
BBM402-Lecture 17: Applications of Network Flows

Lecturer: Lale Özkahya

Resources for the presentation:
https://courses.engr.illinois.edu/cs473/fa2016/lectures.html

Is the flow always integral?

Let G be an integral instance of network flow (i.e., all numbers are
integers). Consider the following statements:

(I) The value of the maximum flow is an integer number.
(II) If f is a maximum flow, then f (e) is an integer, for any

edge e ∈ E(G).
(III) There always exists a max flow g , such that g is a maximum

flow, and g(e) is an integer, for any edge e ∈ E(G).
We have the following:

(A) All the above statements are false.

(B) All the above statements are true.

(C) (I) is true, (II) and (III) are false.

(D) (I) and (II) are true, and (III) is false.

(E) (I) and (III) are true, and (II) is false.

Chandra & Ruta (UIUC) CS473 2 Fall 2016 2 / 44

Why max-flow does not have to be integral...
...but the one we compute always is!

Consider the graph with all ca-
pacities being one.

s t

Chandra & Ruta (UIUC) CS473 3 Fall 2016 3 / 44

Why max-flow does not have to be integral...
...but the one we compute always is!

Consider the graph with all ca-
pacities being one.

s t

One possible max flow:

0.
5

0.5

1

0.
5

0.5

s t

Chandra & Ruta (UIUC) CS473 3 Fall 2016 3 / 44

Why max-flow does not have to be integral...
...but the one we compute always is!

Consider the graph with all ca-
pacities being one.

s t

One possible max flow:

0.
5

0.5

1

0.
5

0.5

s t

Max flow as computed by algEdmondsKarp or algFordFulkerson:

s t

1
1

1

0
0

Chandra & Ruta (UIUC) CS473 3 Fall 2016 3 / 44

Network Flow: Facts to Remember

Flow network: directed graph G , capacities c , source s, sink t.
1 Maximum s-t flow can be computed:

1 Using Ford-Fulkerson algorithm in O(mC) time when capacities
are integral and C is an upper bound on the flow.

2 Using variant of algorithm, in O(m2 log C) time, when
capacities are integral. (Polynomial time.)

3 Using Edmonds-Karp algorithm, in O(m2n) time, when
capacities are rational (strongly polynomial time algorithm).

4 There is an O(mn) time algorithm due to Orlin which is the
currently fastest strongly polynomial-time algorithm.

Chandra & Ruta (UIUC) CS473 4 Fall 2016 4 / 44

Network Flow
Even more facts to remember

1 If capacities are integral then there is a maximum flow that is
integral and above algorithms give an integral max flow. This is
known as integrality of flow.

2 Given a flow of value v , can decompose into O(m + n) flow
paths of same total value v . Integral flow implies integral flow
on paths.

3 Maximum flow is equal to the minimum cut and minimum cut
can be found in O(m + n) time given any maximum flow.

Chandra & Ruta (UIUC) CS473 5 Fall 2016 5 / 44

Paths, Cycles and Acyclicity of Flows

Definition

Given a flow network G = (V ,E) and a flow f : E → R≥0 on the
edges, the support of f is the set of edges E ′ ⊆ E with non-zero
flow on them. That is, E ′ = {e ∈ E | f (e) > 0}.

Question:Given a flow f , can there by cycles in its support?

Chandra & Ruta (UIUC) CS473 6 Fall 2016 6 / 44

Paths, Cycles and Acyclicity of Flows

Definition

Given a flow network G = (V ,E) and a flow f : E → R≥0 on the
edges, the support of f is the set of edges E ′ ⊆ E with non-zero
flow on them. That is, E ′ = {e ∈ E | f (e) > 0}.

Question:Given a flow f , can there by cycles in its support?

s t

w x

15/20 5/5

10/15

0/5

u v

10/10

5/10

30/30

10/10

Chandra & Ruta (UIUC) CS473 6 Fall 2016 6 / 44

Paths, Cycles and Acyclicity of Flows

Definition

Given a flow network G = (V ,E) and a flow f : E → R≥0 on the
edges, the support of f is the set of edges E ′ ⊆ E with non-zero
flow on them. That is, E ′ = {e ∈ E | f (e) > 0}.

Question:Given a flow f , can there by cycles in its support?

s t

w x

15/20

10/10

5/5

20/20

15/20

10/15

5/5

u v

10/10

5/10

30/30

Chandra & Ruta (UIUC) CS473 6 Fall 2016 6 / 44

Paths, Cycles and Acyclicity of Flows

Definition

Given a flow network G = (V ,E) and a flow f : E → R≥0 on the
edges, the support of f is the set of edges E ′ ⊆ E with non-zero
flow on them. That is, E ′ = {e ∈ E | f (e) > 0}.

