BBM402-Lecture 17: Applications of Network Flows

Lecturer: Lale Ozkahya

Resources for the presentation:
https://courses.engr.illinois.edu/cs473/fa2016/lectures.html

Is the flow always integral?

Let G be an integral instance of network flow (i.e., all numbers are
integers). Consider the following statements:
(1) The value of the maximum flow is an integer number.
(11) If £ is a maximum flow, then f(e) is an integer, for any
edge e € E(G).
(111) There always exists a max flow g, such that g is a maximum

flow, and g(e) is an integer, for any edge e € E(G).
We have the following:

(A) All the above statements are false.
(B) All the above statements are true.
(C) (1) is true, (I1) and () are false.
(D) (1) and (I1) are true, and (ll1) is false.
(E) (1) and (l11) are true, and (ll) is false.

Chandra & Ruta (UIUC)

Fall 2016

Why max-flow does not have to be integral...

...but the one we compute always is!

Consider the graph with all ca-
pacities being one.

Chandra & Ruta (UIUC) CS473 3 Fall 2016 3/ 44

Why max-flow does not have to be integral...

...but the one we compute always is!

Consider the graph with all ca-
pacities being one.

Chandra & Ruta (UIUC) CS473

One possible max flow:

Fall 2016

3/

44

Why max-flow does not have to be integral...

...but the one we compute always is!

Consider the graph with all ca-

. . One possible max flow:
pacities being one.

Chandra & Ruta (UIUC) CS473 3 Fall 2016 3/ 44

Network Flow: Facts to Remember

Flow network: directed graph G, capacities c, source s, sink t.

©@ Maximum s-t flow can be computed:

© Using Ford-Fulkerson algorithm in O(mC) time when capacities
are integral and C is an upper bound on the flow.

@ Using variant of algorithm, in O(m? log C) time, when
capacities are integral. (Polynomial time.)

© Using Edmonds-Karp algorithm, in O(m?n) time, when
capacities are rational (strongly polynomial time algorithm).

@ There is an O(mn) time algorithm due to Orlin which is the
currently fastest strongly polynomial-time algorithm.

Chandra & Ruta (UIUC) CS473 4 Fall 2016 4/ 44

Network Flow

Even more facts to remember

@ If capacities are integral then there is a maximum flow that is
integral and above algorithms give an integral max flow. This is
known as integrality of flow.

@ Given a flow of value v, can decompose into O(m + n) flow
paths of same total value v. Integral flow implies integral flow
on paths.

© Maximum flow is equal to the minimum cut and minimum cut
can be found in O(m + n) time given any maximum flow.

Chandra & Ruta (UIUC) Fall 2016 5/ 44

Paths, Cycles and Acyclicity of Flows

Definition

Given a flow network G = (V, E) and a flow f : E — R=% on the
edges, the support of f is the set of edges E’ C E with non-zero
flow on them. Thatis, E’ = {e € E | f(e) > 0}.

Chandra & Ruta (UIUC) CS473 6 Fall 2016 6 /44

Paths, Cycles and Acyclicity of Flows

Definition

Given a flow network G = (V, E) and a flow f : E — R=% on the
edges, the support of f is the set of edges E’ C E with non-zero
flow on them. Thatis, E’ = {e € E | f(e) > 0}.

Question:Given a flow f, can there by cycles in its support?

10/15
15/20 e-a 5/5
°“A’°
10/10
)

Chandra & Ruta (UIUC) CS473 6

Fall 2016 6 / 44

Paths, Cycles and Acyclicity of Flows

Definition

Given a flow network G = (V, E) and a flow f : E — R=% on the
edges, the support of f is the set of edges E’ C E with non-zero
flow on them. Thatis, E’ = {e € E | f(e) > 0}.

Question:Given a flow f, can there by cycles in its support?

10/15

15/20

Chandra & Ruta (UIUC) CS473 6 Fall 2016 6 /44

Paths, Cycles and Acyclicity of Flows

Definition

Given a flow network G = (V, E) and a flow f : E — R=% on the
edges, the support of f is the set of edges E’ C E with non-zero
flow on them. Thatis, E’ = {e € E | f(e) > 0}.

Question:Given a flow f, can there by cycles in its support?

10/15

15/20

Chandra & Ruta (UIUC) CS473 6 Fall 2016 6 /44

How fast can we detect a cycle in the flow

Given a flow network G with n vertices, and m edges, and a flow f
on it, then detecting a cycle in the flow can be done in time

(A) O(m + n).
(B) O(mC).
(C) O(mn).
(D) O(m?n).
(E) O(mn?).

Chandra & Ruta (UIUC) CS473 7 Fall 2016 7/ 44

Acyclicity of Flows

In any flow network, if f is a flow then there is another flow f’ such
that the support of f’ is an acyclic graph and v(f’) = v(f). Further
if f is an integral flow then so is f’.

w

Proof.
Q@ E'={ec E | f(e) > 0}, support of f.
@ Suppose there is a directed cycle C in E’
© Let €’ be the edge in C with least amount of flow
© For each e € C, reduce flow by f(e’). Remains a flow. Why?
© Flow on €’ is reduced to 0.

© Claim: Flow value from s to t does not change. Why?

@ lterate until no cycles O]

y
Chandra & Ruta (UIUC) CS473 8 Fall 2016 8 /44

SE]E

Chandra & Ruta (UIUC) CS473 9 Fall 2016 9 /44

Throw away edge with no flow on it

Chandra & Ruta (UIUC) CS473 9 Fall 2016 9 /44

Find a cycle in the support/flow

Chandra & Ruta (UIUC) CS473 9 Fall 2016 9 /44

SE]E

Reduce flow on cycle as much as possible

Chandra & Ruta (UIUC) CS473 9 Fall 2016 9 /44

Throw away edge with no flow on it

Chandra & Ruta (UIUC) CS473 9 Fall 2016 9 /44

Find a cycle in the support/flow

Chandra & Ruta (UIUC) CS473 9 Fall 2016 9 /44

SE]E

Reduce flow on cycle as much as possible

Chandra & Ruta (UIUC) CS473 9 Fall 2016 9 /44

Throw away edge with no flow on it

Chandra & Ruta (UIUC) CS473 9 Fall 2016 9 /44

Chandra & Ruta (UIUC) CS473 9 Fall 2016 9 /44

Flow Decomposition

Lemma

Given an edge based flow f : E — RZ29, there exists a collection of
paths P and cycles C and an assignment of flow to them
f': PUC — R2% such that:

Q@ |PUCI<m

Q foreache € E, Y pepiecp '(P) + 2 ccciecc F'(C) = f(e)
Q v(f) =2 pep f'(P).

