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Abstract – Some illustrative applications of Variable Structure
Systems (VSS) theory based parameter tuning in control systems
are presented in this paper. The underlying idea of robustness
against disturbances and high tracking performance is observed
through an appropriate integration of Radial Basis Function
Neural Networks (RBFNN) and VSS based training scheme. The
examples presented include the control of mechatronic systems,
biochemical processes and a chaotic system named Duffing
oscillator.
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I.  INTRODUCTION

VSS theory is well known with its robustness to the
disturbances e.g. noise on the observed quantities and
uncertainties entering the system through control channels
[1]. The widespread variable structure controller design
methodology prescribes that the behavior in the phase space
would be composed of two phases: namely the reaching
mode and the sliding mode. The approach is basically a two-
sided decision mechanism, which is strictly dependent upon
the value of a measured quantity called ‘switching function’.
It is obvious that the control signal is extremely vulnerable to
the measurement noise as it affects the value of switching
function, which is very close to zero during the sliding mode.
The apparent consequence of this is the well-known problem
of ‘chattering’ [2].

Being not limited to what is mentioned above, the standard
method requires the availability of the nominal system
together with the bounds of the uncertainties.

This paper demonstrates the applications of the approach
discussed in [3], which is applicable without knowing the
analytical details of the plant to be controlled. The most
substantial contribution of [1] is the fact that the error on the
control signal is constructed and this has enabled the
designers to train the intelligent controller, which may be a
neural network or a fuzzy system. Basically, the system under
control is assumed to be in the class given below.
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where, θ, τ and D are the state vector, input vector and the
input gain matrix respectively. The system is in an ordinary
feedback loop [3], and the switching function for ith

subsystem is defined as in (2), in which λi is a strictly
positive scalar.
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Based on these, the error at the output of the controller is
formulated as in (3) [3].
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where sp(e)=Ge=G(θ−θd) and ξ is a positive definite diagonal
matrix of dimension n×n.

In the second section some application specific issues are
presented. The third section demonstrated the simulation
results for a double pendulum system, the fourth section
discusses the control of a Continuously Stirred Tank Reactor
(CSTR) and the fifth section focuses on the control of a
Duffing oscillator. The conclusions constitute the last part of
the paper.

II.  PRACTICAL ISSUES

The analysis and the design approach presented [3] have tried
to illuminate the Sliding Mode Control (SMC) problem from
a theoretical perspective. In this subsection, we discuss
several issues related to the practical applications of the
discussed methodology.

A. Chattering

Since the control decision during the sliding mode is tightly
dependent to the sign of a measured quantity being noisy and
very close to zero, the decision along the sliding manifold
exhibits sensitivity to noise on the observations. Among
many alternatives available [1-2,4], a common approach to
eliminate the chattering is to smooth the sign function, which
corresponds to introduce a boundary layer [2]. In this paper,
we adopt the following approximation for the sgn(.) function.
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where δ determines the sharpness around the origin. Since the
function in (4) is not discontinuous at the origin, the decision
mechanism softly switches around the vicinity of the decision
surface.

B. Actuation Speed

Another important issue is the actuation speed of the system
under control, i.e. the ability to respond to what is imposed
timely. Since we do not assume that the details concerning
the dynamic model of the system are unavailable, what
causes a difficulty from a practical point of view is the
selection of the matrix ξ, which characterizes the behavior
during the reaching mode. The values of this quantity can
only be set by trial-and-error due to the lack of system-
specific details.

C. Obtaining the Equivalent Error from the Observed Data

Lastly in this subsection, we focus on the construction of the
sc of (3), which requires the differentiation of sp. What we
adopt in this paper is to filter the measured values of sp and
differentiate afterwards. Denote S as the Laplace variable,
and use the linear system given as
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where Q(0) = α > 0 and Real{roots(Q(S))} < 0. The order of
the denominator polynomial and the locations of the roots are
left to the designer, because these issues require several trials
to refine the selections and are subject to the application
together with its operating environment.
Lastly, it should be noted that the cost of the information loss
by using such a filter, whose input is sp and output is an
estimate of ps� , is a matter of how robust the devised control

algorithm is. More explicitly, the separation of the noise and
the actual value of sp leads to a corruption on sp, and when
differentiated afterwards, some valuable information is lost
together with the elimination of the noise component. Here
we assume that mentioned loss causes an uncertainty, which
enters the system through the control channels, and which is
particularly effective during the sliding mode; and this
uncertainty can be alleviated if it falls within the limits
allowing the maintenance of the invariance during the sliding
mode [1].

