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Abstract – The non-decreasing nature of complexity in all fields of
engineering sciences has led the designers to develop systems
handling the difficulties by intelligent approaches rather than
utilizing schemes based on a thorough understanding. Of
particular interest, the existence of noise, imperfect modeling,
nonlinearities and the unforeseeable conditions of the operating
environment have been the core issues in the design of control
systems and controllers. When the diversity in the problem space is
taken into consideration, the solution is understood to lie in such a
multi-processor domain. One example is to use neural networks,
which constitute a good class of examples utilizing collective
intelligence and distributed data processing. This paper focuses on
the training of Radial Basis Function Neural Networks (RBFNN)
by using Variable Structure Systems (VSS) theory. What
encourages us is the robustness of the VSS theory together with
the realization success of the RBFNN.
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I.  INTRODUCTION

The fundamental operation in most of the neural network
models existing in the literature is the evaluation of a dot
product of an input vector and a parameter vector, and to pass
the evaluated quantity through a nonlinear activation
function. The yield of the described process is the output of
the neuron. However, another class of neural networks dwells
on the evaluation of the neuron output by combining the
values of some appropriately defined basis functions. The
networks using basis functions constitute several number of
hidden neurons, the activation level of which depend on the
distance between the input vector and a prototype vector [1-
3]. The overall structure is called RBFNN, which possesses
the distributed information processing capability.

The problem of parameter tuning in RBFNN has extensively
been studied in the literature. Some important ones of which
are the gradient descent technique (Error Backpropagation)
[4], Levenberg-Marquardt algorithm [5], and hybrid methods
such as VSS based learning strategies [6-8]. At a first glance,
what a reader notices is the fact that the application of above
mentioned approaches for tuning the parameters of a
controller require the target value of the control signal, which
is unavailable by the nature of the problem. Therefore, the
extraction of the error on the control signal can be done either
by identifying the plant under control or by assuming the

plant under control is known and the Jacobian can be
evaluated. Clearly the former increases the computational
cost and the latter restricts the domain of applicability. A
qualitative analysis of extracting the equivalent control error
is discussed in [9], which considers the control of a 3-dof
anthropoid robot with large initial conditions and unknown
plant dynamics.

In this paper, an analytic approach towards the calculation of
the error at the output of the neurocontroller is presented for a
class of systems. In the next section, RBFNN are introduced,
the third section presents a brief overview of variable
structure control. The fourth section is devoted to the
computation of the error at the output of the controller and in
the fifth section the parameter tuning law is given. The sixth
section presents the extensions of the proposed technique.
The concluding remarks are presented at the end of the paper.

II.  RADIAL BASIS FUNCTION NEURAL NETWORKS

In the literature, RBFNN are generally considered as a
smooth transition between Fuzzy Inference Systems (FIS)
and Neural Networks (NN). Structurally, a RBFNN is
composed of receptive units (neurons) which act as the
operators providing the information about the class to which
the input signal belongs. If the aggregation method, number
of receptive units in the hidden layer and the constant terms
are equal to those of a FIS, then there exists a functional
equivalence between RBFNN and FIS [10]. Although the
architectural view of a RBFNN is very similar to that of an
ordinary feedforwad neural network illustrated in Fig. 1, the
hidden neurons of a RBFNN possess basis functions to
characterize the partitions of the input space. Each neuron in
the hidden layer provides a degree of membership value for
the input pattern with respect to the basis vector of the
receptive unit itself. The output layer is comprised of linear
neurons. NN interpretation makes RBFNN useful in
incorporating the mathematical tractability, especially in the
sense of propagating the error back through the network,
while the FIS interpretation enables the incorporation of the
expert knowledge into the training procedure. The latter is of
particular importance in assigning the initial value of the
network’s adjustable parameter vector to a vector that is to be
sought iteratively. Expectedly, this results in faster
convergence in parameter space.