© if f is integral then so are f’(P) and f’(C) for all P and C

v

Chandra & Ruta (UIUC) CS473 10 Fall 2016 10 / 44

Flow Decomposition

Lemma

Given an edge based flow f : E — RZ29, there exists a collection of
paths P and cycles C and an assignment of flow to them
f': PUC — R20 such that:

Q@ |PUCI<m

Q foreache € E, Y pepiecp '(P) + 2 ccciecc F'(C) = f(e)
Q v(f) = ZPG’P f'(P).

© if f is integral then so are f’(P) and f’(C) for all P and C

Proof ldea.

© Remove all cycles as in previous proposition.

© Next, decompose into paths as in previous lecture.

© Exercise: verify claims. O

V.

Chandra & Ruta (UIUC) CS473 10 Fall 2016 10 / 44

SE]E

Find cycles as shown before

Chandra & Ruta (UIUC) CS473 11 Fall 2016 11 / 44

Find a source to sink path, and push max flow along it (5 unites)

Chandra & Ruta (UIUC) CS473 11 Fall 2016 11 / 44

SE]E

Compute remaining flow

Chandra & Ruta (UIUC) CS473 11 Fall 2016 11 / 44

Find a source to sink path, and push max flow along it (5 unites).
Edges with 0 flow on them can not be used as they are no longer in
the support of the flow.

Chandra & Ruta (UIUC) CS473 11 Fall 2016 11 / 44

SE]E

Compute remaining flow

Chandra & Ruta (UIUC) CS473 11 Fall 2016 11 / 44

Find a source to sink path, and push max flow along it (10 unites).

Chandra & Ruta (UIUC) CS473 11 Fall 2016 11 / 44

SE]E

Compute remaining flow

Chandra & Ruta (UIUC) CS473 11 Fall 2016 11 / 44

Find a source to sink path, and push max flow along it (5 unites).

Chandra & Ruta (UIUC) CS473 11 Fall 2016 11 / 44

Compute remaining flow

Chandra & Ruta (UIUC) CS473 11 Fall 2016 11 / 44

No flow remains in the graph. We fully decomposed the flow into
flow on paths. Together with the cycles, we get a decomposition of
the original flow into m flows on paths and cycles.

Chandra & Ruta (UIUC) CS473 11 Fall 2016 11 / 44

Flow Decomposition

Lemma

Given an edge based flow f : E — RZ9, there exists a collection of
paths P and cycles C and an assignment of flow to them
f': PUC — R2% such that:

Q@ |PUCI<m

Q foreache € E, Y pepiecp '(P) + D ccciecc '(C) = f(e)

0 v(f) = Yper FI(P).

Q if f is integral then so are f’(P) and f’(C) for all P and C.
Above flow decomposition can be computed in O(mn) time.

v

Exercise: Naive implementation of flow-decomposition takes O(m?)
time. Show how to implement in O(mn) time.

Chandra & Ruta (UIUC) CS473 12 Fall 2016 12 / 44

Flow decomposition into paths and cycles

Consider an integral flow network G, and two maximum flows f and
g in G. Assume both f and g are acyclic. Let P¢ and Py be the
decomposition of the two flows into paths. Then:

(A) P¢ = Pg (paths are the same).

(B) |Pf| = |Pg| (i.e., number of paths is the same).
(C) |Prl + Py = m.

(D) |Pf| % |Pyl = nm.

(E) None of the above.

Chandra & Ruta (UIUC) CS473 13 Fall 2016 13 / 44

Part |

Network Flow Applications |

Chandra & Ruta (UIUC) Fall 2016 14 / 44

Edge-Disjoint Paths in Directed Graphs

Definition

A set of paths is edge disjoint if no two
paths share an edge.

Chandra & Ruta (UIUC) CS473 15 Fall 2016 15 / 44

Edge-Disjoint Paths in Directed Graphs

Definition

A set of paths is edge disjoint if no two
paths share an edge.

Problem
Given a directed graph with two special vertices s and t, find the
maximum number of edge disjoint paths from s to t.

Applications: Fault tolerance in routing — edges/nodes in networks
can fail. Disjoint paths allow for planning backup routes in case of
failures.

Chandra & Ruta (UIUC) CS473 15 Fall 2016 15 / 44

Reduction to Max-Flow

Problem

Given a directed graph G with two special vertices s and t, find the
maximum number of edge disjoint paths from s to t.

Reduction

Consider G as a flow network with edge capacities 1, and compute
max-flow.

Chandra & Ruta (UIUC) CS473 16 Fall 2016 16 / 44

Correctness of Reduction

If G has k edge disjoint paths Py, Py, ..., Py then there is an s-t
flow of value k in G.

Chandra & Ruta (UIUC) CS473 17 Fall 2016 17 / 44

Correctness of Reduction

If G has k edge disjoint paths Py, Py, ..., Py then there is an s-t
flow of value k in G.

Set f(e) = 1 if e belongs to one of the paths Py, Py, ..., Py;
other-wise set f(e) = 0. This defines a flow of value k. O

Chandra & Ruta (UIUC) CS473 17 Fall 2016 17 / 44

Correctness of Reduction

If G has a flow of value k then there are k edge disjoint paths
between s and t.

Chandra & Ruta (UIUC) CS473 18 Fall 2016 18 / 44

Correctness of Reduction

If G has a flow of value k then there are k edge disjoint paths
between s and t.

Proof.

© Capacities are all 1 and hence there is integer flow of value k,
that is f(e) = 0 or f(e) = 1 for each e.

@ Decompose flow into paths.
© Flow on each path is either 1 or 0.
@ Hence there are k paths Py, P, ..., P, with flow of 1 each.

© Paths are edge-disjoint since capacities are 1. O]

v

Chandra & Ruta (UIUC) CS473 18 Fall 2016 18 / 44

The number of edge disjoint paths in a simple graph G can be found
in O(mn) time.

@ Set capacities of edges in G to 1.
© Run Ford-Fulkerson algorithm.
@ Maximum value of flow is n and hence run-time is O(nm).

© Decompose flow into k paths (k < n).
Takes O(k x m) = O(km) = O(mn) time. O

Chandra & Ruta (UIUC) CS473 19 Fall 2016 19 / 44

The number of edge disjoint paths in a simple graph G can be found
in O(mn) time.

Proof.
@ Set capacities of edges in G to 1.

