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Abstract: Adaptive neuro-fuzzy inference systems
exhibit both the numeric power of neural networks and
verbal power of fuzzy inference systems. Particularly in
control applications, the prime difficulty in selecting the
parameters of such systems stems from the
unavailability of the desired control inputs. In this
paper, a novel approach is presented for the
establishment of a sliding mode in the plant under
control. The approach presented adjusts solely the
parameters of the defuzzifier. At the adjustment stage, a
dynamic adaptation law is proposed and it is proved
that the particularly chosen form of the adaptation
strategy creates a sliding mode in the plant behavior
while the parameters of the controller are also in a
sliding mode. In the simulations, the dynamic model of
D� ��GRI� GLUHFW� GULYH� URERWLF� PDQLSXODWÕU� LV� XVHG�� ,W� LV
observed that the method discussed is highly robust
against the disturbances like varying payload
conditions and noisy observations.

I. INTRODUCTION

Systems having structural uncertainties or a known
complicated structure are difficult to control. Modeling
of the uncertainties or handling the deterministic
complexity are typical problems frequently encountered
in the field of systems and control engineering. From
this point of view, the designer is generally in pursuit of
best utilization of what is known about the system in
hand. Sometimes the knowledge about the system is
best expressed in words. If the response of the system
can be expressed in certain regions of the input space,
the designer can come up with some IF-THEN
statements, which constitute the basis of the fuzzy
inference systems.

Fuzzy Inference Systems are the most popular
constituent of the computational intelligence area
because of their ability to represent human expertise in
the form of IF antecedent THEN consequent statements.
In this domain, the system behavior is modeled through
the use of linguistic descriptions. Although the earliest
work by Prof. Zadeh on fuzzy systems was not paid as
much attention as it deserved in early 1960s, since then

the methodology has become a well-developed
framework. The typical architectures of fuzzy inference
systems are those introduced by Wang [1-2], Takagi
and Sugeno [3], and Jang [4]. In [1], a fuzzy system
having Gaussian membership functions, product
inference rule and weighted average defuzzifier is
discussed. Takagi and Sugeno change the
defuzzification procedure where dynamic systems are
used for this purpose. The potential advantage of the
method is that, under certain constraints, the stability of
the system can be studied. Jang et al [4] propose an
Adaptive Neuro Fuzzy Inference System (ANFIS), in
which polynomials are used in the defuzzification stage.
This structure is commonly seen in the related literature
[5-6] and is used in this paper too. The choice
concerning the order of the polynomials and the
variables to be used in the defuzzifier are left to the
designer. Neural networks, on the other hand, are well
known with their ability in generalizing the data and
tolerating the faults. Therefore it is reasonable to expect
that the ANFIS structure, which is a suitable
combination of neural networks and fuzzy inference
systems, can exhibit the above mentioned features and
can successfully be used in control engineering practice.

In control engineering practice, stability and
robustness are of crucial importance. Because of this,
the implementation-oriented control engineering expert
has always been in pursuit of a design, which provide
accuracy as well as insensitivity to environmental
disturbances and structural uncertainties. At this point,
it must be emphasized that these ambiguities can never
be modeled accurately. When the designer tries to
minimize the ambiguities by the use of a detailed
model, then the design becomes so tedious that its cost
increases dramatically. A suitable way of tackling with
uncertainties without the use of complicated models is
to introduce Variable Structure Systems (VSS) theory
based components into the system structure.

Variable Structure Control (VSC) has successfully
been applied to a wide variety of systems having
uncertainties in the representative system models. The
philosophy of the control strategy is simple, being based
on two goals. First, the system is forced towards a
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desired dynamics, second, the system is maintained on
that differential geometry. In the literature, the former
dynamics is named the reaching mode, while the latter
is called the sliding mode. The control strategy borrows
its name from the latter dynamic behavior, and is called
Sliding Mode Control (SMC).

