NIMIA-SC2001 - 2001 NATO Advanced Study Institute on Neural Networks
for Instrumentation, Measurement, and Related Industrial Applications: Study Cases
Crema, Italy, 9-20 October 2001

Variable Structure Systems Theory in Training of Radial Basis Function
Neurocontrollers — Part |: Theoretical Foundations

Mehmet Onder Efe
Carnegie Mellon University
Electrical and Computer Engineering Department
Pittsburgh, PA15213-3890, U.S.A.
efemond@andrew.cmu.edu

Abstract — The non-decreasing nature of complexity in all fields ofplant under control is known and the Jacobian can be
engineering sciences has led the designers to develop systeezaluated. Clearly the former increases the computational
handling the difficulties by intelligent approaches rather than cost and the latter restricts the domain of applicability. A
utilizing schemes based on a thorough understanding. Ofqaiitative analysis of extracting the equivalent control error
particular interest, the existence of noise, imperfect modellng,is discussed in [9], which considers the control of a 3-dof

nonlinearities and the unforeseeable conditions of the operating h id rob h | initial diti d K
environment have been the core issues in the design of contrgfNthropoid robot with large initial conditions and unknown

systems and controllers. When the diversity in the problem space Rlant dynamics.

taken into consideration, the solution is understood to lie in such a

multi-processor domain. One example is to use neural networkdn this paper, an analytic approach towards the calculation of
which constitute a good class of examples utilizing collectivehe error at the output of the neurocontroller is presented for a
intelligence and distributed data processing. This paper focuses oglass of systems. In the next section, RBFNN are introduced,

the training of Radial Basis Function Neural Networks (RBFNN) the third section presents a brief overview of variable
by using Variable Structure Systems (VSS) theory. Wha&l

encourages us is the robustness of the VSS theory together wi fructure control. The fourth section is devoted to the
the realization success of the RBENN. omputation of the error at the output of the controller and in

the fifth section the parameter tuning law is given. The sixth

Keywords: Sliding Mode Control, Parameter Tuning, Neural S€ction presents the extensions of the proposed technique.
Networks The concluding remarks are presented at the end of the paper.

I. INTRODUCTION [I. RADIAL BASIS FUNCTION NEURAL NETWORKS

The fundamental operation in most of the neural netwotk the literature, RBFNN are generally considered as a
models existing in the literature is the evaluation of a demooth transition between Fuzzy Inference Systems (FIS)
product of an input vector and a parameter vector, and to passl Neural Networks (NN). Structurally, a RBFNN is
the evaluated quantity through a nonlinear activatiopomposed of receptive units (neurons) which act as the
function. The yield of the described process is the output operators providing the information about the class to which
the neuron. However, another class of neural networks dwdiiee input signal belongs. If the aggregation method, number
on the evaluation of the neuron output by combining thef receptive units in the hidden layer and the constant terms
values of some appropriately defined basis functions. Tlage equal to those of a FIS, then there exists a functional
networks using basis functions constitute several number eduivalence between RBFNN and FIS [10]. Although the
hidden neurons, the activation level of which depend on tlagchitectural view of a RBFNN is very similar to that of an
distance between the input vector and a prototype vector @rdinary feedforwad neural network illustrated in Fig. 1, the
3]. The overall structure is called RBFNN, which possesséidden neurons of a RBFNN possess basis functions to
the distributed information processing capability. characterize the partitions of the input space. Each neuron in

the hidden layer provides a degree of membership value for
The problem of parameter tuning in RBFNN has extensivefpe input pattern with respect to the basis vector of the
been studied in the literature. Some important ones of whicgceptive unit itself. The output layer is comprised of linear
are the gradient descent technique (Error Backpropagatidrgurons. NN interpretation makes RBFNN useful in
[4], Levenberg-Marquardt algorithm [5], and hybrid method#icorporating the mathematical tractability, especially in the
such as VSS based learning strategies [6-8]. At a first glanéense of propagating the error back through the network,
what a reader notices is the fact that the application of abowbile the FIS interpretation enables the incorporation of the
mentioned approaches for tuning the parameters of expert knowledge into the training procedure. The latter is of
controller require the target value of the control signal, whigparticular importance in assigning the initial value of the
is unavailable by the nature of the problem. Therefore, tietwork’s adjustable parameter vector to a vector that is to be
extraction of the error on the control signal can be done eitrgught iteratively. Expectedly, this results in faster
by identifying the plant under control or by assuming theonvergence in parameter space.