@ Run Ford-Fulkerson algorithm.
@ Maximum value of flow is n and hence run-time is O(nm).

© Decompose flow into k paths (k < n).
Takes O(k x m) = O(km) = O(mn) time. O

V.

Remark

The algorithm also computes a set of edge-disjoint paths realizing

this optimal solution.
Chandra & Ruta (UIUC) CS473 19 Fall 2016 19 / 44

Menger's Theorem

Let G be a directed graph. The minimum number of edges whose
removal disconnects s from t (the minimum-cut between s and t) is
equal to the maximum number of edge-disjoint paths in G between s
and t.

Chandra & Ruta (UIUC) CS473 20 Fall 2016 20 / 44

Menger's Theorem

Let G be a directed graph. The minimum number of edges whose
removal disconnects s from t (the minimum-cut between s and t) is
equal to the maximum number of edge-disjoint paths in G between s
and t.

Maxflow-mincut theorem and integrality of flow.

Chandra & Ruta (UIUC) CS473 20 Fall 2016 20 / 44

Menger's Theorem

Let G be a directed graph. The minimum number of edges whose
removal disconnects s from t (the minimum-cut between s and t) is
equal to the maximum number of edge-disjoint paths in G between s
and t.

Maxflow-mincut theorem and integrality of flow.

Menger proved his theorem before Maxflow-Mincut theorem!
Maxflow-Mincut theorem is a generalization of Menger's theorem to
capacitated graphs.

Chandra & Ruta (UIUC) CS473 20 Fall 2016 20 / 44

Edge Disjoint Paths in Undirected Graphs

Problem

Given an undirected graph G, find the maximum number of edge
disjoint paths in G

Chandra & Ruta (UIUC) CS473 21 Fall 2016 21 / 44

Edge Disjoint Paths in Undirected Graphs

Problem
Given an undirected graph G, find the maximum number of edge

disjoint paths in G

Reduction:
© create directed graph H by adding directed edges (u, v) and
(v, u) for each edge uv in G.

© compute maximum s-t flow in H.

Chandra & Ruta (UIUC) CS473 21 Fall 2016 21 / 44

Edge Disjoint Paths in Undirected Graphs

Problem

Given an undirected graph G, find the maximum number of edge
disjoint paths in G

Reduction:
© create directed graph H by adding directed edges (u, v) and
(v, u) for each edge uv in G.
© compute maximum s-t flow in H.

Problem: Both edges (u, v) and (v, u) may have non-zero flow!

Chandra & Ruta (UIUC) CS473 21 Fall 2016 21 / 44

Edge Disjoint Paths in Undirected Graphs

Problem

Given an undirected graph G, find the maximum number of edge
disjoint paths in G

Reduction:

© create directed graph H by adding directed edges (u, v) and
(v, u) for each edge uv in G.

© compute maximum s-t flow in H.

Problem: Both edges (u, v) and (v, u) may have non-zero flow!

Not a Problem! Can assume maximum flow in H is acyclic and hence
cannot have non-zero flow on both (u, v) and (v, u). Reduction
works. See book for more details.

Chandra & Ruta (UIUC) CS473 21 Fall 2016 21 / 44

Node Disjoint Paths and Meger's theorem

Definition
A set of s-t paths P are internally node-disjoint if no two paths in P
share a node other than s, t.

!
y %AZ\,

Chandra & Ruta (UIUC) CS473 22 Fall 2016 22 / 44

Node Disjoint Paths and Meger's theorem

Definition
A set of s-t paths P are internally node-disjoint if no two paths in P
share a node other than s, t.

Let G be an undirected graph. The minimum number of nodes in
V \ {s, t} whose removal disconnects s from t is equal to the
maximum number of internally node-disjoint paths in G between s
and t.

N

Chandra & Ruta (UIUC) CS473 2 Fall 2016 22 / 44

Node Disjoint Paths and Meger's theorem

Definition
A set of s-t paths P are internally node-disjoint if no two paths in P
share a node other than s, t.

Theorem

Let G be an undirected graph. The minimum number of nodes in
V \ {s, t} whose removal disconnects s from t is equal to the
maximum number of internally node-disjoint paths in G between s
and t.

Theorem
The max number of internally node-disjoint paths between s and t in
G can be computed in O(mn) time.

| \

v

Via reductions to directed graph edge-disjoint case!
Chandra & Ruta (UIUC) CS473 22 Fall 2016 22 / 44

Multiple Sources and Sinks

Input:
© A directed graph G with edge
capacities c(e).
@ Source nodes sy, Sy, . .« . 4 Sk.
© Sink nodes ty, ty, ..., t,.
@ Sources and sinks are disjoint.

Chandra & Ruta (UIUC) CS473 23 Fall 2016 23 / 44

Multiple Sources and Sinks

Input:
© A directed graph G with edge
capacities c(e).
@ Source nodes sy, Sy, . .« . 4 Sk.
© Sink nodes ty, ty, ..., t,.
@ Sources and sinks are disjoint.

Maximum Flow: Send as much flow as possible from the sources to
the sinks. Sinks don't care which source they get flow from.

Chandra & Ruta (UIUC) CS473 23 Fall 2016 23 / 44

Multiple Sources and Sinks

Input:
© A directed graph G with edge
capacities c(e).
@ Source nodes sy, Sy, . .« . 4 Sk.
© Sink nodes ty, ty, ..., t,.
@ Sources and sinks are disjoint.

Maximum Flow: Send as much flow as possible from the sources to
the sinks. Sinks don't care which source they get flow from.

Minimum Cut: Find a minimum capacity set of edge E’ such that
removing E’ disconnects every source from every sink.

Chandra & Ruta (UIUC) CS473 23 Fall 2016 23 / 44

Multiple Sources and Sinks: Formal Definition

Input:
© A directed graph G with edge capacities c(e).
@ Source nodes s;, Sy, . . . 5 Sk.
© Sink nodes ty, tp, ..., t,.
@ Sources and sinks are disjoint.

A function f : E — R20 is a flow if:
© Foreach e € E, f(e) < c(e), and

@ for each v which is not a source or a sink fin(v) = fout(v).

Goal: max Z;‘zl(f"“t(s,-) — fin(s;)), that is, flow out of sources.

Chandra & Ruta (UIUC) CS473 24 Fall 2016 24 / 44

Reduction to Single-Source Single-Sink

© Add a source node s and a sink node t.
@ Add edges (s, s1),(s,52),--., (S, Sk)-

© Add edges (t1, t), (t2,t), ..., (te, t).

@ Set the capacity of the new edges to be co.

