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 I will update this page continuously



Mehmet Önder Efe, Neural Networks, Lecture Notes, 2022.

Grading

 Paper reading 40%
 Paper writing 60%
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Entering a Zoom session with camera off

Click 
Settings
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Click 
Video

Entering a Zoom session with camera off
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Entering a Zoom session with camera off

1-Scroll 
down

2-Click
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 Let’s see the technical outline of the 
course
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Course Outline

A Historical Perspective
Neuron and its Analytic Model

Inner product as a similarity measure (net sum)
Activation functions
Differentiability
Parameterization and computational aspects
Concept of learning (Tuning, Adaptation or
Parameter Adjustment) 

Hopfield Neural Network
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Perceptron Learning Algorithms
Multilayer Perceptron and Error Backpropagation

Derivation of the Learning Algorithm
Problems of Error Backpropagation
Memorization (Overfitting) and Generalization
Range of Variables (Normalization)

Radial Basis Function Neural Networks
Dynamic Neural Networks

Course Outline
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Second Order Training Schemes
Levenberg-Marquardt Algorithm
Gauss-Newton Algorithm

Recurrent Neural Network Structures
Several Applications of Neural Networks

Identification of Nonlinear Systems
Neurocontrol Structures
Noise Elimination
Adaptive Noise Cancellation
VLSI Implementation of NNs
NNs in Medical Diagnosis
NNs for Financial Applications

Course Outline
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An Open Question - Stability in Learning Systems
Reinforcement Learning
Unsupervised Learning

Course Outline
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McCulloch and Pitts (1943)
A neuron model

Hebb (1949)
A book: The Organization of Behavior
First mentioning of Synaptic Modification

Uttley (1956)
Classifiction of simple sets (binary patterns)

Rosenblatt (1958)
Perceptron

Widrow and Hopf (1960)
Least Mean Squares (LMS) for ADALINE
(Adaptive Linear Element)

A Historical Perspective
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Minsky (1961)
Credit Assignment Problem (Hidden layer issues)

Hopfield (1982)
Hopfield Networks

Rumelhart, Hinton, and Williams (1984)
Backpropagation

Broomhead and Lowe (1988)
Radial Basis Function Neural Networks

Deep Learning Era

A Historical Perspective
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Neuron and its Analytic Model

Activation FunctionInner Product

Mark-1 Perceptron
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Neuron and its Analytic Model
Learning (Tuning, Adaptation, Adjustment)

Assume you are given this data. How would you
separate the two classes?

Class 1
Class 0

u2

u1

Class 1
Class 0

u2

u1

There are many decision boundaries!
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Perceptron Learning Algorithm
Learning (Tuning, Adaptation, Adjustment)

Class A
Class B

u2

u1

• Find a decision boundary by modifying the
adjustable parameters

S
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f1
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S

u1

u2

f3f1

f2
t

)(xf

x
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Neuron and its Analytic Model
Learning

Class 1
Class 0

u2

u1

1
Close to 1 or 0

How would you modify
f1, f2 and f3 to obtain a good
decision boundary?
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Performance of a Classifier

F1-Score = 2 x Precision x Recall /(Precision + Recall)

(Recall)
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Activation Function
is in the circle

Hopfield Neural Network

z 1 z 1 z 1 z 1

• This is a 4 neuron Hopfield network, which is recurrent
• Output of a neuron is not fed back to itself

Unit Delay
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Hopfield Neural Network

• Character recognition
• Content Addressable Memory

z 1 z 1 z 1 z 1

This is a canvas
composed of

neurons in the
Hopfield Network
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Hopfield Neural Network

Train the net
for this

Start with a noisy 2 Converges to
memorized 2

z 1 z 1 z 1 z 1
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• Structure is layered, and a hierarchy is apparent in it
• Structure is composed of some sub-components, neurons
• A nonlinear map from input space to output space

Multilayer Perceptron and
Error Backpropagation (EBP)
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• What is adjustable?: The matrices (weights and biases)
in between layers

• How is this done: EBP, CG, GN, LM etc.

Multilayer Perceptron and
Error Backpropagation (EBP)
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Multilayer Perceptron and
Error Backpropagation (EBP)
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A neuron becomes
active for the
current input

As the input moves,
another neuron

starts responding

Then it becomes
the dominantly
excited neuron

A good coverage
of the input space

lets you know
where you are

during the course
of your application

u1

u2

u3

t

Radial Basis Function Neural Networks
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u1

u2

u3

t

• What is adjustable?: Centers and widths of the basis
functions, and the output parameters

• How is this done: EBP, CG, GN, LM etc.

Radial Basis Function Neural Networks
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Recurrent Neural Network Structures

Real time recurrent net. Partially recurrent net.

Hopfield net.
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Second Order Training Schemes

Cost surface contours Cost surface contours

• Cost is decreasing in both of them. But in one of them it
takes a long time to find the minimum.

• Levenberg-Marquardt (LM), Gauss-Newton (GN) algorithms
are examples of 2nd order methods. EBP is a 1st order method
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Applications of Neural Networks

An Example

Increase the profit by 
identifying the 
mechanism and 
appropriately making 
the decisions
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Applications of Neural Networks

SYSTEM

NEURAL NET
(IDENTIFIER)

S

yn

y

u
Error Signal

_

+

• System above may be a robot, a chemical process,
an industrial process etc. We will see all these in detail...
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Applications of Neural Networks

SYSTEM
Neural Net
ControllerS

yd y

+ _

t

• How do we train such a neurocontroller?
• What alternatives are possible (online/offline tuning)
• What considerations are important (training robustness)
• Is this useful? Or when is neural control useful?

?

e
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Applications of Neural Networks

NEURAL NET
(FILTER)

• How do we filter out the noise from the source?
• How do we teach what to filter out and how to filter out ?
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Applications of Neural Networks

NEURAL
CONTROLLER

SYSTEMS t

y
yd

_

+

TRAINING
ALGORITHM

DESIGN
SPECS.

Do the parameters
evolve bounded?
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Applications of Neural Networks

Detect the persistent features of the input data without any feedback 
(teacher, supervisor) from the environment: Used for data clustering, 
feature extraction and similarity detection.
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Applications of Neural Networks

1 2 3 4

5 6
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Applications of Neural Networks

• How would you model this problem?
• How would you design a neural net playing the game?

NEURAL NETWORK
(STRATEGIC PLANNER)

Initial State Final State
(One ball)
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Neuron and its Analytic Model
Inner product as a similarity measure (net sum)
Activation functions
Differentiability
Parameterization and computational aspects
Concept of learning (Tuning, Adaptation or
Parameter Adjustment) 

Hopfield Neural Network

Let’s Start
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• Industry workers
Welding and assembly

• Space research
Mars mission

• Medical applications
Coronary surgery

• Unmanned Vehicles
UAV, UGV, USV

• Entertainment
Robot dog

• Military Applications
Missile Control

Complexity requiring machine intelligence is everywhere…

Design ‘systems ’ operating without human intervention

Motivation
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t

u1

um

How to devise a model to imitate it?

will take some time...

Brain
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Hardware
-Connectionist structures

Software
-Rule based structures

Color

m(color)

Imitate what?
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• Structure is layered, and a hierarchy is apparent in it

• Structure is composed of some sub-components, neurons

We will consider hardware of it
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A Neuron Math Model

Two neurons in interaction

Neuron and Its Analytic Model



Mehmet Önder Efe, Neural Networks, Lecture Notes, 2022.

• Replace each neuron with its
analytic counterpart

S

u1

u2

um

f1
f2

fm

f (.)

This is what we will get
Neuron and Its Analytic Model
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Now analyze this network
Neuron and Its Analytic Model
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tInput
vector u

Adjustable 
Parameter vector f

Output 
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Adaptive Linear Element - ADALINE
Neuron and Its Analytic Model
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S

u1

u2

um

f1
f2

fm

f (.) t

Logistic (Activation) Function

• If f(x)=x, ADALINE is obtained
• This model is a building block for interconnected networks
• Activation function is generally a hyperbolic tangent,
a sigmoid, a hard limiting function or a linear expression.

 uf T ft 

Neuron and Its Analytic Model
Activation Functions
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Unipolar Bipolar Bipolar

• None of them is differentiable with respect to x

• Note that the decision boundary at x=0 can be changed

Neuron and Its Analytic Model
Activation Functions
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Unipolar Bipolar

• Both of them are differentiable with respect to x

• Note that the decision boundary is smooth now!