Question:Given a flow f , can there by cycles in its support?

s t

w x

15/20

10/10

5/5

20/20

15/20

10/15

5/5

u v

10/10

5/10

30/30

Chandra & Ruta (UIUC) CS473 6 Fall 2016 6 / 44

How fast can we detect a cycle in the flow

Given a flow network G with n vertices, and m edges, and a flow f
on it, then detecting a cycle in the flow can be done in time

(A) O(m + n).

(B) O(mC).

(C) O(mn).

(D) O(m2n).

(E) O(mn2).

Chandra & Ruta (UIUC) CS473 7 Fall 2016 7 / 44

Acyclicity of Flows

Proposition
In any flow network, if f is a flow then there is another flow f ′ such
that the support of f ′ is an acyclic graph and v(f ′) = v(f). Further
if f is an integral flow then so is f ′.

Proof.
1 E ′ = {e ∈ E | f (e) > 0}, support of f .

2 Suppose there is a directed cycle C in E ′

3 Let e′ be the edge in C with least amount of flow

4 For each e ∈ C , reduce flow by f (e′). Remains a flow. Why?

5 Flow on e′ is reduced to 0.

6 Claim: Flow value from s to t does not change. Why?

7 Iterate until no cycles
Chandra & Ruta (UIUC) CS473 8 Fall 2016 8 / 44

Example

s t

w x

15/20 5/5

10/15

0/5

u v

10/10

5/10

30/30

10/10

Chandra & Ruta (UIUC) CS473 9 Fall 2016 9 / 44

Example

s t

w x

15/20 5/5

10/15

0/5

u v

10/10

5/10

30/30

10/10

s t

w x

15/20

10/10

5/5

20/20

15/20

10/15

5/5

u v

10/10

5/10

30/30

Throw away edge with no flow on it

Chandra & Ruta (UIUC) CS473 9 Fall 2016 9 / 44

Example

s t

w x

15/20

10/10

5/5

20/20

15/20

10/15

5/5

u v

10/10

5/10

30/30

s t

w x

15/20

10/10

5/5

20/20

15/20

10/15

5/5

u v

10/10

5/10

30/30

Find a cycle in the support/flow

Chandra & Ruta (UIUC) CS473 9 Fall 2016 9 / 44

Example

s t

w x

15/20

10/10

5/5

20/20

15/20

10/15

5/5

u v

10/10

5/10

30/30

s t

w x

15/20

10/10

5/5

20/20

15/20

5/10

0/10

10/15

5/5

u v

25/30

Reduce flow on cycle as much as possible

Chandra & Ruta (UIUC) CS473 9 Fall 2016 9 / 44

Example

s t

w x

15/20

10/10

5/5

20/20

15/20

5/10

0/10

10/15

5/5

u v

25/30

s t

w x

15/20

10/10

5/5

20/20

15/20

5/10

10/15

5/5

u v

25/30

Throw away edge with no flow on it

Chandra & Ruta (UIUC) CS473 9 Fall 2016 9 / 44

Example

s t

w x

15/20

10/10

5/5

20/20

15/20

5/10

10/15

5/5

u v

25/30

s t

w x

15/20

10/10

5/5

20/20

15/20

5/10

10/15

5/5

u v

25/30

Find a cycle in the support/flow

Chandra & Ruta (UIUC) CS473 9 Fall 2016 9 / 44

Example

s t

w x

15/20

10/10

5/5

20/20

15/20

5/10

10/15

5/5

u v

25/30

s t

w x

15/20

10/10

5/5

20/20

15/20

5/10

5/5

u v

0/15

15/30

Reduce flow on cycle as much as possible

Chandra & Ruta (UIUC) CS473 9 Fall 2016 9 / 44

Example

s t

w x

15/20

10/10

5/5

20/20

15/20

5/10

5/5

u v

0/15

15/30

s t

w x

15/20

10/10

5/5

20/20

15/20

5/10

5/5

u v
15/30

Throw away edge with no flow on it

Chandra & Ruta (UIUC) CS473 9 Fall 2016 9 / 44

Example

s t

w x

15/20

10/10

5/5

20/20

15/20

5/10

5/5

u v
15/30

Viola!!! An equivalent flow with no cycles in it. Original flow:

s t

w x

15/20 5/5

10/15

0/5

u v

10/10

5/10

30/30

10/10

Chandra & Ruta (UIUC) CS473 9 Fall 2016 9 / 44

Flow Decomposition

Lemma

Given an edge based flow f : E → R≥0, there exists a collection of
paths P and cycles C and an assignment of flow to them
f ′ : P ∪ C → R≥0 such that:

1 |P ∪ C| ≤ m
2 for each e ∈ E ,

∑
P∈P:e∈P f ′(P) +

∑
C∈C:e∈C f ′(C) = f (e)

3 v(f) =
∑

P∈P f ′(P).