Chandra & Ruta (UIUC) CS473 25 Fall 2016 25 / 44

Reduction to Single-Source Single-Sink

© Add a source node s and a sink node t.
@ Add edges (s, s1),(s,52),--., (S, Sk)-

© Add edges (t1, t), (t2,t), ..., (te, t).

@ Set the capacity of the new edges to be co.

Chandra & Ruta (UIUC) 2 Fall 2016 25 / 44

Supplies and Demands

A further generalization:

@ source s; has a supply of §; > 0

@ since tj has a demand of D; > 0 units
Question: is there a flow from source to sinks such that supplies are
not exceeded and demands are met? Formally we have the additional

constraints that f°U(s;) — fi*(s;) < S; for each source s; and
fin(t;) — fout(t;) > D;j for each sink t;.

Chandra & Ruta (UIUC) CS473 26 Fall 2016 26 / 44

Supplies and Demands

A further generalization:

@ source s; has a supply of §; > 0

@ since tj has a demand of D; > 0 units
Question: is there a flow from source to sinks such that supplies are
not exceeded and demands are met? Formally we have the additional

constraints that f°U(s;) — fi*(s;) < S; for each source s; and
fin(t;) — fout(t;) > D;j for each sink t;.

Chandra & Ruta (UIUC) CS473 26 Fall 2016 26 / 44

Matching

Problem (Matching)

Input: Given a (undirected) graph G = (V, E).
Goal: Find a matching of maximum cardinality.

Chandra & Ruta (UIUC) CS473 27 Fall 2016 27 / 44

Problem (Matching)

Input: Given a (undirected) graph G = (V, E).
Goal: Find a matching of maximum cardinality.
® A matching is M C E such that at most one edge in M is
incident on any vertex

Chandra & Ruta (UIUC) CS473 27 Fall 2016 27 / 44

Bipartite Matching

Problem (Bipartite matching)

Input: Given a bipartite graph G = (LU R, E).
Goal: Find a matching of maximum cardinality

Chandra & Ruta (UIUC) CS473 28 Fall 2016 28 / 44

Bipartite Matching

Problem (Bipartite matching)

Input: Given a bipartite graph G = (LU R, E).
Goal: Find a matching of maximum cardinality

Chandra & Ruta (UIUC) CS473 28 Fall 2016 28 / 44

Bipartite Matching

Problem (Bipartite matching)

Input: Given a bipartite graph G = (LU R, E).
Goal: Find a matching of maximum cardinality

Maximum matching has 4 edges
Chandra & Ruta (UIUC) CS473 28 Fall 2016 28 / 44

Reduction of bipartite matching to max-flow

Max-Flow Construction

Given graph G = (LU R, E) create flow-network G’ = (V’, E’) as

follows:

7

Chandra & Ruta (UIUC) CS473 29 Fall 2016 29 / 44

Reduction of bipartite matching to max-flow

Max-Flow Construction
Given graph G = (LU R, E) create flow-network G’ = (V’, E’) as
follows:

Q@ V =LURU{s,t} wheres
and t are the new source and
sink.

Chandra & Ruta (UIUC) CS473 29 Fall 2016 29 / 44

Reduction of bipartite matching to max-flow

Max-Flow Construction
Given graph G = (LU R, E) create flow-network G’ = (V’, E’) as
follows:

Q@ V =LURU{s,t} wheres
and t are the new source and
sink.

@ Direct all edges in E from L to
R, and add edges from s to all
vertices in L and from each
vertex in R to t.

Chandra & Ruta (UIUC) CS473 29 Fall 2016 29 / 44

Reduction of bipartite matching to max-flow

Max-Flow Construction

Given graph G = (LU R, E) create flow-network G’ = (V’, E’) as
follows:

Q@ V =LURU{s,t} wheres
and t are the new source and
sink.

@ Direct all edges in E from L to
R, and add edges from s to all
vertices in L and from each
vertex in R to t.

© Capacity of every edge is 1.

Chandra & Ruta (UIUC) CS473 29 Fall 2016 29 / 44

Correctness: Matching to Flow
Proposition
If G has a matching of size k then G’ has a flow of value k.

(~ A

'\: \ '\'

. E -—’%uf\—-*rO
(.-
/ \, 7

Chandra & Ruta (UIUC) CS473 30 Fall 2016 30 / 44

Correctness: Matching to Flow

Proposition
If G has a matching of size k then G’ has a flow of value k.

Proof.

Let M be matching of size k. Let M = {(u1, v1), ..., (uk, vi)}.
Consider following flow f in G”:

Q f(s,y;)=1land f(vi,t) =1for1 <i <k
Q@ f(u,vi)=1for1 <i<k
© for all other edges flow is zero.

Verify that f is a flow of value k (because M is a matching). O

v

Chandra & Ruta (UIUC) CS473 30 Fall 2016 30/ 44

Correctness: Flow to Matching

Proposition

If G’ has a flow of value k then G has a matching of size k.

Proof.

Consider flow f of value k.

© Can assume f is integral. Thus each edge has flow 1 or 0.
@ Consider the set M of edges from L to R that have flow 1.

@ M has k edges because value of flow is equal to the number of
non-zero flow edges crossing cut (LU {s}, R U {t})
@ Each vertex has at most one edge in M incident upon it. Why?

]

v

Chandra & Ruta (UIUC) CS473 31 Fall 2016 31/ 44

Correctness of Reduction

The maximum flow value in G’ = maximum cardinality of matching

in G.

Consequence

Thus, to find maximum cardinality matching in G, we construct G’
and find the maximum flow in G’. Note that the matching itself (not
just the value) can be found efficiently from the flow.

Chandra & Ruta (UIUC) CS473 32 Fall 2016 32 / 44

For graph G with n vertices and m edges G’ has O(n + m) edges,
and O(n) vertices.

@ Generic Ford-Fulkerson: Running time is O(mC) = O(nm)
since C = n.

@ Capacity scaling: Running time is
O(m?log C) = O(m?log n).

Chandra & Ruta (UIUC) CS473 33 Fall 2016 33/ 44

For graph G with n vertices and m edges G’ has O(n + m) edges,
and O(n) vertices.

@ Generic Ford-Fulkerson: Running time is O(mC) = O(nm)
since C = n.

@ Capacity scaling: Running time is
O(m?log C) = O(m?log n).
Better running time is known: O(m+/n).

Chandra & Ruta (UIUC) CS473 33 Fall 2016 33/ 44

Perfect Matchings

A matching M is said to be perfect if every vertex has one edge in

M incident upon it.