Neuron and Its Analytic Model
Activation Functions
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S
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Be reasonable! Such a system cannot realize negative values, 
so what you can expect from it has to be nonnegative

Neuron and Its Analytic Model
Activation Functions



Mehmet Önder Efe, Neural Networks, Lecture Notes, 2022.

Neuron and Its Analytic Model
Activation Functions

M.Ö. Efe, "Novel Neuronal Activation Functions for Feedforward Neural Networks,"
Neural Processing Letters, v.28, no.2, pp.63-79, October 2008.
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Some Preliminary Mathematics
Inner Product
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where j=1,2,..,n

where k=1,2,..,n

Some Preliminary Mathematics
Derivative for Inner Product
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Some Preliminary Mathematics
Matrix-Vector Multiplication
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Some Preliminary Mathematics
Derivative
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Some Preliminary Mathematics
Derivative for Several Activation Functions
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Some Preliminary Mathematics
Derivative for Several Activation Functions
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where D is another vector of appropriate dimensions

Some Preliminary Mathematics
Derivative for Quadratic Functions
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Some Preliminary Mathematics

αcos, owowow T 
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For n=1, a=0
For n=2,3 a can be found by geometric relations
For n4 Finding a may be tedious

Let’s see how it measures similarity for n=2

Inner Product as a Measure of Similarity
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Some Preliminary Mathematics
Inner Product as a Measure of Similarity

αcos, owowow T 

Let’s see how it measures similarity for n=2

a

w

o

Notice that, keeping the lengths same,
they are most similar when a=0, indeed
they become identical.

When a90, the two vectors are dissimilar.

For n4, nothing changes, simply calculate
wTo. Basically, a neuron fires when the
input vector is similar to its weight vector.



Mehmet Önder Efe, Neural Networks, Lecture Notes, 2022.

)(xf)(xf

x x

-1

+1

-1

+1

)(1

1
)( 


xe

xf
 

   







 



x
ee

ee
xf

xx

xx

tanh)(

x = 

Neuron and Its Analytic Model
Activation Functions - Shifting the origin with a 
threshold 



Mehmet Önder Efe, Neural Networks, Lecture Notes, 2022.

)(xf

x

-1

+1

 x
ee

ee
xf

xx

xx

λtanh)(
λλ

λλ





 



Notice that this changes the derivative
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Neuron and Its Analytic Model
Activation Functions - Adding a slope parameter l
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Concept of Learning (Tuning, Adaptation or
Parameter Adjustment)

Learning is the process of searching a parameter set.

The goal of learning is to minimize some cost or 
maximize some profit function.

For Neural Networks, learning is to change the 
weights and biases appropriately.

This process is also called Parameter Adaptation, 
Parameter Tuning, Parameter Adjustment or Training.

Neuron and Its Analytic Model



Mehmet Önder Efe, Neural Networks, Lecture Notes, 2022.

Concept of Learning (Tuning, Adaptation or
Parameter Adjustment)

Neuron and Its Analytic Model

u1 u2 y
0 0 0
0 1 0
1 0 0
1 1 1 u1

u2

1
0

y

1

S

u1

u2

f3f1

f2
t

)(xf
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1
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Concept of Learning (Tuning, Adaptation or
Parameter Adjustment)

Neuron and Its Analytic Model

i
current
i

new
i fff 

There are 3 parameters

At each step (time instant) update them by 
calculating the corrective information
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Concept of Learning (Tuning, Adaptation or
Parameter Adjustment)

Neuron and Its Analytic Model

u1 u2 y

0 0 0

0 1 0

1 0 0

1 1 1

An input/output pair
A training pair
A pair
A sample

Input vector

Output vector
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Concept of Learning (Pattern and Batch)
Neuron and Its Analytic Model

Time k

Apply Pair#1
Then Update

Apply Pair#2
Then Update

Apply Pair#3
Then Update

Apply Pair#4
Then Update

Apply Pair#1
Then Update

Time k+1

Time k

Apply Pair#1 Apply Pair#2 Apply Pair#3 Apply Pair#4 Apply Pair#1

Time k+1

Update
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Concept of Learning (Tuning, Adaptation or
Parameter Adjustment)

Neuron and Its Analytic Model
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clear all
close all
clc

U = [0 0;0 1;1 0;1 1];
Y = [0 0 0 1]';

Phi = 2*rand(3,1)-1;
Eta = 0.8;
PHI(1,:)=Phi';

for count=1:1000
epoche_error(count) = 0;
for sample=1:4

inputvector=[U(sample,:)';-1];
Yn(sample) = 1/(1+exp(-(Phi'*inputvector)));
errorvector = Y(sample)-Yn(sample);
Phi=Phi+Eta*errorvector*Yn(sample)*(1-Yn(sample))*inputvector;
PHI((count-1)*4+sample+1,:)=Phi';
epoche_error(count) = epoche_error(count) + errorvector'*errorvector;

end
epoche_error(count)

end
[U,Y,Yn']

» [U,Y,Yn']

ans =

0    0   0    0.0004
0    1   0    0.0625
1    0   0    0.0626
1    1   1    0.9255

We will see how this works!
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for count=1:1000
epoche_error(count) = 0;
for sample=1:4

inputvector=[U(sample,:)';-1];
Yn(sample) = 1/(1+exp(-(Phi'*inputvector)));
errorvector = Y(sample)-Yn(sample);
Phi=Phi+Eta*errorvector*Yn(sample)*(1-Yn(sample))*inputvector;
PHI((count-1)*4+sample+1,:)=Phi';
epoche_error(count) = epoche_error(count) + errorvector'*errorvector;

end
epoche_error(count)

end
[U,Y,Yn']

We will see how this works!
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Least Squares (LS) Algorithm

S

a1

a2

am

x1
x2

xm

yInput
vector

Parameter vector x

Output
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Least Squares (LS) Algorithm

S

x1
x2

xm

y

Input vector Parameter vector x Output

a11 a21 … aN1

a12 a22 … aN2

… … … …

a1m a2m … aNm

b1 b2 … bN
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Least Squares (LS) Algorithm

S

a1

a2

am

x1
x2

xm

y
Input
vector

Parameter vector x

Measurable
OutputS

yn

Noise

Let’s switch to Least Squares document
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Hopfield Neural Network

• Character recognition

• Content Addressable Memory

z 1 z 1 z 1 z 1

yk+1 = sgn(Wyk)

An example
canvas for 12

neurons

yk+1 = yk means
no change!
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Hopfield Neural Network

-11-1 1-11 111 1-11

1-1-1 1-1-1 1-1-1 111

x1

x2

Letter A

Letter L

[ ]T

[ ]T

Patterns and Encoding

…

111 1-1-1 1-1-1 111 xPLetter C [ ]T

There are P patterns
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Hopfield Neural Network
Computation of W
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Either use this one

Or this one

To obtain W, set the diagonal entries of W to zero
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Hopfield Neural Network
Computation of W-What if a new pattern emerges?
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An Example 

ooooo
ooooo
ooooo
XXXXX
XXXXX
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XoXoX
XXoXX
XXoXX
XXoXX

Hopfield Neural Network

No change at all

Initial state

Three fundamental
memories are the

three patterns used
to determine W

CODEBOOK, N=30, P=3
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Hopfield Neural Network
An Algorithmic Summary 

Choose the patterns, x, which will be the 
fundamental memories.

Storage: Compute W (Notice this is a one-shot 
computation, i.e. no iterations on W).

Initialization: Set the output vector to a                 
N-dimensional vector, which may be a corrupted 
version of fundamental memories.

Run: Iterate yk+1 = sgn(Wyk) until convergence. 
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x1

x2

Hopfield Neural Network
State Space
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Hopfield Neural Network
HOMEWORK #1 
Choose your canvas, N (neurons)
Choose your P patterns and encode them
Find W (Now your network is ready)

For every pattern from your library of patterns:
Perturb it according to the perturbation procedure
Run your network get the result

Determine empirically the learning capacity of your 
network in terms of N.

Perturbation procedure
For every bit of the chosen pattern
Generate a random number by using rand command
If it is bigger than 0.3 reverse that bit
Otherwise leave it as it is
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Hopfield Neural Network
HOMEWORK #1 
If every pattern is learned, increase P, and repeat 
everything until you find the limit of P for that N.

“Code” everything in Matlab, submit it.
Insert as much comments as possible
Give a plot like the one below
Due date is 2-weeks from today!

8

20 30 40 50 60 70

Number of
learned

patterns

Your result may not be like this!
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Hopfield Neural Network
Remarks on Content Addressability

Suppose that an item stored in memory is “H.A. Kramers & G.H.
Wannier Physi Rev. 60, 242 (1941).” A more general content-
addressable memory would be capable of retrieving this entire
memory item on the basis of sufficient partial information. The
input “& Wannier (1941)” might suffice. An ideal memory could
deal with errors and retrieve this reference even from the input
“Wannier, (1941).”