4 if f is integral then so are f ′(P) and f ′(C) for all P and C

Proof Idea.
1 Remove all cycles as in previous proposition.

2 Next, decompose into paths as in previous lecture.

3 Exercise: verify claims.

Chandra & Ruta (UIUC) CS473 10 Fall 2016 10 / 44

Flow Decomposition

Lemma

Given an edge based flow f : E → R≥0, there exists a collection of
paths P and cycles C and an assignment of flow to them
f ′ : P ∪ C → R≥0 such that:

1 |P ∪ C| ≤ m
2 for each e ∈ E ,

∑
P∈P:e∈P f ′(P) +

∑
C∈C:e∈C f ′(C) = f (e)

3 v(f) =
∑

P∈P f ′(P).

4 if f is integral then so are f ′(P) and f ′(C) for all P and C

Proof Idea.
1 Remove all cycles as in previous proposition.

2 Next, decompose into paths as in previous lecture.

3 Exercise: verify claims.
Chandra & Ruta (UIUC) CS473 10 Fall 2016 10 / 44

Example

s t

w x

15/20 5/5

10/15

0/5

u v

10/10

5/10

30/30

10/10

s t

w x

15/20

10/10

5/5

20/20

15/20

5/10

5/5

u v
15/30

Find cycles as shown before

Chandra & Ruta (UIUC) CS473 11 Fall 2016 11 / 44

Example

s t

w x

15/20

10/10

5/5

20/20

15/20

5/10

5/5

u v
15/30

s t

w x

15/20

10/10

5/5

20/20

15/20

5/10

5/5

u v
15/30

5

Find a source to sink path, and push max flow along it (5 unites)

Chandra & Ruta (UIUC) CS473 11 Fall 2016 11 / 44

Example

s t

w x

15/20

10/10

5/5

20/20

15/20

5/10

5/5

u v
15/30

5

s t

w x

10/10
20/20

15/20

5/10

5/5

u v5

10/20 10/30 0/5

Compute remaining flow

Chandra & Ruta (UIUC) CS473 11 Fall 2016 11 / 44

Example

s t

w x

10/10
20/20

15/20

5/10

5/5

u v5

10/20 10/30 0/5

s t

w x

10/10
20/20

15/20

5/10

5/5

u v5

10/20 10/30 0/5

5

Find a source to sink path, and push max flow along it (5 unites).
Edges with 0 flow on them can not be used as they are no longer in
the support of the flow.

Chandra & Ruta (UIUC) CS473 11 Fall 2016 11 / 44

Example

s t

w x

10/10
20/20

15/20

5/10

5/5

u v5

10/20 10/30 0/5

5
s t

w x

u v5

5

5/20

10/10

0/10

5/30

5/5

0/5

15/20

10/20

Compute remaining flow

Chandra & Ruta (UIUC) CS473 11 Fall 2016 11 / 44

Example

s t

w x

u v5

5

5/20

10/10

0/10

5/30

5/5

0/5

15/20

10/20

s t

w x

u v5

5

u

10

5/20

10/10

0/10

5/30

5/5

0/5

15/20

10/20

Find a source to sink path, and push max flow along it (10 unites).

Chandra & Ruta (UIUC) CS473 11 Fall 2016 11 / 44

Example

s t

w x

u v5

5

u

10

5/20

10/10

0/10

5/30

5/5

0/5

15/20

10/20

s t

w x

u v5

5

u

10

5/20

0/10

0/10

5/30

5/5

0/5

5/20

0/20

Compute remaining flow

Chandra & Ruta (UIUC) CS473 11 Fall 2016 11 / 44

Example

s t

w x

u v5

5

u

10

5/20

0/10

0/10

5/30

5/5

0/5

5/20

0/20

s t

w x

u v5

5

u 5

10

5/20

0/10

0/10

5/30

5/5

0/5

5/20

0/20

Find a source to sink path, and push max flow along it (5 unites).