109



Mathematically,0=1"-;¥;(u;)) and a common choice for the If the prescribed control signal satisfies

hidden layer activation funzctio? is the Gaussian CurV?p(g,p):—gLEsgr(gp), the negative definiteness of the time
described a%;(u)=exp{-(u-c;)/0;}, wherec; andg; stand derivati fthe L f ion in (3) i d |
for the center and the variance of ifleneuron’s activation derivative of the Lyapunov function in (3) is ensured. In
function qualifying thej™ input variable. The output of the above ¢ is a positive definite diagonal matrix of dimension

network is evaluated through the inner product of thexn. More explicitly, §L§p=—§LEsgr‘(§p) must hold true to
adjustable weight vector denoted kpyand the vector of

hidden layer outputs, i.&.= @0, which is just as in the case .
of output evaluation in ADALINEs. Clearly the adjustablghe other hand, the use o, =-G6, +Gﬁf_p@)+ DIE
parameter set of the structure is composedofi{@ triplet.

drive the error vector towards the sliding hypersurface. On

leads to the following control signal:

lll. A BRIEF OVERVIEW OF VARIABLE STRUCTURE . ,
CONTROL r=-(G0) 61 0)-cd, b-(e0) “esorls, ) (4)

Consider the feedback loop illustrated in Fig. 2, in which @ \hich the first term is the equivalent control term and the
subscriptd denotes the desired value of the relevant quantityeconq term is the corrective control term. For the existence
Furthermore, it is shown in the figure that if a supervisqls ihe mentioned components, the ma@® must not be
provides the desired controller outputs, one might evalugig,, geficient. In the literature, equivalent control is
Fhe error on 'ghe control signal denotedshyrhe plant ?hOW_” considered as the low frequency (average) component of the
In the-ﬂgure is assumed to have the struc.ture dgscnbed n @Sntrol signal. Because of the discontinuity on the sliding
in which @ and 1 are the I+r;+...+ry)x1-dimensional state gyrface, the corrective term brings a high rate component [11-
vector anchx1-dimensional input vector. 12]. If &0)=0, the tracking problem can be considered as
keepinge on the sliding surface, however, for nonzero initial
) _ noo . conditions, tht_—? strategy must _enfgrce the state trajector_ies
6" = fpi (Q)+ _Z diT; 1=12,..n (1) towards the sliding surface, which is ensured by the negative
1=t definiteness of the time derivative of the Lyapunov function
as in (3). For the case of nonzero initial conditions, the phase
The system of (1) with these vectors can be restated @il the error vector hits the sliding surface is called the
6=f (p)+Dr. The design problem is to enforce theeaching mode, the dynamic characteristics of the system
- —P - _ _ during which is determined by the control strategy adopted.
behavior of the system towards the desired response, whicl\yjication of the control input formulated in (5) imposes the

known but the control signalzj resulting in which is gunamics described ass. =-&sarls which clearl
unavailable. Therefore, the solution to this problem is 2 Sp =4 gr{_p), y

search towards the synthesis of such a signal iteratively by @iorce the error vector towards the sliding surface. Once the
intelligent controller. Assuming that the intelligent controllesliding surface is reached, the value of (2) becomes zero; and
in Fig. 2 is composed of individual controllers, thé" one of this enforces the error vector to move towards the origin.
which is to construct thé" component of input vectar, the . i o ) o
j" entry of the error vector driving this sub-controller can bAside from the practical difficulties of conventional Sliding
given ase’= 69-6,7. Apparently, this component is tj& Mode Control (SMC) schemes, the control signal in (4) is
derivative of the relevant state component. applicable if a nominal representation of the system under
control is available. In the next subsection, a method for