Hopfield, 1982
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Perceptron Learning Algorithms
Multilayer Perceptron (MLP) and Error Backpropagation

Derivation of the Learning Algorithm
Problems of Error Backpropagation
Memorization (Overfitting) and Generalization
Range of Variables (Normalization)
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Perceptron Learning Algorithms
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• We will discuss this topic for classification purposes
• This model is a building block for interconnected networks
• Several tuning laws (learning algorithms) exist
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Perceptron Learning Algorithms
Perceptron with Parameter Update Loop
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S- + d

UPDATE
MECHANISM

f1, f2, …, fm, 

d  t = e = error

d=desired

• A generic pair is : [ u1, u2, …, um, d ]
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Perceptron Learning Algorithms
Summary for the First Algorithm

• Initialize the weights and the bias to randomly
selected small numbers

• Present a pattern [ u1, u2, …, um] obtain t
• Calculate error e = d  t
• Adapt the weights (Choose h and tuning law)

where h is the learning rate (adaptation gain)
satisfying 0< h <1.

• Above tuning law is known as Hebbian Learning 
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Perceptron Learning Algorithms
Gradient Descent (MIT Rule)

f

Jr

f >0 , i.e. in the next step 
you will be closer to the 
origin than you are now.

f >0 , i.e. in the next step 
you will be closer to the 
origin than you are now.
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Perceptron Learning Algorithms
Gradient Descent (MIT Rule)
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Perceptron Learning Algorithms
Gradient Descent (MIT Rule)

Define a cost function

 22
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• Check the source code we have already seen. It uses
gradient descent for parameter tuning
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Perceptron Learning Algorithms
Summary for the Second Algorithm

• Initialize the weights and the bias to randomly
selected small numbers

• Present a pattern [ u1, u2, …, um] obtain t
• Calculate error e = d  t
• Adapt the weights (Choose h and tuning law)

where h is the learning rate (adaptation gain)
satisfying 0< h <1.

• Above tuning law is known as Gradient Descent 
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Perceptron Learning Algorithms
Summary for the Third Algorithm

• Initialize the weights and the bias to randomly
selected small numbers

• Present a pattern [ u1, u2, …, um] obtain t
• Adapt the weights (Choose h and tuning law)

where h is the learning rate (adaptation gain)
satisfying 0< h <1.
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Perceptron Learning Algorithms
Summary for the Fourth Algorithm

• Initialize the weights and the bias to randomly
selected small numbers

• Present a pattern [ u1, u2, …, um] obtain t
• Adapt the weights (Choose h and tuning law)

where h is the learning rate (adaptation gain)
satisfying 0< h <1.
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0 otherwise 0 otherwise
i
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Perceptron Learning Algorithms
HOMEWORK #2

In 3D space generate ten patterns in two different 
quadrants. This means, you will have 2 classes.

Plot them and show the separating hyperplane by 
using each one of the methods.

u1

u2

u3
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% Number of points in each class
N=50;

% Amount of intersection in between the classes
% If Intersect>0 then there will be some overlap in between the classes
Overlap = 0;

% Positive class point coordinates
U1 =  rand(N,3)-Overlap;

% Negative class point coordinates
U2 = -rand(N,3)+Overlap;

% Positive class output
Y1 =  ones(N,1);

% Negative class output
Y2 = -ones(N,1);

% Concatenate the input coordinates
U = [U1;U2];

% COncatenate the output coordinates
Y = [Y1;Y2];

% Initial values of the adjustable parameter vector
Phi = [-0.2 -0.6 0]';

% Learning rapte
Eta = 0.01;

% Data collection variable for Phi
PHI(1,:)=Phi';

% Mesh coordinates
[x y]=meshgrid(-1:0.1:1,-1:0.1:1);

% Chosen adaptation method
method = 1;
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% Loop below
for count=1:20

% Loop for 2N samples available in [U Y] set
for sample=1:2*N

% Choose the input pattern coordinates
inputvector=U(sample,:)';

% Depending on the 'method' calculate the output
if method==1 || method==3 || method==4

Yn(sample) = sign(Phi'*inputvector);
elseif method==2

Yn(sample) = tanh(Phi'*inputvector/2);
else

disp(' The variable <method> must be 1,2,3 or 4.')
break

end

% Calculate the output error
error = Y(sample)-Yn(sample);

% Update laws
if method ==1

Phi=Phi+Eta*error*inputvector;
elseif method ==2

Phi=Phi+Eta*error*(1/2)*(1-Yn(sample)^2)*inputvector;
elseif method==3

Phi = Phi+Eta*(1-Y(sample)*Yn(sample))*Y(sample)*inputvector;
elseif method==4

if Y(sample) ~= Yn(sample)
Phi=Phi-Eta*2*Yn(sample)*inputvector;

end
else

disp(' The variable <method> must be 1,2,3 or 4.')
break

end

% Write the parameters to PHI variable
PHI=[PHI;Phi'];

end
end
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Without bias term (=0), little overlap, 80 
samples/class
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% Method 2

U = [0 0;0 1;1 0;1 1];
Y = [0 0 0 1]';

Phi = 2*rand(3,1)-1;
Eta = 0.8;
PHI(1,:)=Phi';

for count=1:1000
epoche_error(count) = 0;
for sample=1:4

inputvector=[U(sample,:)';-1];
Yn(sample) = 1/(1+exp(-(Phi'*inputvector)));
errorvector = Y(sample)-Yn(sample);
Phi=Phi+Eta*errorvector*Yn(sample)*(1-Yn(sample))*inputvector;
PHI((count-1)*4+sample+1,:)=Phi';
epoche_error(count) = epoche_error(count) + errorvector'*errorvector;

end
epoche_error(count)

end
[U,Y,Yn']

» [U,Y,Yn']

ans =

0    0   0    0.0004
0    1   0    0.0625
1    0   0    0.0626
1    1   1    0.9255

We saw how this works!
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With bias term, little overlap, 80 samples/class
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Let us check the 4 algorithms for four different 
overlap levels.



Mehmet Önder Efe, Neural Networks, Lecture Notes, 2022.

First 
Method



Mehmet Önder Efe, Neural Networks, Lecture Notes, 2022.

Second 
Method



Mehmet Önder Efe, Neural Networks, Lecture Notes, 2022.

Third 
Method
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Fourth 
Method
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Perceptron Learning Algorithms
REMARKS

u1

u2

Given the data shown, can a single perceptron 
draw the decision boundary between two clusters?

u1

u2
Circle XOR
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u1

u2

u3

t

Multilayer Perceptron (MLP) and
Error Backpropagation (EBP)

3-4-1 configuration

Input 
Layer

Hidden 
Layer

Output 
Layer
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MLP and EBP

• A Pair is composed of a particular input vector and the
corresponding desired output vector.

• Training data set is composed of some number of pairs
• Choosing one pair, applying the input part of it to a neural

network and obtaining the network output vector is called
a forward pass

• Calculating the error and adjusting the parameters is
called a backward pass

• Sample error is defined as the square of the norm of the
output error d-t

• An epoche is completed when all pairs are passed through
the network and the relevant parameter update is made.

• Epoche error is the sum of the sample errors for every
pair in the training data set

• Mean Squared Error is  epoche error over #of pairs.
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MLP and EBP
• Note that EBP is based on Gradient Descent
• We will start with a simple example then we will

generalize the approach
• The problem is XOR, Configuration is 2-2-1 and activation

functions for the hidden layer are tanh(.) and for the
output layer it is linear.

Layer k=1 Layer k=2Layer k=0
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MLP and EBP

tanh(.)
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MLP and EBP
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MLP and EBP
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MLP and EBP
Backward Pass for the Hidden Layer
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MLP and EBP
A Pseudo Code

Choose your network configuration
Initialize the weights to randomly chosen small numbers
Choose Learning Rate h
FOR counter=1 to 100

Epoche_Error=0
FOR p=1 to P

Choose pair #p
Forward Pass
Calculate Sample_Error
Epoche_Error += Sample_Error
Backward Pass

END
Sum Squared Error [count] = Epoche_Error
Print Epoche_Error

END
Save your network data
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MLP and EBP

u1 u2 y
0 0 0
0 1 0
1 0 0
1 1 1

Pair #1

Pair #P

• For XOR problem you will have 4 inputs, i.e. there are finite
number of input combinations

• There will be one output
• You may choose the number of hidden layers and neurons in them
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MLP and EBP
Let’s try this one for backward pass computations
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MLP and EBP
Let’s try this one for backward pass computations
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There are multiple paths to every weight in the first layer
You have to compute the contribution of every one of them.