NIMIA-SC2001 - 2001 NATO Advanced Study Institute on Neural Networks
for Instrumentation, Measurement, and Related Industrial Applications: Study Cases
Crema, Italy, 9-20 October 2001

109



Mathematically, oi=Πm
j=1Ψij(uj) and a common choice for the

hidden layer activation function is the Gaussian curve
described as Ψij(u)=exp{-(uj-cij)

2/σij
2}, where cij and σij stand

for the center and the variance of the i th neuron’s activation
function qualifying the j th input variable. The output of the
network is evaluated through the inner product of the
adjustable weight vector denoted by φ and the vector of
hidden layer outputs, i.e. τ = φ To, which is just as in the case
of output evaluation in ADALINEs. Clearly the adjustable
parameter set of the structure is composed of {c, σ, φ} triplet.

III.  A BRIEF OVERVIEW OF VARIABLE STRUCTURE
CONTROL

Consider the feedback loop illustrated in Fig. 2, in which a
subscript d denotes the desired value of the relevant quantity.
Furthermore, it is shown in the figure that if a supervisor
provides the desired controller outputs, one might evaluate
the error on the control signal denoted by sc . The plant shown
in the figure is assumed to have the structure described in (1),
in which θ and τ are the (r1+r2+…+rn)×1-dimensional state
vector and n×1-dimensional input vector.

( ) ( ) nidf
n

j
jijp

r
i i

i ,...,2,1         
1

=+= ∑
=

τθθ (1)

The system of (1) with these vectors can be restated as

( ) τθθ  Df
p

+=� . The design problem is to enforce the

behavior of the system towards the desired response, which is
known but the control signal (τd) resulting in which is
unavailable. Therefore, the solution to this problem is a
search towards the synthesis of such a signal iteratively by an
intelligent controller. Assuming that the intelligent controller
in Fig. 2 is composed of n individual controllers, the i th one of
which is to construct the i th component of input vector τ, the
j th entry of the error vector driving this sub-controller can be
given as ei

(j)= θi

(j)−θdi

(j). Apparently, this component is the j th

derivative of the relevant state component.

Consider the vector of sliding surfaces for the system in (1):
sp(e)=Ge=G(θ−θd). The widespread selection of the matrix G
is such that the i th sliding surface function has the form

( ) i

r

iiip e
dt

d
es

i 1−





 += λ (2)

in which, λi is a strictly positive constant. Let Vp be a
candidate Lyapunov function given as

( ) p
T
ppp sssV

2

1= (3)

If the prescribed control signal satisfies

( ) ( )p
T
ppp sssV sgnξ−=� , the negative definiteness of the time

derivative of the Lyapunov function in (3) is ensured. In
above, ξ is a positive definite diagonal matrix of dimension

n×n. More explicitly, ( )p
T
pp

T
p ssss sgnξ−=�  must hold true to

drive the error vector towards the sliding hypersurface. On

the other hand, the use of ( ) 


 ++−= τθθ  DfGGs
pdp

�

�

leads to the following control signal:

( ) ( ) 




 −−= −

dp
GfGGD θθτ �

1 ( ) ( )psGD sgn1ξ−− (4)

in which the first term is the equivalent control term and the
second term is the corrective control term. For the existence
of the mentioned components, the matrix GD must not be
rank deficient. In the literature, equivalent control is
considered as the low frequency (average) component of the
control signal. Because of the discontinuity on the sliding
surface, the corrective term brings a high rate component [11-
12]. If e(0)=0, the tracking problem can be considered as
keeping e on the sliding surface, however, for nonzero initial
conditions, the strategy must enforce the state trajectories
towards the sliding surface, which is ensured by the negative
definiteness of the time derivative of the Lyapunov function
as in (3). For the case of nonzero initial conditions, the phase
until the error vector hits the sliding surface is called the
reaching mode, the dynamic characteristics of the system
during which is determined by the control strategy adopted.
Application of the control input formulated in (5) imposes the
dynamics described as ( )pp ss sgnξ−=� , which clearly

enforce the error vector towards the sliding surface. Once the
sliding surface is reached, the value of (2) becomes zero; and
this enforces the error vector to move towards the origin.

Aside from the practical difficulties of conventional Sliding
Mode Control (SMC) schemes, the control signal in (4) is
applicable if a nominal representation of the system under
control is available. In the next subsection, a method for
obtaining the error on the control signal is presented for
unknown systems of structure (1).

