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Abstract: This paper presents a method for model reference control of a cement-milling
circuit that has been studied previously. The approach presented is based on the
experimentally justified model developed by Breugesen (1996), and derives the form of
control vector with the goal of driving the behavior of the system to that of a desired
model. The derivation is based on the Lyapunov theory, and the results observed confirm
the tracking claims of the paper. Copyright © 2002 IFAC
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1. INTRODUCTION

Control of industrial processes has been the focus a
number of research studies. The techniques studied
in the area of nonlinear control have successfully
been applied and some of which have been
exemplified in Breusegen et al (1996); Magni et al
(1999), Grognard et al (2001), Dagci et al (2001),
Clarke (1988) and Thomas (1991). Particularly the
model used in this paper has constituted a prime
example due to the strong interdependencies between
the variables involved. The model has three state
variables and two control inputs, despite its
representational simplicity, the dynamics is quite
complex and a good control performance can only be
achieved if a suitable coordination between the
control inputs can be established.

The first results on this system have been presented
in Breusegen (1996), which is based on on-site
experimentation of the system, and which constitute
a basis for the dynamic model presented in Magni et
al (1999). It has been shown in Breusegen et al
(1996) that linear quadratic control scheme based on
the minimization of several system specific
performance criteria could lead to an admissible
results. In Magni et al (1999), the multivariable
predictive control of the system is studied. The

problems associated with the plugging phenomenon
and a robust control scheme is studied by Grognard
et al (2001), one prime conclusion reported in which
is the necessity to include mill load in the state
feedback information. Dagci et al (2001) have used
the same model to test the control performance of a
sliding mode based design approach. It has been
observed that an acceptable response could be
obtained using the setpoint values given in Magni et
al (1999).

Although the model studied in this paper constitutes
a good example to test the performance of novel
control schemes, in the literature, various other
studies focusing on cement mills have appeared.
Clarke (1988) discusses the predictive control
technique for industrial processes including a cement
mill and adopts a receding horizon approach. Since
the process performance depends heavily on the
physical properties of the mill drives, in Thomas
(1991) these issues are addressed.

This paper is organized as follows: The second
section describes briefly the dynamics of the cement
milling circuit. The adopted reference model is
introduced in the third section and the synthesis of
the control signals is presented in the fourth section.
In the fifth section, we formulate the error dynamics
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for all three states when the observations are noisy.
The sixth section is devoted to the justification of the
proposed scheme and the concluding remarks are
given at the end of the paper.

2. DYNAMICS OF THE CEMENT-MILLING
CIRCUIT

The dynamic model of the system is described by
three coupled and nonlinear differential equations as
given in (1)-(3). Briefly, z is the mill load, yf is the
product flow rate and yr is the tailings flow rate.
These three variables are the states of the system. On
the other hand, ϕ is the output flow rate of the mill
and d denotes the relative hardness of the material
inside the mill with respect to the nominal one,
which is unity. The system has two control inputs,
denoted by u, feed flow rate and, v, classifier speed.
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* h)-1, Kϕ2=16.50 h-1, Tf = 0.3 h, Tr = 0.01 h and d =
1. A schematic representation of the process is
depicted in Fig. 1, and a detailed description of the
system dynamics and results regarding the
experimental verification can be found in Breusegen
et al (1996) and Magni et al (1999).

Fig. 1. Schematic Diagram of the Cement Milling
Circuit

The control problem is to enforce the system states
by appropriately altering the two control inputs.
However, it can easily be shown that the designer
can choose two of the three state variables

independently as the behavior of the third state
variable will be determined upon the selection of
other two. It is emphasized in Breusegen et al (1996)
that the choice of yf and yr may lead to unachievable
values for ϕ and it is suggested that keeping yf and z
under control would be a suitable approach. In this
paper, we adopt the same reasoning and proceed
parallel to this idea.

3. REFERENCE MODEL

In choosing the reference dynamics for yf and z, we
consider the following design requirements.

• Reference model for each state, whose variables
are represented with a subscript m, must be stable
and must follow the command signal.

• The speed of response imposed by the reference
system must not be higher than that of the actual
system, i.e., the time constants must be
compatible.
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where r and f are the command signals for zm and ymf.