Make use of the layered structure to generalize this…
The Error Backpropagation!

MLP and EBP
For the parameters with superscript 0
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MLP and EBP
Let’s try this one for backward pass computations
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MLP and EBP
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MLP and EBP
Generalization of the Tuning Law
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MLP and EBP
Generalization of the Tuning Law - Output Layer

• Assume (k+1)th layer is the output layer
• The output layer neuronshave activation functions

denoted by f(x)=x
• The cost function is

• The update law is 
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MLP and EBP
Generalization of the Tuning Law - Output Layer
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Si
k+1

MLP and EBP
Generalization of the Tuning Law - Output Layer

t1
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MLP and EBP
Generalization of the Tuning Law - Output Layer
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MLP and EBP
Generalization of the Tuning Law - Hidden Layers
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Si
k+1

MLP and EBP
Generalization of the Tuning Law - Hidden Layers
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MLP and EBP
Pattern and Batch Learning

• Pattern Learning (Update after every pattern presentation):
Present 1st pattern >> Update the parameters
Present 2nd pattern >> Update the parameters
...

• Batch Learning (Update after every epoche):
Present 1st pattern >> Calculate D=w
Present 2nd pattern >> Calculate D=D+w
…
Present P-th pattern >> Calculate D=D+w
Update the parameters with the cumulative value D 

Loop

Loop
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MLP and EBP
Online and Offline Learning

• Offline Learning:
Data is available to train the network
Train the network
Unplug it from training loop, install into test system
Test it

• Online Learning (Real-Time):
Now t=t0
An input/output pair emerges
Apply it, obtain output, tune the parameters
Now t=t0+t
Another input/output pair emerges
Apply it, obtain output, tune the parameters
...

Train

Test

Train
&

Test
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MLP and EBP
Problems of EBP

w1(k)

w2

J
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Cost surface is steep 
along w1 direction
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Cost surface is flat 
along both directions
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MLP and EBP
Problems of EBP - Momentum Term Addition

• Learning with EBP is a slow process!
Look for methods to speed it up…

º Momentum Term Addition

This term preserves some portion of the previous weight 
change so that the weight update dynamics is less influenced 
by the instant fluctuations. This operation acts like a filter!

k
ij

k
ij

k
ij

w

J
twtw




 hm )1()( where 0 < m < 1
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MLP and EBP
Problems of EBP - Learning Rate Adaptation

• Learning with EBP is a slow process!
Look for methods to speed it up…

º Learning Rate Adaptation

IF the cost is decreasing for several steps
THEN increase the learning rate by giving an increment g

IF the cost is increasing for several steps
THEN decrease the learning rate geometrically

IF there is no change, go on searching...

( 1) γ ( ) ( 1)

( ) ( 1) ( ) ( 1)

0 otherwise

t J t J t

t t J t J t

h
h h

   
   



where 0 <  , g < 1
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MLP and EBP
A Comparison for XOR Problem

Momentum & Adaptive h

Only Adaptive h

Only Momentum 

Pure EBP (No momentum 
term, no adaptation on h)

Iteration Number

Sum 
Squared 

Error
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There are a number of other alternatives that perform poor or 
good, depending on your data and problem. Photo: CS231 
Stanford, Credit: Alec Radford.

Read Dradient Descent discussion at: https://ruder.io/optimizing-
gradient-descent/ Figures taken from this website.
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MLP and EBP
Memorization (Overfitting, Overtraining) and
Generalization

• Which one is a better generalization of the depicted data?

0 0.5 1
0

0.2

0.4

0.6

0.8

1

0 0.5 1
0

0.2

0.4

0.6

0.8

1

x x

yy
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MLP and EBP
Memorization (Overfitting, Overtraining) and
Generalization

Stopping region

Iteration number

Error curve for training pairs

Error curve for test pairs

Sum 
Squared 

Error

Critical region to stop. After some time memorization starts 
and the final hypersurface is forced to pass exactly through 
the given data points in the training data set.
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MLP and EBP
Bias variance tradeoff

What is bias?: Bias is the difference between the
average prediction of our model and the correct value
which we are trying to predict. Model with high bias
pays very little attention to the training data and
oversimplifies the model. It always leads to high error on
training and test data.
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MLP and EBP
Bias variance tradeoff

What is variance?: Variance is the variability of model
prediction for a given data point or a value which tells us
spread of our data. Model with high variance pays a lot
of attention to training data and does not generalize on
the data which it hasn’t seen before. As a result, such
models perform very well on training data but has high
error rates on test data.
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MLP and EBP
Bias variance tradeoff
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Picture taken from https://towardsdatascience.com/understanding-the-bias-variance-tradeoff-165e6942b229

MLP and EBP
Bias variance tradeoff
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MLP and EBP
Normalization of Training Data

Neural 
Network

u1

u2

t

• Assume that you are given a set of training data, the
entries of which are from the following intervals

100  u1  300  and 0.07  u2  0.01 and  3  t  1

• Can your neural network distinguish the given ranges?
The answer is no! The network has a regular structure.
Map every variable to the interval 1  x  1. This lets the 
network operate on the same level of numerical accuracy.
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MLP and EBP
Normalization of Training Data

• xmin  x  xmax is given
• center = (xmin + xmax)/2
• range = (xmax  xmin)/2 
• Mapped data is given by  Xi = (xi-center)/range

xmin xmaxcenter

range

-1 10

0.5
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MLP and EBP
Dropout

Figure taken from: https://medium.com/analytics-vidhya/neural-network-and-
dropouts-b6690c869a18

• Pick a random number, if it is above a predefined threshold 
update the chosen neuron’s weights, if not, those weights 
are kept the same.

• This distributes the total task over the entire neural structure
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MLP and EBP
Dropout

• Do not choose too large thresholds to break the connection 
from inputs to the outputs

• Works well when there are many training data

• You may consider dropping out individual weights as well

• See N. Srivastava, Hinton, Krizhevsky, Sutskever and 
Salakhutdinov. Dropout: A Simple Way to Prevent Neural 
Networks from Overfitting. University of Toronto. June 2014.
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MLP and EBP
K-Fold Cross Validation: Why do we need it?

Training Data
…
…
…
…
…

Test Data
…
…

What happens if this set contains 
totally dissimilar patterns you used 
in training dataset. You can never
reduce the error caused by those
samples.

Training 
Data

Test
Data
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MLP and EBP
Simple K-Fold Cross Validation

Figure taken from: https://medium.com/@gulcanogundur/model-
se%C3%A7imi-k-fold-cross-validation-4635b61f143c

• Do we have the problem of overfitting?

• See the performance of the model

All patterns enter
the training phase
four times and test
phase once. This
scheme generates
better models
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MLP and EBP
Leave-One-Out Cross Validation
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MLP and EBP
Stratified K-Fold Cross Validation (Preserve 
Distribution)
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MLP and EBP
Regularization

• This prevents unnecessarily large values for few weights

 

 

1

1

1

21

1

Loss function Regularization term

2

21 2

1

Loss function Regulariz

 (Lasso) Regularization

1
( , )

2

 (Ridge) Regularization

1
( , )

2

k

ij

k

ij

n
k

i i ij
i w

n
k

i i ij
i w

L

J d o u w w

L

J d o u w w

l

l







 



 

  

  

 

 

 


ation term





Mehmet Önder Efe, Neural Networks, Lecture Notes, 2022.

J. Janocha, W.M. Czarnecki, "On Loss Functions for Deep Neural 
Networks in Classification" 

MLP and EBP
Alternative cost (loss) functions
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MLP and EBP
HOMEWORK #3

• Code EBP in Matlab (1 Hidden Layer is enough)
• Generate the training data for the below shown classes
• Train your network, show the result
• Circle radius on the left is 0.5

u1

u2

1

1

-1

-1

• Show your results together with error curve
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Radial Basis Function Neural Networks
Dynamic Neural Networks
Second Order Training Schemes

Levenberg-Marquardt Algorithm
Gauss-Newton Algorithm
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Radial Basis Function Neural Nets

• Inputs that are equal distance to the center return the
same level of activation

• Notice the radial direction in 1D example above

Input
Center

Activation Level

Same!

A basis function
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Radial Basis Function Neural Nets

• As the input gets away from the center, the return value
i.e. the level of activation decreases

• Notice the radial direction in 2D example above
• Center vector ([-2 1]T) is a feature

... ... u1

u2



Mehmet Önder Efe, Neural Networks, Lecture Notes, 2022.