Earliest notion of SMC strategy was constructed on
a second order system in the late 1960s by Emelyanov
[7]. The work stipulated that a special line could be
defined on the phase plane, such that any initial state
vector could be driven towards the plane and then be
maintained on it, while forcing the error dynamics
towards the origin. Since then, the theory has greatly
been improved and the sliding line has taken the form
of a multidimensional surface, called the sliding surface
around which a switching control action takes place.

Numerous contributions to VSS theory have been
made during the last decade, some of them are as
follows: Hung et al [8] has reviewed the control
strategy for linear and nonlinear systems. In [8], the
switching schemes putting the differential equations
into canonical forms and generating simple SMC based
controls are considered in detail. Gao et al [9], apply the
SMC scheme to robotic manipulators and discuss the
quality of the scheme. The latest studies consider this
robustness property by equipping the system with
computationally intelligent methods. In [10] and [11],
fuzzy inference systems are proposed for SMC scheme.
A standard fuzzy system is studied and the relevant
robustness analyses are carried out. Particularly, the
work presented in [10] emphasizes that the robustness
and stability properties of intelligent control strategies
can be studied through the use SMC theory. It is shown
in the paper in this way that the approach is robust i. e.
it can compensate the deficiencies caused by poor
modeling of plant dynamics and external disturbances.

In [12-13], it is demonstrated that the theory of VSS
can well be used for the purpose of learning. The
method discussed is based on the stabilization of
gradient based training strategies with the aim of
reducing the parametric change effort.

The method discussed in this paper is first proposed
by Sira-Ramirez and Colina-Morles for learning in
Adaptive Linear Elements (ADALINE) [14]. The paper
gives the example of an inverse dynamics identification
of a Kapitsa pendulum with a single ADALINE. Yu et
al discuss the same algorithm for ADALINE with the
improvement on uncertainty bound adaptation [15]. The
strategy adopted is based on the adaptive adjustment of
uncertainty bounds. The bound adaptation strategy in
[15] works well, as long as there is no noisy
observations. Otherwise, once the mean value of the
error remains close to the origin, the mechanism starts
integrating the absolute value of the noise signal, which
regularly gives increments to the uncertainty bound
parameter. This causes instability in the long run.
Therefore, in this paper a constant bound is adopted.
The approach presented in this paper uses the
background discussed in [14-15]. The primary
difference is that the method is modified to establish a

sliding mode in the phase plane of the plant under
control, while keeping the controller parameters in an
equivalent sliding motion.

This paper is organized as follows: Second section
describes the ANFIS architecture, the following section
presents the derivation of the learning algorithm. In the
fourth section how the SMC design is performed is
discussed. The next section describes the plant used as
the test bed. In the sixth section, the simulation results
are presented. Conclusions constitute the last part of the
paper.

5. ADAPTIVE NEURO FUZZY INFERENCE
SYSTEMS (ANFIS)

Adaptive Neuro-Fuzzy Inference Systems are
realized by an appropriate combination of neural and
fuzzy systems. This hybrid combination enables to
utilize both the verbal and the numeric power of
intelligent systems. As is known from the theory of
fuzzy systems, different fuzzification and
defuzzification strategies with different rule base
structures can result in various solutions to a given task.
This paper considers the ANFIS structure with first
order Sugeno model containing nine rules. Bell shaped
membership functions with product inference rule are
used at the fuzzification level. Fuzzifier outputs the
firing strengths for each rule. The vector of the firing
strengths is normalized and the resulting vector is
defuzzified by utilizing the first order Sugeno model.
The structure for two inputs and one output is illustrated
in Fig. 1 and a sample rule is described below for m-
input one output ANFIS.

IF        u1 is Ui,1 AND u2 is Ui,2 AND … AND um is Ui,m

THEN fi  = Yi,1u1+…+ Yi,mum+Yi,m+1

In the IF part of this representation, lowercase
variables denote the inputs, uppercase variables stand
for the fuzzy sets corresponding to the domain of each
linguistic label. The ANFIS output is clearly a linear
function of the adjustable defuzzifier parameters
denoted by Yi,j. The membership functions used are
described by (1) in which, cij denotes the center of ith

rule’s jth membership function. aij and bij determine the
shape of the function. The parameters of the
membership functions are selected such that the region
of interest is covered appropriately. The selection is
depicted in Fig. 2. The overall realization performed by
the system considered is given in (2), where linear
functions of input variables are used as defuzzifier with
algebraic product aggregation method.
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In (3), the vector of firing strengths is normalized and
the resulting vector is represented by wn. With the
definition given in (3), and the realization described by
(2), the controller output can be expressed more
compactly as follows.