Consider the vector of sliding surfaces for the system in (9Pptaining the error on the control signal is presented for

5,(6)=Ge=G(8-8y). The widespread selection of the mat@ix Unknown systems of structure (1).

is such that thé" sliding surface function has the form
IV. CONTROL ERROR COMPUTATION

the system in (1) is totally known or if the nominal system is
known with the bounds of the uncertainties. It must be noted
that to satisfy the matching conditions, the disturbances and
uncertainties are always assumed to enter the system through
the control channels [13]. When the conventional SMC
strategy is applied to the system of (2), we call the resulting
vV (§ )zl Tg behavior as théarget SMCand the input vector leading to it
P\Ep 2—p—p (3) . . . .
as thetarget control sequencg ), which is described in (4).

- —1 . . . .
d ' Remark 4.1: The SMC task is achievable if the dynamics of
@)= enl @ y

in which, A; is a strictly positive constant. Lef, be a
candidate Lyapunov function given as
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If the functional form of the vector functidp is not known, form of the vector functiof},. Therefore, one should consider
it should be obvious that the target control sequence cantinis equality as an equality to be enforced instead of an
be constructed by following the traditional SMC desigrquality that holds true all the time, because its implication is
approaches. s=0 and is the aim of the design. It is obvious that to enforce
this to hold true will let us synthesize the target control
Definition 4.2: Given an uncertain plant, which has thesequence, which will ultimately converge to the idealized
structure described as in (1), and a command trajectory veatointrol sequence by the adaptation algorithm yet to be
84(t) for t = 0, the input sequence satisfying the followingliscussed. Consider the time derivative of the vector of
vector differential equation is defined to be tidealized sliding surfaces
control sequencelenoted byry, and the vector differential
equation itself is defined to be theference SMC model §p(§):G§

Qd:ip(@d)““DId (5) =ole-d,)

:Gﬁf_p(Q)Jf Dl‘ip(Qd)‘ Dr4 ﬁ

Mathematically, the existence of such a model and the Q)
sequence means that the system of (1) perfectly follows the :G@p + D(Z‘Zd )E

command trajectory vector if both the idealized control

sequence is known and the initial conditions are set as :G@INDQ@

B(t=0)=64(t=0), more explicitlye(t) = 0 for O t = 0.
Undoubtedly, such an idealized control sequence will nothe a ) _

norm-bounded signal when there are step-like changes in t##lizing Gﬁp@’fngF@pFQ in (7) and solving fors;
vector of command trajectories or when the initial errors a

) > “yields the following relation:
nonzero. It is therefore that the reference SMC model is an

abstraction due to the limitations of the physical reality, but .

the concept of idealized control sequence should be viewed s.=(GD) (§p +fsgf{§p)) =114 (8)

as the synthesis of the command sig@alfrom the time

solution of the differential equation set in (5). Remark 4.4: The reader must here notice that the application

of 14 to the system of (1) with zero initial errors will lead to

Fact 4.3: Based on the Lyapunov stability results of th = 0for 0t 0, on the other hand, the applicationrdd
previous subsection, if the target control sequence formula%gz sy_stem of (_1) ;Ni|| lead t§=0 for O t > t,, wheret, is the
in (4) were applied to the system of (1), the idealized Contrtg”tﬂng time, and the origin_wiIT be reac?hea according to the

s.equeln.ce I\.NOUId_ be the steady s(tjate ﬁolutlon of_the :Or?t{i?/ amics of the sliding surface. Therefore, the adoption of
signal, i.e.lim 7 =7 4. However, under the assumption of theg) 55 the equivalent measure of the control error loag8ns

too

achievability of the SMC task, the difficulty here is again th& O for U t 2 0 requirement and introduces all trajectories in
unavailability of the functional form of the vector functign the error space to tend to the sliding hypersurface, i.e.
Therefore, the aim in this subsection is to discover aﬁﬁp@)‘ffsgd%):o is enforced. Consequently, the

equivalent form of the discrepancy between the Contr?éndency of the control scheme will be to generate the target

applied to the system and its target value by utilizing theyc sequence of (4) without requiring the analytical details
idealized control viewpoint. This discrepancy measure |5 ihe plant.

