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Abstract — Some illustrative applications of Variable Structurewhere,8, T andD are the state vector, input vector and the
Systems (VSS) theory based parameter tuning in control systemgput gain matrix respectively. The system is in an ordinary
are presented in this paper. The underlying idea of robustnesgaadhack loop [3], and the switching function fof i

against disturbances and high tracking performance is observe . - . . - .
through an appropriate integration of Radial Basis Function subsystem is defined as in (2), in whidhis a strictly

Neural Networks (RBFNN) and VSS based training scheme. ThePosltive scalar.
examples presented include the control of mechatronic systems,

biochemical processes and a chaotic system named Duffing d Hi -1
oscillator. Sp; (el ) = B— + A g 2)
ot ' 0
Keywords: Sliding Mode Control, Parameter Tuning, Neural
Networks Based on these, the error at the output of the controller is

formulated as in (3) [3].
I. INTRODUCTION

VSS theory is well known with its robustness to the s; =(GD) 1(§p+gsg'(§p)):§_ld @)
disturbances e.g. noise on the observed quantities and

uncertainties entering the system through control channemereﬁ(g):e_e:(;(g-_ed) andé is a positive definite diagonal
[1]. The widespread variable structure controller desigmatrix of dimensiomxn.

methodology prescribes that the behavior in the phase space

would be composed of two phases: namely the reaching the second section some application specific issues are
mode and the sliding mode. The approach is basically a tWeresented. The third section demonstrated the simulation
sided decision mechanism, which is strictly dependent up@ssults for a double pendulum system, the fourth section
the value of a measured quantity called ‘switching functiongiscusses the control of a Continuously Stirred Tank Reactor
It is obvious that the control signal is extremely vulnerable {@STR) and the fifth section focuses on the control of a

the measurement noise as it affects the value of switchipgiffing oscillator. The conclusions constitute the last part of
function, which is very close to zero during the sliding modghe paper.

The apparent consequence of this is the well-known problem
of ‘chattering’ [2]. Il. PRACTICAL ISSUES

Being not limited to what is mentioned above, the standanthe analysis and the design approach presented [3] have tried
method requires the availability of the nominal systery illuminate the Sliding Mode Control (SMC) problem from
together with the bounds of the uncertainties. a theoretical perspective. In this subsection, we discuss

several issues related to the practical applications of the
This paper demonstrates the applications of the approagBcussed methodology.

discussed in [3], which is applicable without knowing the

analytical details of the plant to be controlled. The mogt Chattering

substantial contribution of [1] is the fact that the error on the

control signal is constructed and this has enabled tignce the control decision during the sliding mode is tightly
designers to train the intelligent controller, which may be @ependent to the Sign of a measured quantity being noisy and
neural network or a fuzzy system. Basically, the system undgfry close to zero, the decision along the sliding manifold
control is assumed to be in the class given below. exhibits sensitivity to noise on the observations. Among
many alternatives available [1-2,4], a common approach to
eliminate the chattering is to smooth the sign function, which
corresponds to introduce a boundary layer [2]. In this paper,

" n .
Qi(rl)z fpl (Q)-i- zd”TJ | =l,2,...,n (1)
1= we adopt the following approximation for the sgn(.) function.



X systems. Some common points that should here be
sgr{x) 0 X+o (4)  highlighted for the following three sections are as follows: we
tune solely the weight parameters of the neurocontrollers and
we set these parameters initially to zero, i.e. the parametric
whered determines the sharpness around the origin. Since §@|ution starts from the origin. The noise sequences are
function in (4) is not discontinuous at the origin, the decisiogayssjans having zero mean, and the adopted filter structure
mechanism softly switches around the vicinity of the decisiof,s the structure given in (6). Furthermore, wedsét25 in

surface. all examples.
B. Actuation Speed aS as
. o . HE)=5e = = (6)
Another important issue is the actuation speed of the system QS s +2|\/E|S+0!
under control, i.e. the ability to respond to what is imposed
timely. Since we do not assume that the details concerning ll. SMC OF A DOUBLE PENDULUM

the dynamic model of the system are unavailable, what

causes a difficulty fr.om a_pracucal p0|_nt of view is Fhel'he differential equations characterizing the behavior of the
selection of the matriX, which characterizes the behaviorg, ciam are given in (7)-(8), in which the angular positions

during the reaching mode. The values of this quantity caf} the angular velocities for each pendulum define the state

only .t_)e set.by trial-and-error due to the lack of SYSt€MYactor. The control inputs, which are denotedrpgindr,, are
specific details.

provided to the relevant pendulum by servomotors at the

- . .Th t f the plant [ in Table I.
C. Obtaining the Equivalent Error from the Observed Data base. The parameters of the plant are given in Table

2 2

Lastly in this subsection, we focus on the construction of thegle!Y 19r_ke® ir(61)+ﬁ(l _b)+ﬂ+kisir(9'2) )
s of (3), which requires the differentiation gf. What we Hai 4 2] J 4

adopt in this paper is to filter the measured values, aihd

differentiate afterwards. Denot® as the Laplace variable, C ka2 ket o ka2 .
and use the linear system given as by Ma0r kst i)~ (1 -b)+ 2+ sirlg,) (8)
Hy, 4, 23, I, 43,
( )_ asS
RG] (6)  where,g=9.81 m/d s the gravitational acceleration constant.