uYwF T
n

~ = (4)

where,
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3. DERIVATION OF THE LEARNING
ALGORITHM

In this section, it is assumed that the physical
constraints require the following inequalities to hold
true.

nwnuuY BwBuBuBY
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If one defines the adjustable parameter matrix as
given in (6), defining the error at the output of the
controller as in (9), the Lyapunov function in (10) could
be a suitable function for describing the learning
performance. The time derivative of the function is as
given by (11).

dc FFe −= (9)
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where,

dc FFe &&& −= (12)

In order to evaluate the expression in (11), we have the
following relation:
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Theorem: If the dynamic defuzzification strategy is
adopted as described in (14), the learning strategy
becomes stable in the sense of Lyapunov.

( )cT
n

T
n

T
n ek

uuww

uw
Y sign~~

~
−=& (14)

Proof: If (14) is substituted into (13) with the aid of (9),
(12), (4) and (13), the error dynamics in (15) is
obtained. Using the bounds of the uncertainties
mentioned at the beginning of the section leads to (16).
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In order to have a negative time derivative for the
Lyapunov function in (10), the parameter k must satisfy
the following inequality with the fact that Bwn = 1.
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4. SLIDING MODE CONTROL DESIGN

The analysis presented in the previous section aims
to minimize the Lyapunov function in (10), which is an
instantaneous cost measure used in most neuro-fuzzy
control strategies. It is apparent that the use of the
presented analysis in control applications entails the
desired values of the controller outputs. Therefore, for
the applications in which the desired signals are
unavailable, the method cannot be used without any
modification.

In this part, parallel to the philosophy of variable
structure controller design procedure, a switching
function is defined and described by (18). The symbol e
seen in (18) is the discrepancy between the reference
state value and observed state value.

ees λ+= & (18)

If one replaces ec of (14) with s of (18), it is
straightforward to prove that the Lyapunov function in
(19) is minimized in time and its time derivative is
enforced to have negative values due to the adjustment
strategy in (14).
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For this case, the selection of k values must be
reasonably large for compensating the bounds
introduced with the new selection. The details of the
analysis are not included due to the space limit.

5. PLANT MODEL

In the simulations the dynamic model of a two
degrees of freedom direct drive robotic manipulator,
which is illustrated in Fig. 3, is used as the test bed.
Since the dynamics of such a mechatronic system is
modeled by nonlinear and coupled differential
equations, precise output tracking becomes a difficult
objective due to the strong interdependency between the
variables involved. Besides, the ambiguities on the
friction related dynamics in the plant model make the
design much more complicated. Therefore the
methodology adopted must be intelligent in some sense.
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The general form of robot dynamics is described by

(20) where Μ(θ), V( θθ &, ), τ and fc stand for the state
varying inertia matrix, vector of Coriolis terms, applied
torque inputs and friction terms respectively. The plant
parameters are given in Table 1 in standard units.

( ) ( ) cfVM −=+ τθθθθ &&& , (20)

If the angular positions and angular velocities are
described as the state variables of the system, four
coupled and first order differential equations can define
the model. In (21) and (22), the terms seen in (20) are
given explicitly.
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In above, p1 = 2.0857+0.0576Mp, p2 =
0.1168+0.0576Mp and p3 = 0.1630+0.0862Mp. Here Mp

denotes the payload mass. The details of the plant
model are presented in [14].