Radial Basis Function Neural Nets

• If we cover the input space, with enough number of
features (i.e. basis functions), we can express the events
taking place over this domain in terms of the known
features.

• This is a kind of decomposition of an event over the features
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Radial Basis Function Neural Nets
Can you write this

function as a weighted
sum of the basis functions?

u

u
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Radial Basis Function Neural Nets

Maybe you need to
modify the spreads!

u

u

• Let’s make this a network and analyze its properties...
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Radial Basis Function Neural Nets

• What functions are used as basis functions in the
common practice?

Input Layer

Output Layer

Hidden Layer
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Radial Basis Function Neural Nets
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Variance (or spread)

Changing center Changing variance
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Gaussian Basis Function
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Radial Basis Function Neural Nets
Bell Shaped Function
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Another shape parameter

Changing center Changing variance
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Changing b
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Radial Basis Function Neural Nets
Computational Issues - A Tradeoff
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• One of them has 2 adjustable parameter, while the other has 3
• Gaussian is computationally inexpensive
• Bell-shaped one has more degrees of freedom in terms of

representational flexibility
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Radial Basis Function Neural Nets
Parameter Adjustment with Gradient Descent
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Radial Basis Function Neural Nets
Parameter Adjustment with Gradient Descent
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Radial Basis Function Neural Nets
Parameter Adjustment with Gradient Descent
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Radial Basis Function Neural Nets
An Example

• 2-25-1 GRBFNN configuration
• Linearly sampled 441 pairs
• SSE decreases to 5e-4

u1 u2

t

u1 u2

d

u1 u2

t - d
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Architectural Varieties

u1

um

t

M.Ö. Efe and C. Kasnakoğlu, "A Comparison of Architectural Varieties in Radial Basis
Function Neural Networks," World Congress on Computational Intelligence
(WCCI'08) June 1-6, Hong Kong, pp.66-71, 2008.
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Architectural Varieties

u1

um

t

M.Ö. Efe and C. Kasnakoğlu, "A Comparison of Architectural Varieties in Radial Basis
Function Neural Networks," World Congress on Computational Intelligence
(WCCI'08) June 1-6, Hong Kong, pp.66-71, 2008.
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Architectural Varieties

u1

um t

z1

M.Ö. Efe and C. Kasnakoğlu, "A Comparison of Architectural Varieties in Radial Basis
Function Neural Networks," World Congress on Computational Intelligence
(WCCI'08) June 1-6, Hong Kong, pp.66-71, 2008.
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Architectural Varieties

u1

um

t

M.Ö. Efe and C. Kasnakoğlu, "A Comparison of Architectural Varieties in Radial Basis
Function Neural Networks," World Congress on Computational Intelligence
(WCCI'08) June 1-6, Hong Kong, pp.66-71, 2008.
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Architectural Varieties

t
u1

um

M.Ö. Efe and C. Kasnakoğlu, "A Comparison of Architectural Varieties in Radial Basis
Function Neural Networks," World Congress on Computational Intelligence
(WCCI'08) June 1-6, Hong Kong, pp.66-71, 2008.
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Architectural Varieties

u1

um

t

M.Ö. Efe and C. Kasnakoğlu, "A Comparison of Architectural Varieties in Radial Basis
Function Neural Networks," World Congress on Computational Intelligence
(WCCI'08) June 1-6, Hong Kong, pp.66-71, 2008.
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Radial Basis Function Neural Nets
Questions & Answers

• Which cases are suitable for MLP and which are for RBFNN?
Quite speculative! Try and see. This heavily depends on what
you are trying to do, or in other words, it depends on what
sort of a data you are trying to teach.

• Can I use momentum term and learning rate adaptation with
RBFNN?
Yes

• Can I have more than one hidden layer?
Typical RBFNN does not have more than one hidden layer.

• Can I use other types of radial basis functions for activation?
Yes, as long as they are radial basis functions...
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Dynamic Neural Networks

fi1

S S fui(k) ti(k)+
+ +

+

_ _
vi(k)

fi2

fi3 fi6z-1 z-1

fi4

fi5

Synaptic operation Somatic operation

A Single Neuron
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Dynamic Neural Networks
A Networked Structure

S

DNU#1

u(k) t (k)

Error

DNU#2

DNU#N

Update
Algorithm
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Synaptic sum

Single neuron
output

• Adjustable parameters are fi,1…6 for each dynamic neuron
• Parameter update strategy for DNN structure is EBP technique
• This is a recurrent network structure!

Dynamic Neural Networks
Functional Relationship
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Dynamic Neural Networks
Parameter Adjustment with Gradient Descent
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Dynamic Neural Networks
Parameter Adjustment and Stability

2
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Input Signal

Dynamic Neural
Network

S
+

_

Parameter Update Signal

d

t

u

Dynamic Neural Networks
An Identification Example

  8.01.0

9.0
)(





zz

z
zH

T=0.01
   kTku π4.0sin

• Notice that the tuning here is online
• The above system is an identification system
• In an identification system, the input must be persistently exciting
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Dynamic Neural Networks
An Identification Example

Time (sec)

t and d

Time (sec)

Time (sec)

t - d

u
• Initial parameters are from

[0.1 , 0.4]
• N=5 

• What about stability in synaptic parts?
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Second Order Training Schemes
Levenberg-Marquardt Algorithm
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Second Order Training Schemes
Levenberg-Marquardt Algorithm
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Second Order Training Schemes
Levenberg-Marquardt Algorithm
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Rearrange the weight matrices in the network in a 
new vector w
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Second Order Training Schemes
Levenberg-Marquardt Algorithm
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new vector w



Mehmet Önder Efe, Neural Networks, Lecture Notes, 2022.

FOR t=1:10
FOR p=1:P
FOR k=1:K
FOR i=1:N

Compute
END
% One row of J is ready

END
% One sub-block of J is ready

END
% J is ready, update now!

END

Second Order Training Schemes
Levenberg-Marquardt Algorithm
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Second Order Training Schemes
Levenberg-Marquardt Algorithm

  t
T
t

1

tt
T
tt1t EJIμJJ


  ww

• m>0 is the stepsize
• If m=0, we get Gauss-Newton algorithm
• If m is too large, we get standard EBP with learning rate 1/m

Therefore, LM algorithm is a smooth transition between Gauss-Newton 
algorithm and EBP with the advantage of

• Removing the slow convergence of EBP
• Removing the invertibility problem in Gauss-Newton
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Second Order Training Schemes
A Source Code-LM

clear all;close all;clc
NETINDIM   = 2;
HIDNEURONS = 4;
NETOUTDIM  = 1;

P = [0 0
0 1
1 0
1 1];

D = [0
1
1
0];

% Determine th range of the data
PR = [min(P)'  max(P)'];
% Form the network
net = newff(PR,[HIDNEURONS NETOUTDIM],{'tansig' 'purelin'});

% Loop for 10 epoches
net.trainParam.epochs    = 10;
net.trainParam.mem_reduc = 1;

% Show after every iteration
net.trainParam.show      = 1;

% Train the network
net = train(net,P',D');

% Print the results on the screen
Tau = sim(net,P')

% Pront the error E
E = D'-Tau

% Save your network weights etc.
save network.mat net
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Second Order Training Schemes
A Numerical Example – The Problem

Process y=ax+b
Input x
Output y
Available Data

Pair no x y
1 0 1
2 1 2
3 2 3

NN Model yn=w1x+w2
Initial Conditions w1(0)=0.1, w2(0)=0.2
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Second Order Training Schemes
A Numerical Example –Jacobian
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Second Order Training Schemes
A Numerical Example –Jacobian

2

3
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x=[0 1 2]';
y=[1 2 3]';
w=[0.1 0.2]';
m=1;

W=w;
for k=1:5

yn=w(1)*x+w(2);
E=y-yn;
J=[-x -ones(size(x))];
w=w-inv(m*eye(size(J'*J))+J'*J)*J'*E;
cost(k)=(E'*E);
W=[W w];

end

Second Order Training Schemes
A Numerical Example – The Code
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Second Order Training Schemes
A Numerical Example – Results, mu=0.001
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Second Order Training Schemes
A Numerical Example – Results, mu=0.01
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Second Order Training Schemes
A Numerical Example – What happens with P=2?