As given in Table I, sinck<I, the two pendulums repel each

_ other in the upright position. The model introduced in this
whereQ(0) = a >0 and Real{rootsQ(S))} < 0. The order of gection has been studied by Spooner and Passino [4], who
the denominator polynomial and the locations of the roots af&ss the decentralized adaptive control using RBFNN.
left to the designer, because these issues require several trials

to refine the selections and are subject to the applicatipfger the conditions given in the second row of Table II, in
together with its operating environment. _ , response to a sinusoidal reference vector, the state response
Lastly, it should be noted that the cost of the information l0$§,§ the error response are obtained as illustrated in Figures 1
by using such a filter, whose input $5 and output is an 4nq 2 respectively. The control signals leading to this
estimate of§,, is a matter of how robust the devised contrglesponse are illustrated in the top row of Figure 3, and the

algorithm is. More explicitly, the separation of the noise an@ehaviors in the phase spaces are depicted in the bottom row
the actual value of, leads to a corruption og, and when Of Figure 3. Clearly the smoothness of the control signal and
differentiated afterwards, some valuable information is lo$fe behavior in the phase space recommend the use of the
together with the elimination of the noise component. He@PProach presented in mechatronics. Lastly, the evolutions in
we assume that mentioned loss causes an uncertainty, whit® parameters of the two RBFNN controllerg) (are
enters the system through the control channels, and whichlligstrated in Figure 4, from which the bounded evolution is
particularly effective during the sliding mode; and thiglear.
uncertainty can be alleviated if it falls within the limits
allowing the maintenance of the invariance during the sliding IV. SMC OF A BIOCHEMICAL PROCESS
mode [1].

Chemical process engineering is another application field
In the remaining part of the paper, three application exampletlizing the techniques of control engineering expertise. In
are presented. In order to demonstrate the applicability of tH#s subsection, we consider the dynamic model of a CSTR
developed scheme, the examples focus on the control agscussed in [5], which illustrate the SMC task with Gaussian
mechatronic systems, biochemical processes, and chad@works and wavelet networks. The governing equations of



the process dynamics are as described below, and #wdire richness of nonlinear phenomena during the course of
parameters are defined in Table IIl. even the finite-time observations. The behavioral diversity in

chaos is therefore attributed to its deterministic

B E unpredictability or the unpredictable determinism, which

B 6 0 exists in the nature of the system. Furthermore, sensitive

61 =6, +Da(l-6,) l% 6,0 (9  dependence to the initial conditions makes the chaotic
o+ systems attractive test beds to test the performance of novel

g vE control algorithms. In this section, we discuss the Duffing

system studied in [6], which illustrates the identification and

H control issues for a number of chaotic systems. The
S— c)+I7 (10) differential equation governing the dynamics of the system is
.

d,

6, =6, +TRDa1 91 ex 9
= given as follows:

y

The control problem is to enforce the dimensionless 6=-p0 - p0°- p6 +qcodwgt)+1 (11)
concentration @,) to follow a desired trajectory by altering

the dimensionless coolant temperatur@).( During the where,p; =1.1,p,=1,p=0.4,q= 2.1 andwy = 1.8. The
control operation, the second state, which is theontrol problem is to enforce the states to the periodic orbit
dimensionless temperatured,), is constrained to evolve described as follows:

boundedly in time. In [4], the nhominal operating point of the

CSTR system is described 8=0.4126, 6,=3.28 and b4 =-sin(6y) (12)
6:=3.04, the state values among which are used as the initial