IV.  CONTROL ERROR COMPUTATION

Remark 4.1: The SMC task is achievable if the dynamics of
the system in (1) is totally known or if the nominal system is
known with the bounds of the uncertainties. It must be noted
that to satisfy the matching conditions, the disturbances and
uncertainties are always assumed to enter the system through
the control channels [13]. When the conventional SMC
strategy is applied to the system of (2), we call the resulting
behavior as the target SMC and the input vector leading to it
as the target control sequence (τ ), which is described in (4).
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If the functional form of the vector function fp is not known,
it should be obvious that the target control sequence cannot
be constructed by following the traditional SMC design
approaches.

Definition 4.2: Given an uncertain plant, which has the
structure described as in (1), and a command trajectory vector
θd(t) for t ≥ 0, the input sequence satisfying the following
vector differential equation is defined to be the idealized
control sequence denoted by τd, and the vector differential
equation itself is defined to be the reference SMC model.

( ) ddpd Df τθθ  +=� (5)

Mathematically, the existence of such a model and the
sequence means that the system of (1) perfectly follows the
command trajectory vector if both the idealized control
sequence is known and the initial conditions are set as
θ(t=0)= θd(t=0), more explicitly e(t) ≡ 0 for ∀ t ≥ 0.
Undoubtedly, such an idealized control sequence will not be a
norm-bounded signal when there are step-like changes in the
vector of command trajectories or when the initial errors are
nonzero. It is therefore that the reference SMC model is an
abstraction due to the limitations of the physical reality, but
the concept of idealized control sequence should be viewed
as the synthesis of the command signal θd from the time
solution of the differential equation set in (5).

Fact 4.3: Based on the Lyapunov stability results of the
previous subsection, if the target control sequence formulated
in (4) were applied to the system of (1), the idealized control
sequence would be the steady state solution of the control
signal, i.e. d

t
ττ =

∞→
lim . However, under the assumption of the

achievability of the SMC task, the difficulty here is again the
unavailability of the functional form of the vector function fp.
Therefore, the aim in this subsection is to discover an
equivalent form of the discrepancy between the control
applied to the system and its target value by utilizing the
idealized control viewpoint. This discrepancy measure is
denoted by sc=τ −τd and is of n×1 dimensional. If the target
control sequence of (4) is rewritten by using (5), one gets
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( ) ( ) ( ) ( )
( ) ( ) ( ) dpp

dpdpp

pddpp

sfGGD

sfGfGGD

sDfGfGGD

τξθ

τξθθ

ξτθθτ

+


 +∆−=

+


 +−−=




 +


 +−−=

−

−

−

sgn

sgn

sgn

1

1
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(6)

The target control sequence becomes identical to the
idealized control sequence, i.e. τ ≡ τd, as long as

( ) ( ) 0sgn =+∆ pp
sfG ξθ  holds true. However, this condition is

of no practical importance as we do not have the analytic

form of the vector function fp. Therefore, one should consider
this equality as an equality to be enforced instead of an
equality that holds true all the time, because its implication is
sc=0 and is the aim of the design. It is obvious that to enforce
this to hold true will let us synthesize the target control
sequence, which will ultimately converge to the idealized
control sequence by the adaptation algorithm yet to be
discussed. Consider the time derivative of the vector of
sliding surfaces
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( )

( ) ( )
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Utilizing ( ) ( ) 0sgn =+∆ pp
sfG ξθ  in (7) and solving for sc

yields the following relation:

( ) ( )( )ppc ssGDs sgn1 ξ+= −
�  = dττ − (8)

Remark 4.4: The reader must here notice that the application
of τd to the system of (1) with zero initial errors will lead to
e(t) ≡ 0 for ∀ t ≥ 0, on the other hand, the application of τ to
the system of (1) will lead to sp=0 for ∀ t ≥ th, where th is the
hitting time, and the origin will be reached according to the
dynamics of the sliding surface. Therefore, the adoption of
(8) as the equivalent measure of the control error loosens e(t)
≡ 0 for ∀ t ≥ 0 requirement and introduces all trajectories in
the error space to tend to the sliding hypersurface, i.e.