Process y=ax+b
Input x
Output y
Available Data

Pair no x y
1 0 1
2 1 2
3 2 3

NN Model yn=w1x+w2
Initial Conditions w1(0)=0.1, w2(0)=0.2
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Second Order Training Schemes
A Numerical Example – What happens with P=2?
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Second Order Training Schemes
A Numerical Example – What happens with P=2?
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Second Order Training Schemes
A Numerical Example – What happens with P=2?
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Second Order Training Schemes
A Numerical Example – What happens with P=2?
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Second Order Training Schemes
A Numerical Example – What happens with P=2?
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Second Order Training Schemes
A Numerical Example – What happens with P=2?
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Second Order Training Schemes
A Numerical Example – What happens with P=1? The 
Extreme Case

Process y=ax+b
Input x
Output y
Available Data

Pair no x y
1 2 3  

NN Model yn=w1x+w2
Initial Conditions w1(0)=0.1, w2(0)=0.2
The converged model will be  3=2w1+w2
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Second Order Training Schemes
A Numerical Example – What happens with P=1? The 
Extreme Case, x=2 and y=3
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Second Order Training Schemes
A Numerical Example – What happens with P=1? The 
Extreme Case, x=1 and y=2

Process y=ax+b
Input x
Output y
Available Data

Pair no x y
1 1 2  

NN Model yn=w1x+w2
Initial Conditions w1(0)=0.1, w2(0)=0.2
The converged model will be  2=w1+w2
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Second Order Training Schemes
A Numerical Example – What happens with P=1? The 
Extreme Case
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Second Order Training Schemes
A Numerical Example – What happens with P=1? The 
Extreme Case, x=0 and y=1

Process y=ax+b
Input x
Output y
Available Data

Pair no x y
1 0 1  

NN Model yn=w1x+w2
Initial Conditions w1(0)=0.1, w2(0)=0.2
The converged model will be  1=0w1+w2
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Second Order Training Schemes
A Numerical Example – What happens with P=1? The 
Extreme Case, x=0 and y=1
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Second Order Training Schemes
Set mu=0, model is linear, process is linear and no 
noise. Convergence happens in one iteration!
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Second Order Training Schemes
Remarks

• For Levenberg-Marquardt algorithm, it is possible to adjust
the parameter m

• There are other methods which are 2nd order and similar in
principle to Levenberg-Marquardt algorithm. Conjugate
Gradient method is an example to this.

• In order to tune the parameters of a neural network, one
may also use derivative-free optimization techniques. EBP,
LM, GN, CG approaches are all based on the gradients.
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Derivative Free Optimization
Particle Swarm Optimization (PSO) for NN Training
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Derivative Free Optimization
Particle Swarm Optimization (PSO)

• PSO does not use gradients! No derivatives are required

• Successfully applied in various fields e.g. machine learning, 
operations research etc.

• R.C. Eberhart and J. Kennedy, “A New Optimizer Using 
Particle Swarm Theory,” 1995.

• Algoritm is simple yet powerful.
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Global minimum

Derivative Free Optimization
Particle Swarm Optimization

Alice Bob

• Alice (A) and Bob (B) cooperate to find the deepest location of the lake
• This is a search problem and it can be stated as an optimization  problem
• A and B have two boats and measurement tools to measure the depths
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Derivative Free Optimization
Particle Swarm Optimization (PSO)

Global minimum

Alice Bob

• They make measurements and inform each other
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Derivative Free Optimization
Particle Swarm Optimization (PSO)

Global minimum

Alice Bob

• They make measurements and inform each other
• In the next step, each one moves a little bit and make new measurements 

and inform each other
• Alice and Bob do not know the global minimum, they must cooperate to 

locate it

Alice BobAlice
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Derivative Free Optimization
Particle Swarm Optimization (PSO)

Global minimum

Alice Bob

• In this Picture, Alice found the global minimum and she cannot find a 
better location around, she informs Bob continuously, and Bob moves 
toward Alice

• They meet at the global minimum!

Alice Bob
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Derivative Free Optimization
Particle Swarm Optimization (PSO)

Global minimum

Alice Bob

• Communication + learning
• Communication: A and B inform each other
• Learning: A moves towards B or B moves towards A so that they learn a 

better location

Alice Bob
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Derivative Free Optimization
Particle Swarm Optimization (PSO)

• Birds, ants and fish use a similar strategy to find food
• Agents (Bob or Alice in our example) are unintelligent but the swarm is
• PSO contains a population of candidate solutions
• Each particle has a position vector in the (possibly multidimensional) 

search space
• Each particle has a velocity vector

0            Search space  X 1         

xi(t)xA(0) xB(0)

xi(t): Position vector

t: Discrete time index
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Derivative Free Optimization
Particle Swarm Optimization (PSO)

• Birds, ants and fish use a similar strategy to find food
• Agents (Bob or Alice in our example) are unintelligent but the swarm is
• PSO contains a population of candidate solutions
• Each particle has a position vector in the (possible multidimensional) 

search space
• Each particle has a velocity vector

0            Search space  X 1         

xi(t)xA(t) xB(t)

xi(t): Position vector

vi(t): Velocity vector

t: Discrete time index

vA(t) vB(t) vi(t)
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Derivative Free Optimization
Particle Swarm Optimization (PSO)

Memory of i-th agent 
contains the best position 

seen by the agent
(personal best)

xi(t)

vi(t)

pi(t)

g(t)

Memory of swarm 
contains the best 
position seen by the 
swarm so far
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Derivative Free Optimization
Particle Swarm Optimization (PSO)

Memory of i-th agent 
contains the best position 

seen by the agent
(personal best)

xi(t)

vi(t)

pi(t)

g(t)

pi(t)-xi(t)

g(t)-xi(t)

Memory of swarm 
contains the best 
position seen by the 
swarm so far

xi(t +1)
New position
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Derivative Free Optimization
Particle Swarm Optimization (PSO)

xi(t)

vi(t)

pi(t)

g(t)

pi(t)-xi(t)

g(t)-xi(t)

xi(t +1)
New position
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Derivative Free Optimization
Particle Swarm Optimization (PSO)

Inertia coefficient Acceleration coefficients
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Derivative Free Optimization
Particle Swarm Optimization (PSO)

Cognitive component

Social componentInertia term

Due to its best experience

Due to the swarm’s best experienceKeep the momentum partially

Random number distributed uniformly

Practical implementation makes use of randomness in coefficients.
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Derivative Free Optimization
Particle Swarm Optimization (PSO)
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Derivative Free Optimization
Particle Swarm Optimization (PSO)

• For the implementation details, watch

• https://www.youtube.com/watch?v=sB1n9a9yxJk

• https://www.youtube.com/watch?v=xPkRL_Gt6PI

• https://www.youtube.com/watch?v=ICBYrKsFPqA
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Derivative Free Optimization
Particle Swarm Optimization (PSO)

• Problem: XOR
• NN Structure: 2-5-5-1 
• Max Iterations: 1000
• Population size: 50
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Federated Learning
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Federated Learning
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Federated Learning
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Recurrent Neural Network Structures
Several Applications of Neural Networks

Identification of Nonlinear Systems
Neurocontrol Structures
Noise Elimination
Adaptive Noise Cancellation
VLSI Implementation of NNs
NNs in Medical Diagnosis
NNs for Financial Applications
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Recurrent Neural Net Structures

• Note that, only the structure of the input vector changes
• Without any modification, EBP applies
• You may have as many hidden layers as you want
• Useful for short term prediction

Real time recurrent network

z1

x(k)

t (k)

t (k+1)=F(t (k) , x(k))u(k)
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Recurrent Neural Net Structures

• Note that, the structure of the input and output vectors change
• Without any modification, EBP applies
• You may have as many hidden layers as you want
• Useful for short term prediction

x(k)

t2(k)

t1(k+1)=F1(t2(k) , x(k))
u(k)

Partially recurrent network

z1

t2(k+1)=F2(t2(k) , x(k))
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Applications of Neural Networks
Identification of Nonlinear Systems

SYSTEM

NEURAL NET
(EMULATOR)

S

t

d

u
Error Signal

_

+
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Applications of Neural Networks
Identification of Nonlinear Systems

• Online Identification: At time t, you have one pair, process it
• Offline Identification: You have a set of data, process it

SYSTEM

DATA

NN

NN
TEST

SYSTEM

NN

T
ra

in
er

T
rain

er

NN LEARNS WHILE IT IS 
BEING TESTED!
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z1

z1

z1

x(k)

x(k-1)

x(k-2)

x(k-N+1)

x(k-N)

x(k)

• TDL-N stands for Tapped Delay Line with delay depth = N

x(k)

T
D
L
-

N+1

Applications of Neural Networks
Identification of Nonlinear Systems
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Applications of Neural Networks
Identification of Nonlinear Systems
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Applications of Neural Networks
Identification of Nonlinear Systems - An Example

 1)( +)(+2)(0.3+1)(0.6)( = 1)+(  kukukkkfk tttt
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• The function f(.) is unknown
• The output of the system is available, so we can form a data set
• The network has 5-20-10-1 configuration with linear output neuron
• We trained the network with the input output pairs

and tested with
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k

Applications of Neural Networks
Identification of Nonlinear Systems - An Example
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Applications of Neural Networks
Information sufficiency (How descriptive is it?)