state values in this paper. According to the simulation settings

given in the third column of Table 11, one should notice fronfVith 6«(0) = 1 and6y (0) = 0. The simulation data for this
the first row that the controller uses solely the noise corruptedample is given in the fourth column of Table Il. In the left
tracking error information in synthesizing the necessamubplots of Figure 9, the referen@drajectory, the response
control sequence. In Figure 5, the desired and the obsenafd the system and the tracking error are illustrated
states are illustrated. In the bottom right subplot of this figuregspectively. The same quantities for the second state are
the error is seen. At time=3200sec, a step change occurs ifigured in the right subplots. Clearly, the response of the
the reference trajectory, which is also studied by Knapp etslstem converges to the desired trajectories in a short while.
[4], and the system successfully follows the imposebh Figure 10, the control activity, which is admissibly smooth
trajectory. It must be noted that since the system undeespite the presence of noise sequence, leading to the
control is of first order, the sliding surface of theobtained state behavior is shown. The motion in the phase
conventional design becomes a point in the singkpace is depicted in the top right subplot of Figure 10, in
dimensional error space, and this point corresponds to twhich the error vector hits the sliding line and approximately
origin. Consequently, the problem does not requirel a after t = 0.25 sec starts moving towards the origin as
selection. In the top left subplot of Figure 6, the appliedharacterized by the locus along the sliding line. The
control signal @) is illustrated. This subplot reveals that thgesponse of the system is drawn in the bottom subplot of
control signal has a sufficiently smooth characteristic aftéigure 10, which apparently confirms the accurate tracking
the transient phase. The remaining three subplots in Figurg¢lgim of the approach. Lastly, the parametric evolution is
depict the time evolution of the adjustable neurocontroll@hown in Figure 11, from which the bounded evolution is
parameters These subplots confirm the evolution in fini@pparent.

volume claim of [3]. The variables seen in Figures 5 and 6

have been redrawn in Figures 7 and 8 with the same graphical VI. CONCLUSIONS

allocation but around=3200sec, at which a step change

occurs in the command signal. When compared to the resdt$SMC based parameter tuning strategy is discussed in [3].
discussed in [5], it can be said that the settling time is not &kis paper has illustrated some application examples of the
small as in [5], but the computational simplicity, i.e. thestrategy. In all of the examples, the results are highly
number of neurons, and acceptable tracking accuracy makemising for control engineering practice. A last desirable
the approach presented a good alternative for control dfaracteristic of the approach is its simplicity in terms of the

chemical processes. computational requirements. More precisely double
pendulum example costs 2x452 floating point operations
V. SMC OF A CHAOTIC SYSTEM (flops), CSTR example costs 143 flops and Duffing oscillator

example costs 452 flops for a single forward pass for output
Understanding the chaotic behavior has constituted ewaluation and a backward pass for parameter tuning with the
challenge for years as the outputs from which represent theposed scheme. A detailed view of the cost is illustrated in



Figure 12. In the view of what have been observed, tl
algorithm discussed yields a good performance for control
unknown systems belonging to class given by (1).
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Figure 1. Response of the double pendulum system
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Figure 2. Behavior of the state tracking errors example
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Figure 9. Desired and observed states with error signals in
control of Duffing oscillator
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Figure 7. Zoomed Figure 5 aroutxB200sec.

Figure 10. Applied control signal, phase space motion and state space motion
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Figure 12. Computational complexity chart

Mass of pendulum 1 M, 2 kg
Mass of pendulum 2 M, 2.5 kg
Mom. of inertia for pend. 1 Ji 0.5 kg
Mom. of inertia for pend. 2 J, 0.625 kg
Spring constant Ks 100 N/m
Natural length of the spring | 0.5m
Distance btw. pend. hinges b 0.4m
Pendulum height r 0.5m

Table Ill. Parameters of the CSTR Dynamics

Dimensionless concentration 6, State variable
Dimensionless temperature 6, State variable
Dimensionless coolant temp. 6; Control input
Damkohler number Da | 0.072
Dimensionless cooling rate B 0.3
Dimensionless activation energy | y 20
Dimensionless heat of reaction Tr 1
Disturbance n See Table Il

Table Il. Simulation Data for the Examples

Double Pendulum CSTR Duffing Oscillato

Controller Input Vector u :[q QIF ,i=1,2 | u =g, i=1 u :[q e]f ,i=1
# of Hidden Neurons 9 for each RBFNN 3 9
Uncertainty Bounds k;=1000,k,=1000 k=20 k=1000
Simulation Stepsize T=2.5msec T=0.1sec T=2.5msec
Initial Errors €,(0)=5712 rad e(0)= -0.0566 e(0)=-5

&,(0)=-172 rad e(0)=4

€,(0)=0 rad/sec

€,(0)=0 rad/sec
Sliding Line Parameter | A,=1,A,=1 None A=1
Noise Variance 0.33e-6 7.3543e-8 0.75e-7
Noise Peak Value le-3 le-3 1.5e-3
with probability= 1
SMC Design Matrix &=l E=0.11 E=l1g
Filtering Parameter a=100 a=1 a=1
Initialization of the Basis s i
Functions, which are
kept static during the
simulations

€ orde/dt [ € orde/dt