In the remaining part of the paper, three application examples
are presented. In order to demonstrate the applicability of the
developed scheme, the examples focus on the control of
mechatronic systems, biochemical processes, and chaotic

systems. Some common points that should here be
highlighted for the following three sections are as follows: we
tune solely the weight parameters of the neurocontrollers and
we set these parameters initially to zero, i.e. the parametric
evolution starts from the origin. The noise sequences are
Gaussians having zero mean, and the adopted filter structure
has the structure given in (6). Furthermore, we set δ=0.25 in
all examples.

( )
αα

αα
++

==
SS

S

SQ

S
SH

2)( 2 (6)

III.  SMC OF A DOUBLE PENDULUM

The differential equations characterizing the behavior of the
system are given in (7)-(8), in which the angular positions
and the angular velocities for each pendulum define the state
vector. The control inputs, which are denoted by τ1 and τ2, are
provided to the relevant pendulum by servomotors at the
base. The parameters of the plant are given in Table I.
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where, g=9.81 m/s2 is the gravitational acceleration constant.
As given in Table I, since b<l, the two pendulums repel each
other in the upright position. The model introduced in this
section has been studied by Spooner and Passino [4], who
discuss the decentralized adaptive control using RBFNN.

Under the conditions given in the second row of Table II, in
response to a sinusoidal reference vector, the state response
and the error response are obtained as illustrated in Figures 1
and 2 respectively. The control signals leading to this
response are illustrated in the top row of Figure 3, and the
behaviors in the phase spaces are depicted in the bottom row
of Figure 3. Clearly the smoothness of the control signal and
the behavior in the phase space recommend the use of the
approach presented in mechatronics. Lastly, the evolutions in
the parameters of the two RBFNN controllers (φ) are
illustrated in Figure 4, from which the bounded evolution is
clear.

IV.  SMC OF A BIOCHEMICAL PROCESS

Chemical process engineering is another application field
utilizing the techniques of control engineering expertise. In
this subsection, we consider the dynamic model of a CSTR
discussed in [5], which illustrate the SMC task with Gaussian
networks and wavelet networks. The governing equations of



the process dynamics are as described below, and the
parameters are defined in Table III.
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The control problem is to enforce the dimensionless
concentration (θ1) to follow a desired trajectory by altering
the dimensionless coolant temperature (θc). During the
control operation, the second state, which is the
dimensionless temperature (θ2), is constrained to evolve
boundedly in time. In [4], the nominal operating point of the
CSTR system is described as θ1=0.4126, θ2=3.28 and
θc=3.04, the state values among which are used as the initial
state values in this paper. According to the simulation settings
given in the third column of Table II, one should notice from
the first row that the controller uses solely the noise corrupted
tracking error information in synthesizing the necessary
control sequence. In Figure 5, the desired and the observed
states are illustrated. In the bottom right subplot of this figure,
the error is seen. At time t=3200sec, a step change occurs in
the reference trajectory, which is also studied by Knapp et al
[4], and the system successfully follows the imposed
trajectory. It must be noted that since the system under
control is of first order, the sliding surface of the
conventional design becomes a point in the single
dimensional error space, and this point corresponds to the
origin. Consequently, the problem does not require a λ
selection. In the top left subplot of Figure 6, the applied
control signal (θc) is illustrated. This subplot reveals that the
control signal has a sufficiently smooth characteristic after
the transient phase. The remaining three subplots in Figure 6
depict the time evolution of the adjustable neurocontroller
parameters These subplots confirm the evolution in finite
volume claim of [3]. The variables seen in Figures 5 and 6
have been redrawn in Figures 7 and 8 with the same graphical
allocation but around t=3200sec, at which a step change
occurs in the command signal. When compared to the results
discussed in [5], it can be said that the settling time is not as
small as in [5], but the computational simplicity, i.e. the
number of neurons, and acceptable tracking accuracy make
the approach presented a good alternative for control of
chemical processes.

