed (v)
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Figure 9. Time evolution of the parameters of the two
controllers
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