Figure: This graph does not have a perfect matching

v
Chandra & Ruta (UIUC) CS473 34 Fall 2016 34 /44

Characterizing Perfect Matchings

Problem

When does a bipartite graph have a perfect matching?
Q Clearly |L| = |R)|
© Are there any necessary and sufficient conditions?

Chandra & Ruta (UIUC) CS473 35 Fall 2016 35 / 44

A Necessary Condition

If G = (LU R, E) has a perfect matching then for any X C L,
IN(X)| > |X]|, where N(X) is the set of neighbors of vertices in X.

(4
p(X)

Chandra & Ruta (UIUC) CS473 36 Fall 2016 36 / 44

A Necessary Condition

Lemma

If G = (LU R, E) has a perfect matching then for any X C L,
IN(X)| > |X]|, where N(X) is the set of neighbors of vertices in X.

Proof.
Since G has a perfect matching, every vertex of X is matched to a
different neighbor, and so |[N(X)| > | X]|. O

Chandra & Ruta (UIUC) CS473 36 Fall 2016 36 / 44

Hall's Theorem

Theorem (Frobenius-Hall)

Let G = (LU R, E) be a bipartite graph with |L| = |R|. G has a
perfect matching if and only if for every X C L, [N(X)| > | X].

One direction is the necessary condition.

1x] 4
v
x 1Nl A

Chandra & Ruta (UIUC) CS473 37 Fall 2016 37 / 44

Hall's Theorem

Theorem (Frobenius-Hall)

Let G = (LU R, E) be a bipartite graph with |L| = |R|. G has a
perfect matching if and only if for every X C L, [N(X)| > | X].

One direction is the necessary condition.
For the other direction we will show the following:

© Create flow network G’ from G.

@ If [N(X)| > |X| for all X, show that minimum s-t cut in G’ is
of capacity n = |L| = |R]|.

© Implies that G has a perfect matching.

Chandra & Ruta (UIUC) CS473 37 Fall 2016 37 / 44

Proof of Sufficiency

Assume |[N(X)| > | X| for any X C L. Then show that min s-t cut
in G’ is of capacity at least n.

Chandra & Ruta (UIUC) CS473 38 Fall 2016 38 / 44

Proof of Sufficiency

Assume |[N(X)| > | X| for any X C L. Then show that min s-t cut
in G’ is of capacity at least n.

Let (A, B) be chitrary s-t cut in G’ A
> &

=

£ ‘:P—-—"?

}lmh)l-’\(\
AN NN

Fall 2016 38 / 44

Chandra & Ruta (UIUC)

Proof of Sufficiency

Assume |[N(X)| > | X| for any X C L. Then show that min s-t cut
in G’ is of capacity at least n.

Let (A, B) be an arbitrary s-t cut in G’
Qlet X=ANnLand Y =ANR.

Chandra & Ruta (UIUC) CS473 38

Fall 2016 38 / 44

Proof of Sufficiency

Assume |[N(X)| > | X| for any X C L. Then show that min s-t cut
in G’ is of capacity at least n.

Let (A, B) be an arbitrary s-t cut in G’
Qlet X=ANnLand Y =ANR.
@ Cut capacity is at least (|L| — |X]) + |Y| + |N(X) \ Y|
A

Sl Because there are...

© |L| —|X]| edges from s to LN B.

@ |Y| edges from Y to t.

© there are at least |[N(X) \ Y|
edges from X to vertices on the

right side that are not in Y.
IN(X)\Y])

Chandra & Ruta (UIUC) CS473 38 Fall 2016 38 / 44

Proof of Sufficiency

Continued...

© By the above, cut capacity is at least
o= (1Ll = IXI) +1 Y]+ NGO\ Y]
@ INOX)\ Y| > IN(X)| - |Y|
(This holds for any two sets.)
@ By assumption |[N(X)| > |X| and hence
IN(X)\ Y| > IN(X)| = Y] = [X]—]Y].
@ Cut capacity is therefore at least
a = ([L| = [X]) + Y[+ [N(X)\ Y]
> L = X[+ Y[+ [X]=|Y| > |L| = n.
© Any s-t cut capacity is at least n == max flow at least n
units == perfect matching. QED

Chandra & Ruta (UIUC) CS473 39 Fall 2016 39 / 44

Hall's Theorem: Generalization

Theorem (Frobenius-Hall)

Let G = (LU R, E) be a bipartite graph with |L| < |R|. G has a
matching that matches all nodes in L if and only if for every X C L,
IN(X)| > [X].

Proof is essentially the same as the previous one.

Chandra & Ruta (UIUC) CS473 40 Fall 2016 40 / 44

Assigning jobs to people

Q@ n jobs, n/2 people

@ For each job: a set of people who can do that job.

© Each person j has to do exactly two jobs.

@ Goal: find an assignment of 2 jobs to each person, such that all
jobs are assigned.

Solution: Build bipartite graph, compute maximum matching, remove
it, compute another maximum matching. Both matchings together
form a valid solution if it exists. This algorithm is

(A) Correct.
(B) Incorrect.

Chandra & Ruta (UIUC) CS473 41 Fall 2016 41 / 44

Application: Assigning jobs to people

© n jobs or tasks

© m people

© for each job a set of people who can do that job
@ for each person j a limit on number of jobs k;

© Goal: find an assignment of jobs to people so that all jobs are
assigned and no person is overloaded

Chandra & Ruta (UIUC) 2 Fall 2016 42 / 44

Application: Assigning jobs to people

© n jobs or tasks

© m people

© for each job a set of people who can do that job

@ for each person j a limit on number of jobs k;

© Goal: find an assignment of jobs to people so that all jobs are
assigned and no person is overloaded

Reduce to max-flow similar to matching.
Arises in many settings. Using minimum-cost flows can also handle

the case when assigning a job i to person j costs c; and goal is
assign all jobs but minimize cost of assignment.

Chandra & Ruta (UIUC) 2 Fall 2016 42 / 44

Reduction to Maximum Flow

© Create directed graph G = (V, E) as follows
© V ={s,t} ULUR: L set of n jobs, R set of m people
© add edges (s, i) for each job i € L, capacity 1
© add edges (j, t) for each person j € R, capacity k;
Q if job i can be done by person j add an edge (i,j), capacity 1
© Compute max s-t flow. There is an assignment if and only if
flow value is n.

Chandra & Ruta (UIUC) CS473 43 Fall 2016 43 / 44

Matchings in General Graphs

Matchings in general graphs more complicated.