Almost
Impossible

Good

Fair

Overly
descriptive

x(k+1)=0.3x(k)+1.2u(k)
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Applications of Neural Networks
Information sufficiency (How descriptive is it?)

• Input domain for a NN is x(k)[-1,1], u(k)[-1,1]
• If you fail to find a reasonably accurate neural representation of

a dynamical system, pay attention to the data on which your
model is based
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Applications of Neural Networks
Neurocontrol Structures

Plant

Neural
Controller

Training
Algorithm

u

tS




e

• This structure is known as Generalized Learning Structure
• To perform training, you have to choose u, but which signals should

be used as u? You simply choose some set of signals as the training
signals, and the controller learns the generalized inverse of the plant

• Controller learns how to reproduce the input signal u

y
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Applications of Neural Networks
Neurocontrol Structures

Plant
Neural

Controller

Training
Algorithm

y

S




e

• This structure is known as Specialized Learning Structure
• Starting with Generalized Learning Structure provides good initial

conditions, then continuing with Specialized Learning Structure lets
us design the controller easily

• How is the error passed through the plant?

r
t
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Applications of Neural Networks
Neurocontrol Structures

• An emulator neural network is prepared offline
• It is installed as shown in the above figure
• The output error is passed through the emulator without

modifying the weights
• The error at the output of the controller is obtained
• This error is backpropagated through the controller with

parameter tuning

Neural
Controller

Training
Algorithm

y

S




e

Plantr t

NN Plant
Emulator yn
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Applications of Neural Networks
Neurocontrol Structures - Offline synthesis of NNC

• Given the system x(k+1) =f(x(k))+g(x(k))u(k)
• You know that the transition

x(k)SYSTEMx(k+1)

is due to the input u(k). Therefore 
• The forward   map [x(k),u(k)]NN x(k+1) is an emulator
• The backward map [x(k+1) x(k)] NN u(k) is a controller

Read the controller as follows: You are given state x(k), and you 
want to move to d(k) (which is x(k+1)), which u(k) leads to this 
transition?

Generate the data from the plant, teach it the transitions...
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Applications of Neural Networks
Neurocontrol Structures - Offline synthesis of NNC

Given the state 
transition data, 

a map is available

r(k)
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Applications of Neural Networks
Neurocontrol Structures - Offline synthesis of NNC

Controllability Matrix

Choose u(k)
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SYSTEM: x(k+1) =0.3x(k)+1.2u(k)
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1

x
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Backward Map

x
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u k

Applications of Neural Networks
Neurocontrol Structures - Offline synthesis of NNC

SYSTEM: x(k+1) =f(x(k))+g(x(k))u(k)
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Applications of Neural Networks
Neurocontrol Structures - Offline synthesis of NNC
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This is the dynamic model
of a bioreactor.
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Applications of Neural Networks
Neurocontrol Structures - Offline synthesis of NNC
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Applications of Neural Networks
Neurocontrol Structures - Indirect Adaptive Control

Neural
Controller

Training
Algorithm

y

S




Plantr t

NN Plant
Emulator yn

S




Training
Algorithm

•

Emulator and 
controller are 
trained online 

(realtime)!

ey t
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Applications of Neural Networks
Neurocontrol Structures - Indirect learning 
architecture

G.W. Ng, Application of Neural Networks to Adaptive Control of 
Nonlinear Systems, Research Studies Press, Somerset, England, 1997.

Copies of 
each other



Mehmet Önder Efe, Neural Networks, Lecture Notes, 2022.

Applications of Neural Networks
Neurocontrol Structures - Closed loop direct inverse 
control

G.W. Ng, Application of Neural Networks to Adaptive Control of 
Nonlinear Systems, Research Studies Press, Somerset, England, 1997.
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Applications of Neural Networks
Neurocontrol Structures - Specialized learning 
architecture

G.W. Ng, Application of Neural Networks to Adaptive Control of 
Nonlinear Systems, Research Studies Press, Somerset, England, 1997.
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Applications of Neural Networks
Neurocontrol Structures - Indirect Adaptive Control
Scheme

G.W. Ng, Application of Neural Networks to Adaptive Control of 
Nonlinear Systems, Research Studies Press, Somerset, England, 1997.
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Applications of Neural Networks
Neurocontrol Structures - Feedback linearization via 
neural networks

G.W. Ng, Application of Neural Networks to Adaptive Control of 
Nonlinear Systems, Research Studies Press, Somerset, England, 1997.
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Applications of Neural Networks
Neurocontrol Structures - Feedback error learning 
architecture

G.W. Ng, Application of Neural Networks to Adaptive Control of 
Nonlinear Systems, Research Studies Press, Somerset, England, 1997.
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Applications of Neural Networks
Neurocontrol Structures - typical neural network based 
control architecture

G.W. Ng, Application of Neural Networks to Adaptive Control of 
Nonlinear Systems, Research Studies Press, Somerset, England, 1997.
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Applications of Neural Networks
Neurocontrol Structures – Self Learning Control

 Controller training architecture
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Applications of Neural Networks
Neurocontrol Structures – Self Learning Control

 Feedback loop structure
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Applications of Neural Networks
Noise Elimination

NEURAL NET
(FILTER)

• How do we filter out the noise from the source?
• How do we teach what to filter out and how to filter out ?
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Original Image Noisy Image Filtered Image

Original Image Noisy Image Filtered Image

Applications of Neural Networks
Noise Elimination
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1

2

3

45

1

2

3

45

S

Training
Algorithm

+

_

A frame from
noisy image

The frame is
ordered as
input vector
to a NN filter

Desired value
is obtained from

the noiseless
image

Applications of Neural Networks
Noise Elimination
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Applications of Neural Networks
Noise Elimination

• Scan the image (all rows, all columns)
• At every frame, reorder to form input vector
• Choose the corresponding output from the original image
• Train the neural network

• I trained the network for saturn image (offline training)
• Tested also for the Vinca image to show this filter is not

specific to Saturn image only! i.e. no memorization
• The NN has 5-10-1 structure with sigmoidal nonlinearity

for the hidden neurons, output neuron is linear
• 2000 Training patterns have been selected randomly
• Training continued for 50 epoches
• MSE decreased to 0.000593297 
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Applications of Neural Networks
Noise Elimination - Training stage
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Applications of Neural Networks
Noise Elimination - Compare again...

Original Image Noisy Image Filtered Image

Original Image Noisy Image Filtered Image
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Original Image Noisy Image Filtered Image

Original Image Noisy Image Filtered Image

Applications of Neural Networks
Noise Elimination - Same NN, Higher Noise Level
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Applications of Neural Networks
Noise Elimination - Another train/test

• Neural Network Structure 5-5-5-1
• First hidden layer has hyperbolic tangent activation fcns.
• Second hidden layer has sigmoidal activation fcns.
• Output layer has a linear neuron
• I trained the network for saturn image
• Tested also for the Vinca image to show this filter is not

specific to Saturn image only! i.e. no memorization
• 2000 Training patterns have been selected randomly
• Training continued for 500 epoches
• MSE decreased to 0.000104698
• Training noise density was 0.1
• Test noise density was 0.5
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Noise Elimination
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Original Image Noisy Image Filtered Image

Original Image Noisy Image Filtered Image

Applications of Neural Networks
Noise Elimination
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Applications of Neural Networks
Alternatives

5-input NN 9-input NN 13-input NN

• Different frames can be considered
• Computational complexity (i.e. processing time) changes!
• You may use other available techniques of image processing
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Applications of Neural Networks
Different Noise Types...