denoted bys=7-14 and is ofnx1 dimensional. If the target

control sequence of (4) is rewritten by using (5), one gets  Now consider the ordinary feedback control loop illustrated
in Fig. 2, and define the following Lyapunov function, which
= _(GD)—lﬁ_;ip(Q)_GEip(Qd)J, D14 %,539.—(3,))@ is a measure of how well the controller performs:

=-(e0) fB1 (0)-Gf (By)+&sors, Frg (©) Velse)=
= -(GD)‘1%Q p(Q)+ESgI‘(§p)ﬁ+ Ty

St S )

N |-

Remark 4.5: An adaptation algorithm ensuring,(s.)<o

The target control sequence becomes identical to then s#0 enforces ga (6)+&sgris,J=0 and creates the
idealized control sequence, i.et = 13, as long as —P Pl

GAf (Q)JHES(‘M§ ):0 holds true. However, this condition is predefined sliding regime after a reaching mode lasting until
—p P/ = the hitting time denoted b, beyond whichs, = 0 as the

of no practical importance as we do not have the analygstem is in the sliding regime. ‘”c(§c)<0 whens#0, then
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limV,=0 < VI. APPLICABLE DOMAIN OF STRUCTURES

t-ty
the meaning o§ = 0is now equivalent tg, = 0 by Remark
4.4, therefore the limits above are evaluatetl-at.

im [, +&sarfs, | = 0. Note that

im Js,|=0 =
t-th t-ty
Since the approach presented requires the output of the
controller to be linear in the adjustable parameters, one can
easily infer that the approach can be applied to the following
V. PARAMETER TUNING STRATEGY controller structures.
If the architecture introduced in the second section is utilized Adaptive Linear Elements (ADALINE) [6,9,15].
for the purpose of control, without loss of generality, the Standard Fuzzy Systems (SFS) [16].
output of thei™ controller can be restated as@'Q;, where « Adaptive Neuro Fuzzy Inference Systems (ANFIS)
Q; is the vector of signals exciting the adjustable parameters [10,17].
denoted byg and the Lyapunov function in (9) constitutes
the basis of the design. VIl. CONCLUSIONS
In order not to be in conflict with the physical reality, theThis paper discusses a method for evaluating the error at the
designer must impos | <, + [o|<8, [ful< By, the truth output of a controller. The plant is in an ordinary feedback

) - - ‘ ' loop and the controller is a neurocontroller. The analysis has
of which state that the adjustable parameters of the controllgfo\n that the error on the controller can be evaluated

the time derivative of the signal exciting the adjustablg;ioyt using the analytical details describing the plant. From

parameter set and the time derivative of the idealized outgyjfg point of view, the approach is quite useful because of

of the controller remain bounded. Note that in Definition 4.2,
we stated that there may not be a finﬂ;g gog even in some

realistic situations like nonzero initial errors, however, the
practical meaning of imposing,|<B,, will lead us to the .

construction of an approximation of the idealized contrdl
sequence and the requirementef) = 0 for O t = O must
therefore be loosened.

The system dynamics contains inaccuracies in practice
The computational simplicity

Robustness

The tracking precision introduced by VSS theory
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enforces the value of th8 component of control discrepancy

vector &) to zero. o

9
Q' o.

o)

where, k; is a sufficiently large positive constant satisfying
ki >By By +By, - The adaptation mechanism in (10) drives ars]
i i

(10) [

arbitrary initial value of; to zero in finite time denoted iy

satisfying the inequality in (11). [4].
i0 5].

< 0] ay ©

ki ‘kqu BQi +Bfid) 6

6].

Proof. See Sira-Ramirez et al [6] and Efe et al [9].

An important feature of this approach is the fact that tHé!
controller parameters evolve bounded as assumed initially.
The details of the bounded parametric evolution analysis cgi
be found in [9,14].
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Figure 1. Structure of a RBFNN
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Figure 2. Block Diagram of the Control System
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