Table 1. Manipulator Parameters

Motor 1 Rotor Inertia 0.2670 I1

Arm 1 Inertia 0.3340 I2

Motor 2 Rotor Inertia 0.0075 I3

Motor 2 Stator Inertia 0.0400 I3C

Arm 2 Inertia 0.0630 I4

Motor 1 Mass 73.000 M1

Arm 1 Mass 9.7800 M2

Motor 2 Mass 14.000 M3

Arm 2 Mass 4.4500 M4

Arm 1 Length 0.3590 L1

Arm 2 Length 0.2400 L2

Arm 1 Center of Gravity 0.1360 L3

Arm 2 Center of Gravity 0.1020 L4

Axis 1 Friction 5.3000 fc1

Axis 2 Friction 1.1000 fc2

Torque Limit 1 245.00 τ1max

Torque Limit 2 39.200 τ2max

6. SIMULATION RESULTS

In the simulation studies presented, the plant
introduced in the fifth section is controlled by the
proposed control scheme. The aim is to produce some
torque signals that establish a sliding motion in the
phase plane for each link. As the controller, the
architecture discussed in the second section is adopted
with nine rules (R=9) and two inputs (m=2) for each
link. The structure of the control system is as illustrated
in Fig. 4, in which the plant is in an ordinary feedback
loop. Based on the tracking error vector, first the value
of ( )ees &,  is evaluated and this quantity is applied to the

adjustment mechanism. In evaluating the value of the
quantity s, the slope of the switching surface (λ) has
been set to 0.5.

In practical implementations a number of difficulties
are encountered, which make it difficult to achieve an
accurate trajectory tracking. The simulation studies
carried out address these difficulties. The first difficulty
to be alleviated is the varying payload conditions, which
introduces abrupt changes in the dynamics of the
system under control. As the reference trajectory
illustrated in Fig. 5. implies, the motion starts with no
payload. At time t=2 sec, a payload of 2 kg is grasped
and released at time t=5 sec. The same variation is
repeated at time t=9 sec and t=12 sec. After the time
t=15, the manipulator is kept motionless. The second
difficulty is the existence of observation noise. The
information used by the controller is corrupted by a
Gaussian distributed random noise having zero mean
and variance equal to 33e-6. The peak magnitude of the
noise signal is within ±1 with probability very close to
unity. The third difficulty is the nonzero positional
initial conditions. In order to demonstrate the reaching
mode performance of the algorithm, the first link is
moved to π/50 radians and the second link is moved to
–π/50 radians initially.

Under these conditions, the state tracking error
graph in Fig. 6 is obtained. The trend in position and
velocity errors clearly stipulate that the algorithm is
able to achieve precise tracking objective. The motion
in the phase plane is illustrated in the top row of Fig. 7.
The upper subplots of the figure show that for both
links, after a fast reaching mode, a sliding mode is
enforced and is maintained by producing a suitable
control signal. In the bottom row of the figure, it is
shown for both links that the Lyapunov function in (19)
is minimized. In order to show the minimization activity
of the algorithm presented, the vertical axes for these
subplots are selected as logarithmic. It is seen that some
small magnitude spikes occur in time and they are
dampened out quickly. We relate these spikes to the
difficulties stated above. What should be emphasized as
a last point is the torque signal produced by the
controller. As seen in Fig. 8, the controller outputs are
directly applied to the manipulator without exceeding
the limits of the applicable control ranges. The control
signal has a smooth characteristic, which does not
violate the potential limits of the actuators.

During the simulations k1, k2 and the sampling rate
have been set to 10000, 1000 and 2.5 msec respectively.
Furthermore, in order to reduce the chattering effect in
the sliding mode, the function in (23) has been used
instead of the sign function in the dynamic
defuzzification strategy described in (14).

( )
05.0

sign
+

≈
c

c
c e

e
e (23)

7.  CONCLUSIONS

In this paper, a novel method for establishing a
sliding motion in the phase plane of a nonlinear plant is
discussed. The method is based on the adoption of a
dynamic defuzzification strategy in an adaptive neuro-
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fuzzy inference system used as the controller. It is seen
that the algorithm discussed is able to compensate
deficiencies caused by the imperfect observations of the
state variables, abruptly changing plant dynamics,
initial condition errors and complex plant dynamics.
From these points of view, the method proposed is
highly promising for control purposes.
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Figure 3. Physical structure of the manipulator

Figure 4. Structure of the Control System
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