Original Image
Salt & Pepper

Noise Density=0.1
Gaussian, Mean=0 

Variance=0.1
Speckle

Noise Density=0.1

Original Image
Salt & Pepper

Noise Density=0.5
Gaussian, Mean=0 

Variance=0.5
Speckle

Noise Density=0.5
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Applications of Neural Networks
Edge Detection (Canny Edge Detector)

(i,j)

(i+1,j+1)

(i,j+1)

(i-1,j+1)

(i+1,j)(i+1,j-1)
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Applications of Neural Networks
Edge Detection (Canny Edge Detector), FNN

0 2000 4000 6000

Sample

0

0.2

0.4

0.6

0.8

1

Test Data (red), NN response (black)

0 2000 4000 6000

Sample

-0.5

0

0.5

100 101 102

Iteration

100

Cost (Jbar) = 0.11073

5-12-1 NN, tanh/linear structure
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Applications of Neural Networks
Edge Detection (Canny Edge Detector), FNN

Training data
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Applications of Neural Networks
Edge Detection (Canny Edge Detector),FNN
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Applications of Neural Networks
Edge Detection (Canny Edge Detector),FNN
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Applications of Neural Networks
Edge Detection (Canny Edge Detector),FNN
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5-2-1 NN Structure
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Applications of Neural Networks
Adaptive Noise Cancellation

Pilot’s
Voice S

Noise Path
Filter

S

Adaptive
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c  c^



Mehmet Önder Efe, Neural Networks, Lecture Notes, 2022.

Applications of Neural Networks
Adaptive Noise Cancellation - Adaptive FIR Filter
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Behavior is convergent!
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Applications of Neural Networks
Adaptive Noise Cancellation

• FIR Filter is composed of an ADALINE
• It has 25 inputs with a bias term
• EBP is used to tune (no momentum, no LR adaptation)
• A simple signal is chosen as the Pilot Voice 
• Filter successfully reconstructs the noise and lets us

have the Pilot Voice at the output
• Notice that the training is on-line here
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Applications of Neural Networks
Adaptive Noise Cancellation

The Pilot says: Istanbul
39
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Applications of Neural Networks
Adaptive Noise Cancellation

• FIR Filter is composed of an ADALINE
• It has 25 inputs with a bias term
• EBP is used to tune (no momentum, no LR adaptation)
• Pilot says: Istanbul 
• Filter successfully reconstructs the noise and lets us

have the Pilot Voice at the output
• Notice that the training is on-line here
• We also give the result with the final filter coefficients
• Listen Now...

“Istanbul” Noisy
“Istanbul”

On-line
Filtered

With
Final Coeffs.
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Applications of Neural Networks
VLSI Implementation of Neural Networks
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Biological Reality

Math. Modeling

Implementation

• Multiplication
• Summation
• Thresholding

Key Actions
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Applications of Neural Networks
VLSI Implementation of Neural Networks
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Applications of Neural Networks
VLSI Implementation of Neural Networks

VIN

0V

VOUT

5V

2.5V

VCTRL=0.8 is sharp

VCTRL=1.6 is smooth

• Figure is taken from: L.Chen and B.Shi, “CMOS PWM
Implementation of Neural Network,” Proc. of  IJCNN-2000. 
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Applications of Neural Networks
VLSI Implementation of Neural Networks

• Image is taken from: http://vlsi.wpi.edu/P0498/11.html

• Size (Chip area)
• Power consumption
• Operating speed

• Training (on-chip 
or

chip-in-the-loop)
• Part nonidealities
• Operating speed
• Quantization Errors
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Applications of Neural Networks
Neural Networks in Medical Diagnosis

Questionnaire
Imaging

• Frequent coughing?
• Chest pain?
• Shortness of breath?
• Wheezing?
• Repeated bouts of pneumonia or bronchitis?
• Hoarseness?
• Coughing up of excess mucous?
• Bloody or rust-colored phlegm? http://www.cnn.com/2000/HEALTH/cancer/11/16/lung.cancer/

Laboratory
Inspections Decision

Train the NN for the data of prior instances and update as new instances occur
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Precautions
Taken

Bottleneck
Jump!

Applications of Neural Networks
Neural Networks for Financial Applications

Feb-2001 Sep-2001 Sep-2002Nov-2000

0.7M

1.0M

1.3M

1.6M

1US$

Think about
the factors
influencing
the trend
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Applications of Neural Networks
Neural Networks for Financial Applications

NEURAL 
NETWORK

SUGGESTED
INVESTMENT
ACTIONS

Speculations

Change in capital

Capital

Political grade
(Political Stability)

Economic grade
(Economic Stability)

Data for
companies

Tuning
Inflation
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Applications of Neural Networks
Neural Networks for Financial Applications

Now

Although every
trader has enough

tools to beat,
some of us lose!

Tomorrow
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An Open Question - Stability in Learning Systems
Reinforcement Learning
Unsupervised Learning
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An Open Question
Stability in Learning Systems
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•

What are the 
states of such 

a system?

x(k+1) =f(x(k))+g(x(k))u(k)

ey t
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• For a successful application
Emulator: yny Closed Loop: yr and

 A constant

An Open Question
Stability in Learning Systems
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MLP and EBP
A remedy is regularization technique

• This prevents unnecessarily large values for few weights
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MLP and EBP
Another remedy is Lyapunov approach

X. Yu, M.Ö. Efe and O. Kaynak, "A General Backpropagation Algorithm
for Feedforward Neural Networks Learning," IEEE Transactions on Neural
Networks, v.13, no.1, pp. 251-254, January 2002.
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Reinforcement Learning
Jackpot Journey

• Find the gold by developing a search policy
• Apply a reward-penalty scheme
• Each signpost has black and white stones
• Pick a stone, if it is BLACK then GO DOWN

if it is WHITE then GO UP
• Failure is the surest path to success...

A E
C

B

I

H

F

D
G

J

Gold

WhiteBlack

Black
pdown ##

#




WhiteBlack

White
pup ##

#
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Reinforcement Learning
Jackpot Journey

State: A State: B State: E

Stone: Black Stone: White Stone: White

• Failure! Apply the penalty scheme. Take away the stones
that make you fail. Now think about the probabilities...

A E
C

B

I

H

F

D
G

J

Gold

State: I
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Reinforcement Learning
Jackpot Journey

A E
C

B

I

H

F

D
G

J

State: A State: B State: E State: H

Stone: Black Stone: White Stone: Black

• Success! Apply the reward scheme. Put the stones back
into the signposts and put additional one with the same
color. Now think about the probabilities...

Gold
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Reinforcement Learning
Jackpot Journey

• Perform many voyages to reinforce…
• As you fail, the probability of the action that makes you

fail is reduced by the penalty scheme
• As you succeed, the probability of the action that makes

you succeed is strenghtened

Gold
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G
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Reinforcement Learning
Jackpot Journey - Pdown at each node
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• Pay attention to B and F. If you are at B, you find the gold no
matter which way you choose. For F, you cannot... 

Initially 20B & 20W
stones in each signpost
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Unsupervised Learning

• No external teacher (supervisory information) available
• Only the input vectors will be used for learning
• Unsupervised learning system  Agent
• The Agent extracts the regularities, associations in the data
• The data contains several persistent features available

redundantly
• Unsupervised learning is used for Data Clustering, 

Feature Extraction and Similarity Detection
• Dissimilar input patterns excite different internal parts of a

network. This leads to the development of specialized
internal structures in the neural network

General Remarks
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Unsupervised Learning
Competitive Learning (Winner-take-all Learning)

u1

u2

u3

t1
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t3

t4w43
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Calculate this inner product (activation level) for all
output neurons and choose the neuron having maximum

activation value. Say that one is k-th neuron

w11
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Unsupervised Learning
Competitive Learning (Winner-take-all Learning)
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• Note that only the weights of the winner are updated
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Unsupervised Learning

12

Competitive Learning (Winner-take-all Learning)
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Unsupervised Learning
Competitive Learning (Winner-take-all Learning)

• Four clusters available in the data, and we have chosen 4
output neurons to find those clusters.

• Data might have more than 4 clusters, then the final vectors
would converge at most to 4 of them. For example, data has
6 clusters, you have 4 neurons and you find out 3 clusters!

• We have initialized the weights to randomly chosen input
patterns. This is because of the following: After random
initialization, some weights can be far away from the data and
those weights never get updated! The procedure overcomes
this drawback.

• Watch the movie...
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Unsupervised Learning
Competitive Learning (Winner-take-all Learning)
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Where to go from here?

 Convolutional Neural Networks

 Transfer Learning

 Graph Neural Networks

 Generative Adversarial Networks

 Transformers
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@gabrielpeyre: Convolutional neural networks are shift invariant representations
obtained by iterating convolutions and pointwise non-linearities. Championed by
LeCun in the 80s and used everywhere for computer vision nowadays.

Convolutional Neural Networks
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Transfer Learning
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Graph Neural Networks

See https://distill.pub/2021/gnn-intro/
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Generative Adversarial Networks

See https://poloclub.github.io/ganlab/
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Transformers