There is a polynomial time algorithm to compute a maximum
matching in a general graph. Best known running time was until very
recenlty O(m+/n) due to Hopcroft and Karp. Now there is another
algorithm that runs in O(m'%/7)-time due to Madry (2015).

Chandra & Ruta (UIUC) CS473 44 Fall 2016 44 / 44

Part |

Baseball Pennant Race

Chandra & Ruta (UIUC) 2 Fall 2016 2 /31

Pennant Race

TUESOAY, SPTEMBER 10,

ot Gy
mpin] SPORTING G

‘ . o L]
49ers, Young Get Big Bre

BV G @. ¢ Quarterback m
g%:h‘f ’r?. e, e _g;

By Gary Swan
Chronicle StagWriter

fect
The bre week has come at a pert
time for the 4ers and quarterback Steve
Young. If they had a game next Sunday,

there’s a good chance Young would not
I3 & s

= rwlled aroln muscle on his up.

eave the Ni:Wesf Race

By Nancy Gayy

b San Dicgo, Greg Vaygyyy “Where we are, you're golug (o
Chroniele Stagr i, theeerun homer g fnc elghth Financing in Place be eliminated ‘sopper o ate
pluhedIhcl‘adrmnvvrthr!’lmlos For Glants’ Now Stadium Baker sald quletly, loesn't
With the smack of another g ind oftictally shoved the rest of SEE PAGE 81, MAIN NeWs aiter the fact that we've stil got 13
onal League West bat 500 o the Glants® season It (o pyc o g0 DY ball You've st got 1o play
away, the G Glovs oy 00 the heels of thelr 1o games Jelt; they cannot wiy g hard, the fans come out to weres,
ants' run gy CARDINALS 6 | dlous 62 oss before.an announced games, Coming oft a miserabe 59 Jou play. You've got to play for e
the divisioy 1. | CARDINAL Pk 2 10207 at Candlesticy oy pel reme ety road trip har Y20 of loving to.p
te ended st | Gaprcy {rark,the Glanis fell 1035 gamey ags o120 shelr road record drop gy 39,
RIght, Just. ag the lead,
ey

© handing the visityng g,
Louls Is an

0 matte
where you are In the standings
} the Glants were hoping (o e
It s, the worst (he
Cardin
lead In the NI, Ce,

As it padres: off on the right ooy 7 their lop. Youve got 1o
h.ven bigger (80g5) ap finish Is 8082 The . 8est homestand of the year (15 spoller, to
ntral ants have fallen to 5983 with

play the role of
Bames, 14 dayy)

1ot make It easler g
GIANTS: Page D5 eyt 5

3

CS473
UluC)

Pennant Race: Example

Team Won | Left

New York | 92 2
Baltimore | 91 3
Toronto 91 3
Boston 89 2

Can Boston win the pennant?

Chandra & Ruta (UIUC) CS473 4 Fall 2016 4 /31

Pennant Race: Example

Team Won | Left

New York | 92 2
Baltimore | 91 3
Toronto 91 3
Boston 89 2

Can Boston win the pennant?
No, because Boston can win at most 91 games.

Chandra & Ruta (UIUC) CS473 4 Fall 2016 4 /31

Another Example

Can Boston win the pe

Team Won | Left
New York | 92 2
Baltimore | 91 3
Toronto 91 3
Boston 90 2
nnant?

Chandra & Ruta (UIUC)

CS473

Fall 2016

5 /31

Another Example

Team Won | Left

New York | 92 2
Baltimore | 91 3
Toronto 91 3
Boston 90 2

Can Boston win the pennant?
Not clear unless we know what the remaining games are!

Chandra & Ruta (UIUC) CS473 5 Fall 2016 5/31

Refining the Example

Team Won | Left | NY | Bal | Tor | Bos

New York | 92 2 — 1 1 0
Baltimore | 91 3 1 — 1 1
Toronto 91 3 1 1 — 1
Boston 90 2 0 1 1 —

Can Boston win the pennant?

Chandra & Ruta (UIUC) CS473 6 Fall 2016 6 /31

Refining the Example

Team Won | Left | NY | Bal | Tor | Bos

New York | 92 2 — 1 1 0
Baltimore | 91 3 1 — 1 1
Toronto 91 3 1 1 — 1
Boston 90 2 0 1 1 —

Can Boston win the pennant? Suppose Boston does

Chandra & Ruta (UIUC) CS473 6 Fall 2016 6 /31

Refining the Example

Team Won | Left | NY | Bal | Tor | Bos

New York | 92 2 — 1 1 0
Baltimore | 91 3 1 — 1 1
Toronto 91 3 1 1 — 1
Boston 90 2 0 1 1 —

Can Boston win the pennant? Suppose Boston does
@ Boston wins both its games to get 92 wins

Chandra & Ruta (UIUC) CS473 6 Fall 2016 6 /31

Refining the Example

Team Won | Left | NY | Bal | Tor | Bos

New York | 92 2 — 1 1 0
Baltimore | 91 3 1 — 1 1
Toronto 91 3 1 1 — 1
Boston 90 2 0 1 1 —

Can Boston win the pennant? Suppose Boston does
@ Boston wins both its games to get 92 wins
© New York must lose both games

Chandra & Ruta (UIUC) CS473 6 Fall 2016 6 /31

Refining the Example

Team Won | Left | NY | Bal | Tor | Bos

New York | 92 2 — 1 1 0
Baltimore | 91 3 1 — 1 1
Toronto 91 3 1 1 — 1
Boston 90 2 0 1 1 —

Can Boston win the pennant? Suppose Boston does
@ Boston wins both its games to get 92 wins

© New York must lose both games; now both Baltimore and
Toronto have at least 92

Chandra & Ruta (UIUC) CS473 6 Fall 2016 6 /31

Refining the Example

Team Won | Left | NY | Bal | Tor | Bos

New York | 92 2 — 1 1 0
Baltimore | 91 3 1 — 1 1
Toronto 91 3 1 1 — 1
Boston 90 2 0 1 1 —

Can Boston win the pennant? Suppose Boston does
@ Boston wins both its games to get 92 wins

© New York must lose both games; now both Baltimore and
Toronto have at least 92

© Winner of Baltimore-Toronto game has 93 wins!

Chandra & Ruta (UIUC) CS473 6 Fall 2016 6 /31

Can Boston win the penant?

Team Won | Left || NY | Bal | Tor | Bos
New York 3 6 — 2 3 1
Baltimore 5 4 2 — 1 1
Toronto 4 6 3 1 — 2
Boston 2 4 1 1 2 —
(A) Yes.
(B) No.