4. SYNTHESIS OF THE CONTROL SIGNAL

Assume the third state variable (ymr) of the model has
the following dynamics, with Q being a real valued
smooth function of the state variables, command
signals and system variables.
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Evaluating the time derivative of the Lyapunov
function in (7) yields the following.
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Inserting (1)-(3) and (4)-(6) into (11) gives the
following quantity.
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One suitable selection for u and v inputs can be
solved by imposing the following:

zmr erzyu −=−+++−ϕ
( ) yfmff efyy −=−+−+− ϕα1

(13)

The two equalities in (13) lead to the following time
derivative for the Lyapunov function, furthermore,
the control inputs can now be formulated as given in
(15) and (16).
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Once the explicit forms of the control signals u and v
are obtained, we need to find out the third component
of the reference dynamics, which is imposed by the
selected control law. It can mathematically be proved
that the formulated control laws in (15) and (16) lead
to the truth of following equalities:

ϕ
α f−=1 (17)

Or equivalently,

f−= ϕαϕ (18)

Requiring –yr + αϕ – Q = –eyr + ϕ − ϕm and using
(18) lead to Q = –ymr + ϕm – f. More explicitly, the
dynamics of the yr state is driven towards the ymr

dynamics of the mode given by

( ) fdzyyT mmmrmrr −+−= ,ϕ� (19)

However, now we can rewrite (14) as follows

( )myrryryfz eTeeeV ϕϕ −+−−−= 222
� (20)

Assuming the hardness parameter d is available for
model update, the selection of u given in (15) forces

mzz → , hence mϕϕ → . Furthermore, with the

selected control inputs, the states yf and z are
decoupled and are enforced to follow the
corresponding model variables. The result in (20) has
therefore the following meaning: During initial
transient period there “may” be an increase in
tailings flow rate, however, this regime will not last
long due to the derived model and the constructed
control strategy.

5. ANALYSIS WITH NOISY OBSERVATIONS

In this section, we analyze the consequences of the
noisy observations. For this purpose, assume that the
states of the system are corrupted by a noise
sequence additively, and denote the noisy sequences

with ζz, ζyf and ζyr. The control signals of (15) and
(16) will have the following forms:

( ) ( ) ( ) rzydzu zyrrz ++−+−+= ζξζϕ , (21)

( ) ( ) nm
z

n
zn z

f

z
Kv /

/1
/1 1 −+





−+= ζϕζϕ

α (22)

Application of the above controls to the system of
(1)-(3), and denoting ( )dz z ,ζϕϕζ += , the model

following errors of (8)-(10) are obtained as follows:
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Clearly, if 0→yryfz ζζζ , then ϕϕζ → . The

implications of this are as follows ε1→0, ε2→0 and
ε3→ϕ−ϕm. For the term in (28), as we have already
observed in (20), the model following error in the
tailings flow rate (eyr) converges to zero as z→zm. In
the next section, we present the simulation studies.

6. JUSTIFICATION OF THE PROPOSED LAW –
SIMULATIONS

During the simulations, the plant is kept under an
ordinary feedback loop, and the control signals are
generated using the noisy observations of the system
response. The disturbance corrupting the z state of
the system has variance equal to 1.8278 and that
corrupting the state yr has variance equal to 1.7062.
The maximum amplitude of the noise sequences is
equal to 5 and both sequences have zero means and
are Gaussian distributed. Clearly, the given
disturbance scenario stipulate that the state variables
required to construct the control signals are severely
corrupted. We set the simulation stepsize to 0.005h
and simulated the control system for 90 hours.

Initially yf(0)=216, yr(0)=0 and z(0)=99, on the other
hand, the reference model states have initially been



set to ymf(0)=168, ymr(0)=20 and zm(0)=77. In the
upper subplot of Fig. 2, the command signal (r), the
response of the reference model (zm) and the response
of the system are illustrated together. Approximately
after 5 hours, the model output and the plant output
become almost indistinguishable. In order to clarify
the tracking claim of the paper, the lower subplot
depicts the model following error in state z.
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Fig. 2. The command signal (r), the response of the
reference model and the observed mill load
behavior.