( ) ( ) 0sgn =+∆ pp
sfG ξθ  is enforced. Consequently, the

tendency of the control scheme will be to generate the target
SMC sequence of (4) without requiring the analytical details
of the plant.

Now consider the ordinary feedback control loop illustrated
in Fig. 2, and define the following Lyapunov function, which
is a measure of how well the controller performs:

( ) c
T
ccc sssV

2

1= (9)

Remark 4.5: An adaptation algorithm ensuring ( ) 0<cc sV�

when sc≠0 enforces ( ) ( ) 0sgn =+∆ pp
sfG ξθ  and creates the

predefined sliding regime after a reaching mode lasting until
the hitting time denoted by th, beyond which sc = 0 as the
system is in the sliding regime. If ( ) 0<cc sV�  when sc≠0, then
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0 lim =
→
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tt
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ξ�

. Note that

the meaning of sc = 0 is now equivalent to sp = 0 by Remark
4.4, therefore the limits above are evaluated as t→th.

V.  PARAMETER TUNING STRATEGY

If the architecture introduced in the second section is utilized
for the purpose of control, without loss of generality, the
output of the i th controller can be restated as τi=φi

TΩi, where
Ωi is the vector of signals exciting the adjustable parameters
denoted by φi and the Lyapunov function in (9) constitutes
the basis of the design.

In order not to be in conflict with the physical reality, the
designer must impose 

i
B

i φφ ≤ , 
i

Bi Ω≤Ω
�

�  
id

Bid ττ
�

� ≤ , the truth

of which state that the adjustable parameters of the controller,
the time derivative of the signal exciting the adjustable
parameter set and the time derivative of the idealized output
of the controller remain bounded. Note that in Definition 4.2,
we stated that there may not be a finite ℜ∈

id
Bτ�  even in some

realistic situations like nonzero initial errors, however, the
practical meaning of imposing 

id
Bid ττ

�

� ≤  will lead us to the

construction of an approximation of the idealized control
sequence and the requirement of e(t) ≡ 0 for ∀ t ≥ 0 must
therefore be loosened.

Theorem 5.1: For the i th subsystem of the system described
in (1), adopting the controller of structure τi=φi

TΩi, the
adaptation of the controller parameters as described in (10)
enforces the value of the i th component of control discrepancy
vector (sci) to zero.

( )
ici
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T
i

i
i

sk sgn
ΩΩ

Ω
−=φ� (10)

where, ki is a sufficiently large positive constant satisfying

idii
BBBki τφ �

�

+> Ω . The adaptation mechanism in (10) drives an

arbitrary initial value of sci to zero in finite time denoted by thi

satisfying the inequality in (11).
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Proof: See Sira-Ramirez et al [6] and Efe et al [9]. 

An important feature of this approach is the fact that the
controller parameters evolve bounded as assumed initially.
The details of the bounded parametric evolution analysis can
be found in [9,14].

VI.  APPLICABLE DOMAIN OF STRUCTURES

Since the approach presented requires the output of the
controller to be linear in the adjustable parameters, one can
easily infer that the approach can be applied to the following
controller structures.

• Adaptive Linear Elements (ADALINE) [6,9,15].
• Standard Fuzzy Systems (SFS) [16].
• Adaptive Neuro Fuzzy Inference Systems (ANFIS)

[10,17].

VII.  CONCLUSIONS

This paper discusses a method for evaluating the error at the
output of a controller. The plant is in an ordinary feedback
loop and the controller is a neurocontroller. The analysis has
shown that the error on the controller can be evaluated
without using the analytical details describing the plant. From
this point of view, the approach is quite useful because of

• The system dynamics contains inaccuracies in practice
• The computational simplicity
• Robustness
• The tracking precision introduced by VSS theory
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Figure 1. Structure of a RBFNN

Figure 2. Block Diagram of the Control System

NEURAL
CONTROLLER PLANT

Σ

Σ

sc
τd

τ

θ
θd

+

_

+
_

u1

um

τ1

τn

Output Layer
Vector Output: τ

Input Layer
Vector Output: u

Hidden Layer
Vector Output: o

113