V.  SMC OF A CHAOTIC SYSTEM

Understanding the chaotic behavior has constituted a
challenge for years as the outputs from which represent the

entire richness of nonlinear phenomena during the course of
even the finite-time observations. The behavioral diversity in
chaos is therefore attributed to its deterministic
unpredictability or the unpredictable determinism, which
exists in the nature of the system. Furthermore, sensitive
dependence to the initial conditions makes the chaotic
systems attractive test beds to test the performance of novel
control algorithms. In this section, we discuss the Duffing
system studied in [6], which illustrates the identification and
control issues for a number of chaotic systems. The
differential equation governing the dynamics of the system is
given as follows:
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where, p1 = 1.1, p2 = 1, p = 0.4, q = 2.1 and ωd = 1.8. The
control problem is to enforce the states to the periodic orbit
described as follows:

( )dd θθ sin−=�� (12)

with θd(0) = 1 and dθ� (0) = 0. The simulation data for this

example is given in the fourth column of Table II. In the left
subplots of Figure 9, the reference θ trajectory, the response
of the system and the tracking error are illustrated
respectively. The same quantities for the second state are
figured in the right subplots. Clearly, the response of the
system converges to the desired trajectories in a short while.
In Figure 10, the control activity, which is admissibly smooth
despite the presence of noise sequence, leading to the
obtained state behavior is shown. The motion in the phase
space is depicted in the top right subplot of Figure 10, in
which the error vector hits the sliding line and approximately
after t = 0.25 sec starts moving towards the origin as
characterized by the locus along the sliding line. The
response of the system is drawn in the bottom subplot of
Figure 10, which apparently confirms the accurate tracking
claim of the approach. Lastly, the parametric evolution is
shown in Figure 11, from which the bounded evolution is
apparent.

VI.  CONCLUSIONS

A SMC based parameter tuning strategy is discussed in [3].
This paper has illustrated some application examples of the
strategy. In all of the examples, the results are highly
promising for control engineering practice. A last desirable
characteristic of the approach is its simplicity in terms of the
computational requirements. More precisely double
pendulum example costs 2x452 floating point operations
(flops), CSTR example costs 143 flops and Duffing oscillator
example costs 452 flops for a single forward pass for output
evaluation and a backward pass for parameter tuning with the
proposed scheme. A detailed view of the cost is illustrated in



Figure 12. In the view of what have been observed, the
algorithm discussed yields a good performance for control of
unknown systems belonging to class given by (1).
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Figure 1. Response of the double pendulum system
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Figure 2. Behavior of the state tracking errors
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Figure 3. Applied torque signals and the behavior in the
phase space
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Figure 4. Time evolution of the parameters of the two
controllers
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Figure 5. Desired and observed states with error signal in CSTR control
example
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Figure 6. Control signal and parametric evolution
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Figure 7. Zoomed Figure 5 around t=3200sec.
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Figure 8. Zoomed Figure 6 around t=3200sec.
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Figure 9. Desired and observed states with error signals in
control of Duffing oscillator
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Figure 10. Applied control signal, phase space motion and state space motion
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Figure 11. Time evolution of the RBFNN controller parameters



Figure 12. Computational complexity chart

Table I. Parameters of the Double Pendulum

Mass of pendulum 1 M1 2 kg
Mass of pendulum 2 M2 2.5 kg
Mom. of inertia for pend. 1 J1 0.5 kg
Mom. of inertia for pend. 2 J2 0.625 kg
Spring constant ks 100 N/m
Natural length of the spring l 0.5 m
Distance btw. pend. hinges b 0.4 m
Pendulum height r 0.5 m

Table III. Parameters of the CSTR Dynamics

Dimensionless concentration θ1 State variable
Dimensionless temperature θ2 State variable
Dimensionless coolant temp. θc Control input
Damkohler number Da 0.072
Dimensionless cooling rate β 0.3
Dimensionless activation energy γ 20
Dimensionless heat of reaction TR 1
Disturbance η See Table II

Table II. Simulation Data for the Examples

Double Pendulum CSTR Duffing Oscillator
Controller Input Vector [ ]Tiii eeu �= , i=1,2 ii eu = , i=1 [ ]Tiii eeu �= , i=1

# of Hidden Neurons 9 for each RBFNN 3 9
Uncertainty Bounds k1=1000, k2=1000 k=20 k=1000
Simulation Stepsize Ts=2.5msec Ts=0.1sec Ts=2.5msec
Initial Errors e1(0)=5π/12 rad

e2(0)=-π/2 rad
e� 1(0)=0 rad/sec
e� 2(0)=0 rad/sec

e(0)= -0.0566 e(0)=-5
e� (0)=-4

Sliding Line Parameter λ1=1, λ2=1 None λ=1
Noise Variance 0.33e-6 7.3543e-8 0.75e-7
Noise Peak Value
with probability ≈ 1

1e-3 1e-3 1.5e-3

SMC Design Matrix ξ = I2×2 ξ = 0.1I1×1 ξ = I1×1

Filtering Parameter α=100 α=1 α=1
Initialization of the Basis
Functions, which are
kept static during the
simulations
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