Similarly for the product flow rate (yf), in the top row
of Fig. 3, the command signal (f, which is
independent of r) and the response of the reference
model (ymf) and the response of the system are
illustrated. The model following error is shown in the
bottom row of the figure. It is apparent that the error
quickly converges to zero and remains in the close
neighborhood of  zero.
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Fig. 3. The command signal (f), the response of the
reference model and the observed product flow
rate.

The results regarding the third state (yr) are
visualized in Fig. 4. The bottom suplot of the figure
demonstrates that the model following error comes
close to zero after a fast transient effective during the
initial phase.
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Fig. 4. The response of the reference model (ymr) and
that of the milling circuit.

The applied control signals are depicted in Fig. 5,
which suggests that the scheme is reasonably safe in
terms of the control signal magnitudes. Although
there seems to be high frequency components in the
ontrol signal, the reader must notice that the
horizontal axis is in hours, and the state variables are
corrupted. Therefore, observing such a behavior in
the shown scale is parallel to what is imposed by the
operating conditions.
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Fig. 5. Applied control signals, u at the upper subplot
and v at the lower subplot.

Another important result that should be emphasized
is observed in the behavior of the Lyapunov function
of (7). In Fig. 6, three subplots are given. The top one
and the middle one depict the behavior of the
Lyapunov function for the entire course of the
simulation except the top one is in linear and the
middle one in logarithmic time axis. Apparently, the
results confirm the negative definiteness of the time
derivative of the selected Lyapunov function is
observed as a result of the adopted control strategy.
The lowest subplot of Fig. 6 illustrates the behavior
of V after 2.8 hours. The instantaneous spikes are due
to the corrupted state information used by the
controller. When the noise magnitudes, which were
equal to five and the maximal magnitude of the
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spikes seen in this subplot are compared, it can
directly be inferred that the control system is capable
of handling the disturbances.
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Fig. 6. The behavior of Lyapunov function in (7)
with linear time axis (upper subplot), with
logarithmic time axis (middle subplot) and with
linear time axis but after 2.8 hours.

Another important reason that make the problem
challenging is the abrupt variations in the material
hardness parameter (d, whose behavior is illustrated
in Fig. 7. The hardness of the material inside the mill
has a time-varying behavior as shown in Fig. 7. As
studied in Magni et al (1999), we change the value of
d from unity to 1.34, but we have adopted this
change periodic. Referring to the discussion in
section 3, we have claimed that the constructed
control signals would enforce z→zm and hence

( ) ( )dzdz mm ,, ϕϕ → . In Fig. 8, we illustrate the

behavior of ϕm/ϕ, which confirms the above quoted
convergence statement. Apparently the tendency of
this quantity is to lie around unity.
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Fig. 7. The change in the hardness of the material in
the mill (d).
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Lastly in Fig. 9, we focus on the imposed and
observed behaviors of the mill load (zm and z) in the
three dimensional space spanned by time, ϕ (or ϕm)
and mill load. This figure clarifies that the change in
the hardness parameter enforces a motion on the
surface described by the new value of the parameter
d, i.e. ϕ(z,dnew) surface. When the response of the
reference model and that of the milling circuit are
drawn together, it becomes more apparent that the
trajectory imposed on this space is followed by the
cement mill system. The dark black trajectory in this
figure depicts the behavior of zm and the gray colored
trajectory is for z.

The two trajectories are almost indistinguishable, and
this observation suggests that the formulated control
signals drive the behavior of the mill load to what is
prescribed by the reference model.
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three dimensional space with two surfaces
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7. CONCLUSIONS

A nonlinear control strategy for a cement milling
process is studied. The constructed forms of the
control signals have resulted in good performance in
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terms of the model following capability, disturbance
rejection and robustness.

Considerable amount of observation noise, large
initial errors and response with time varying system
parameters are studied and it has been observed that
the suggested strategy results in good performance in
terms of all these control specific metrics.

On the other hand, one limitation of what is
developed is the fact that it necessitates the dynamic
model of the plant under control. Secondly, the
model has to be updated as the hardness parameter
(d) changes. Our future work aims to reformulate the
control signals such that the analytical details can
intelligently be constructed and the value of the
parameter d can be estimated from the state evolution
of the plant.
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