Chandra & Ruta (UIUC) CS473 7 Fall 2016 7 /31

Abstracting the Problem

Given
Q@ A set of teams S
@ For each x € S, the current number of wins w,

@ For any x,y € S, the number of remaining games g, between
x and y

Q Ateam z
Can z win the pennant?

Chandra & Ruta (UIUC) CS473 8 Fall 2016 8 /31

Towards a Reduction

Z can win the pennant if
@ Z wins at least m games

© no other team wins more than m games

Chandra & Ruta (UIUC) CS473 9 Fall 2016 9 /31

Towards a Reduction

Z can win the pennant if
@ Z wins at least m games
@ to maximize Z's chances we make z win all its remaining games
and hence m = w; +) 5 8xz

© no other team wins more than m games

Chandra & Ruta (UIUC) CS473 9 Fall 2016 9 /31

Towards a Reduction

Z can win the pennant if
@ Z wins at least m games
@ to maximize Z's chances we make z win all its remaining games
and hence m = w; +) 5 8xz
© no other team wins more than m games

@ for each x,y € § the gy, games between them have to be
assigned to either x or y.

@ each team x % Z can win at most m — wy — gxz remaining
games

Is there an assignment of remaining games to teams such that no
team x # Z wins more than m — w, games?

Chandra & Ruta (UIUC) Fall 2016 9 /31

Flow Network: The basic gadget

@ s: source

Q t: sink

Q x, y: two teams

Q g.: number of games
remaining between x and
y.

© w,: number of points x
has.

@ m: maximum number of
points x can win before

team of interest is
eliminated.

Chandra & Ruta (UIUC) CS473 10 Fall 2016 10 /31

Flow Network: An Example
Can Boston win?

Team Won | Left || NY | Bal | Tor || Bos
New York | 90 11 — 1 6 4
Baltimore | 88 6 1 — 1 4
Toronto 87 11 6 1 — 4

[Boston | 79 | 12 | 4 | 4 | 4 || —]

Q@ mMm=79+12 =091:
Boston can get at most
91 points.

Chandra & Ruta (UIUC) Fall 2016 11 /31

Constructing Flow Network

Vot s Construct the flow network G as

follows

@ S: set of teams,

@ w, wins for each
team, and

@ One vertex v, for each team
x € S’, one vertex uy, for each

pair of teams x and y in S’
©Q gy games left

@ A new source vertex s and sink t
between x and y.

@ Edges (uyy, vx) and (uyy, v,) of

Q@ m be the maximum capacity o0

number of wins for z, .

@ and S’ = S\ {z}. Q Edges (s, uyy) of capalety 8xy

/@ Edges (vy, t) of capacity equal
m — w;y

Chandra & Ruta (UIUC) CS473 12 Fall 2016 12 /31

Correctness of reduction

G’ has a maximum flow of value g* = >
can win the most number of games (including possibly tie with other
teams).

xycs 8xy if and only if z

Chandra & Ruta (UIUC) CS473 13 Fall 2016 13 /31

Proof of Correctness

Existence of g* flow = Z wins pennant

@ An integral flow saturating edges out of s, ensures that each
remaining game between x and y is added to win total of either
xory

@ Capacity on (vy, t) edges ensures that no team wins more than
m games
Conversely, z wins pennant = flow of value g*
© Scenario determines flow on edges; if x wins k of the games
against y, then flow on (uyy, vi) edge is k and on (uyy, vy)
edge is 8y, — k]

v

Chandra & Ruta (UIUC) CS473 14 Fall 2016 14 / 31

Proof that cannot with the pennant

© Suppose z cannot win the pennant since g* < g. How do we
prove to some one compactly that Z cannot win the pennant?

Chandra & Ruta (UIUC) CS473 15 Fall 2016 15 /31

Proof that cannot with the pennant

© Suppose z cannot win the pennant since g* < g. How do we
prove to some one compactly that Z cannot win the pennant?

@ Show them the min-cut in the reduction flow network!

Chandra & Ruta (UIUC) CS473 15 Fall 2016 15 /31

Proof that cannot with the pennant

© Suppose z cannot win the pennant since g* < g. How do we
prove to some one compactly that Z cannot win the pennant?

@ Show them the min-cut in the reduction flow network!

© See Kleinberg-Tardos book for a natural interpretation of the
min-cut as a certificate.

Chandra & Ruta (UIUC) CS473 15 Fall 2016 15 /31

The biggest loser?

Given an input as above for the pennant competition, deciding if a
team can come in the last place can be done in

(A) Can be done using the same reduction as just seen.
(B) Can not be done using the same reduction as just seen.

(C) Can be done using flows but we need lower bounds on the
flow, instead of upper bounds.

(D) The problem is NP-Hard and requires exponential time.

(E) Can be solved by negating all the numbers, and using the
above reduction.

(F) Can be solved efficiently only by running a reality show on
the problem.

Chandra & Ruta (UIUC) CS473 16 Fall 2016 16 / 31

Part 1l

An Application of Min-Cut to Project

Scheduling

Chandra & Ruta (UIUC) Fall 2016 17 /31

Project Scheduling

Problem:
© n projects/tasks 1,2,...,n
@ dependencies between projects: i depends on j implies i cannot
be done unless j is done. dependency graph is acyclic
@ each project i has a cost/profit p;

@ p; < 0 implies i requires a cost of —p; units
@ p; > 0 implies that i generates p; profit

Goal: Find projects to do so as to maximize profit.

Chandra & Ruta (UIUC) CS473 18 Fall 2016 18 /31

-1

-3

)

Chandra & Ruta (UIUC)

Fall 2016 19 / 31

For a set A of projects:

@ A is a valid solution if A is dependency closed, that is for every
i € A, all projects that i depends on are also in A.

Chandra & Ruta (UIUC) CS473 20 Fall 2016 20 /31

For a set A of projects:

@ A is a valid solution if A is dependency closed, that is for every
i € A, all projects that i depends on are also in A.

Q profit(A) =) _;ca pi- Can be negative or positive.

Chandra & Ruta (UIUC) CS473 20 Fall 2016 20 / 31

For a set A of projects:
@ A is a valid solution if A is dependency closed, that is for every
i € A, all projects that i depends on are also in A.
Q profit(A) =) _;ca pi- Can be negative or positive.

Goal: find valid A to maximize profit(A).

Chandra & Ruta (UIUC) CS473 20 Fall 2016 20 / 31

Idea: Reduction to Minimum-Cut

Finding a set of projects is partitioning the projects into two sets:
those that are done and those that are not done.

Can we express this is a minimum cut problem?

Chandra & Ruta (UIUC) CS473 21 Fall 2016 21 /31

Idea: Reduction to Minimum-Cut

Finding a set of projects is partitioning the projects into two sets:
those that are done and those that are not done.

Can we express this is a minimum cut problem?

Several issues:

© We are interested in maximizing profit but we can solve
minimum cuts.

@ We need to convert negative profits into positive capacities.
© Need to ensure that chosen projects is a valid set.

© The cut value captures the profit of the chosen set of projects.

Chandra & Ruta (UIUC) CS473 21 Fall 2016 21 /31

Reduction to Minimum-Cut

Note: We are reducing a maximization problem to a minimization
problem.

© projects represented as nodes in a graph

@ if i depends on j then (i,j) is an edge

© add source s and sink t

© for each i with p; > 0 add edge (s, i) with capacity p;

@ for each i with p; < 0 add edge (i, t) with capacity —p;

@ for each dependency edge (i, j) put capacity oo (more on this

later)

Chandra & Ruta (UIUC) Fall 2016 22/

Reduction: Flow Network Example

Chandra & Ruta (UIUC) 2 Fall 2016 23 /31

Reduction contd

Algorithm:
@ form graph as in previous slide
@ compute s-t minimum cut (A, B)
@ output the projects in A — {s}

Chandra & Ruta (UIUC) CS473 24 Fall 2016 24 /31

Understanding the Reduction

Let C = Zi:p,->0 pi: maximum possible profit.

Chandra & Ruta (UIUC) CS473 25 Fall 2016 25 /31

Understanding the Reduction

Let C = Zi:p,->0 pi: maximum possible profit.

Observation: The minimum s-t cut value is < C. Why?

Chandra & Ruta (UIUC) CS473 25 Fall 2016 25 /31

Understanding the Reduction

Let C = Zi:p,->0 pi: maximum possible profit.

Observation: The minimum s-t cut value is < C. Why?

Suppose (A, B) is an s-t cut of finite capacity (no co) edges. Then
projects in A — {s} are a valid solution.

Chandra & Ruta (UIUC) CS473 25 Fall 2016 25 /31

Understanding the Reduction

Let C = Zi:p,->0 pi: maximum possible profit.

Observation: The minimum s-t cut value is < C. Why?

Suppose (A, B) is an s-t cut of finite capacity (no oo) edges. Then
projects in A — {s} are a valid solution.

Proof.

If A— {s} is not a valid solution then there is a project i € A and a
project j & A such that / depends on j

v

Chandra & Ruta (UIUC) CS473 25 Fall 2016 25 /31

Understanding the Reduction

Let C = Zi:p,->0 pi: maximum possible profit.

Observation: The minimum s-t cut value is < C. Why?

Suppose (A, B) is an s-t cut of finite capacity (no oo) edges. Then
projects in A — {s} are a valid solution.

Proof.

If A— {s} is not a valid solution then there is a project i € A and a
project j & A such that / depends on j

Since (i,) capacity is oo, implies (A, B) capacity is oo,
contradicting assumption. O]

v

Chandra & Ruta (UIUC) CS473 25 Fall 2016 25 /31

Chandra & Ruta (UIUC) 2 Fall 2016 26 / 31

SE]E

Chandra & Ruta (UIUC) 2 Fall 2016 27 /31

Correctness of Reduction

Recall that for a set of projects X, profit(X) = ;. x pi.

Chandra & Ruta (UIUC) CS473 28 Fall 2016 28 /31

Correctness of Reduction

Recall that for a set of projects X, profit(X) = ;. x pi.

Suppose (A, B) is an s-t cut of finite capacity (no oo) edges. Then
c(A, B) = C — profit(A — {s}).

Chandra & Ruta (UIUC) CS473 28 Fall 2016 28 / 31

Correctness of Reduction

Recall that for a set of projects X, profit(X) = ;. x pi.

Lemma

Suppose (A, B) is an s-t cut of finite capacity (no oo) edges. Then
c(A, B) = C — profit(A — {s}).

Proof.

Edges in (A, B):
Q (s,i) for i € B and p; > 0: capacity is p;
Q (i,t) fori € A and p; < 0: capacity is —p;

© cannot have oo edges

]

v

Chandra & Ruta (UIUC) CS473 28 Fall 2016 28 /31

Proof contd

For project set A let
Q cost(A) = 3 icap <o —Pi
@ benefit(A) = ZIEA:p,->0 pi
@ profit(A) = benefit(A) — cost(A).

Proof.
Let A = AU {s}.

c(A’,B) = cost(A) + benefit(B)

cost(A) — benefit(A) + benefit(A) + benefit(B)
—profit(A) + C

C — profit(A)

Chandra & Ruta (UIUC) 2 Fall 2016 29 /31

Correctness of Reduction contd

We have shown that if (A, B) is an s-t cut in G with finite capacity
then

Q@ A — {s} is a valid set of projects
@ c(A,B) = C — profit(A — {s})

Chandra & Ruta (UIUC) CS473 30 Fall 2016 30 /31

Correctness of Reduction contd

We have shown that if (A, B) is an s-t cut in G with finite capacity
then

Q@ A — {s} is a valid set of projects

@ c(A,B) = C — profit(A — {s})
Therefore a minimum s-t cut (A*, B*) gives a maximum profit set
of projects A* — {s} since C is fixed.

Chandra & Ruta (UIUC) CS473 30 Fall 2016 30 /31

Correctness of Reduction contd

We have shown that if (A, B) is an s-t cut in G with finite capacity
then

Q@ A — {s} is a valid set of projects

@ c(A,B) = C — profit(A — {s})
Therefore a minimum s-t cut (A*, B*) gives a maximum profit set
of projects A* — {s} since C is fixed.

Question: How can we use oo in a real algorithm?

Chandra & Ruta (UIUC) CS473 30 Fall 2016 30 /31

Correctness of Reduction contd

We have shown that if (A, B) is an s-t cut in G with finite capacity
then

Q@ A — {s} is a valid set of projects

@ c(A,B) = C — profit(A — {s})
Therefore a minimum s-t cut (A*, B*) gives a maximum profit set
of projects A* — {s} since C is fixed.

Question: How can we use oo in a real algorithm?

Set capacity of oo arcs to C + 1 instead. Why does this work?

Chandra & Ruta (UIUC) CS473 30 Fall 2016 30 /31