Chandra & Ruta (UIUC) CS473 11 Fall 2016 11 / 44

Example

s t

w x

u v5

5

u 5

10

5/20

0/10

0/10

5/30

5/5

0/5

5/20

0/20

s t

w x

u v5

5

u 5

10

0/20

0/10

0/10

0/30

0/5

0/5

0/20

0/20

Compute remaining flow

Chandra & Ruta (UIUC) CS473 11 Fall 2016 11 / 44

Example

s t

w x

15/20 5/5

10/15

0/5

u v

10/10

5/10

30/30

10/10

s t

w x

u v5

5

u 5

10

0/20

0/10

0/10

0/30

0/5

0/5

0/20

0/20

No flow remains in the graph. We fully decomposed the flow into
flow on paths. Together with the cycles, we get a decomposition of
the original flow into m flows on paths and cycles.

Chandra & Ruta (UIUC) CS473 11 Fall 2016 11 / 44

Flow Decomposition

Lemma

Given an edge based flow f : E → R≥0, there exists a collection of
paths P and cycles C and an assignment of flow to them
f ′ : P ∪ C → R≥0 such that:

1 |P ∪ C| ≤ m
2 for each e ∈ E ,

∑
P∈P:e∈P f ′(P) +

∑
C∈C:e∈C f ′(C) = f (e)

3 v(f) =
∑

P∈P f ′(P).

4 if f is integral then so are f ′(P) and f ′(C) for all P and C .

Above flow decomposition can be computed in O(mn) time.

Exercise: Naive implementation of flow-decomposition takes O(m2)
time. Show how to implement in O(mn) time.

Chandra & Ruta (UIUC) CS473 12 Fall 2016 12 / 44

Flow decomposition into paths and cycles

Consider an integral flow network G, and two maximum flows f and
g in G. Assume both f and g are acyclic. Let Pf and Pg be the
decomposition of the two flows into paths. Then:

(A) Pf = Pg (paths are the same).

(B) |Pf | = |Pg | (i.e., number of paths is the same).

(C) |Pf |+ |Pg | = m.

(D) |Pf | ∗ |Pg | = nm.

(E) None of the above.

Chandra & Ruta (UIUC) CS473 13 Fall 2016 13 / 44

Part I

Network Flow Applications I

Chandra & Ruta (UIUC) CS473 14 Fall 2016 14 / 44

Edge-Disjoint Paths in Directed Graphs

Definition

A set of paths is edge disjoint if no two
paths share an edge.

Problem
Given a directed graph with two special vertices s and t, find the
maximum number of edge disjoint paths from s to t.

Applications: Fault tolerance in routing — edges/nodes in networks
can fail. Disjoint paths allow for planning backup routes in case of
failures.

Chandra & Ruta (UIUC) CS473 15 Fall 2016 15 / 44

Edge-Disjoint Paths in Directed Graphs

Definition

A set of paths is edge disjoint if no two
paths share an edge.

Problem
Given a directed graph with two special vertices s and t, find the
maximum number of edge disjoint paths from s to t.

Applications: Fault tolerance in routing — edges/nodes in networks
can fail. Disjoint paths allow for planning backup routes in case of
failures.

Chandra & Ruta (UIUC) CS473 15 Fall 2016 15 / 44

Reduction to Max-Flow

Problem
Given a directed graph G with two special vertices s and t, find the
maximum number of edge disjoint paths from s to t.

Reduction
Consider G as a flow network with edge capacities 1, and compute
max-flow.

Chandra & Ruta (UIUC) CS473 16 Fall 2016 16 / 44

Correctness of Reduction

Lemma
If G has k edge disjoint paths P1,P2, . . . ,Pk then there is an s-t
flow of value k in G .

Proof.
Set f (e) = 1 if e belongs to one of the paths P1,P2, . . . ,Pk ;
other-wise set f (e) = 0. This defines a flow of value k .

Chandra & Ruta (UIUC) CS473 17 Fall 2016 17 / 44

Correctness of Reduction

Lemma
If G has k edge disjoint paths P1,P2, . . . ,Pk then there is an s-t
flow of value k in G .

Proof.
Set f (e) = 1 if e belongs to one of the paths P1,P2, . . . ,Pk ;
other-wise set f (e) = 0. This defines a flow of value k .

Chandra & Ruta (UIUC) CS473 17 Fall 2016 17 / 44

Correctness of Reduction

Lemma
If G has a flow of value k then there are k edge disjoint paths
between s and t.

Proof.
1 Capacities are all 1 and hence there is integer flow of value k ,

that is f (e) = 0 or f (e) = 1 for each e.

2 Decompose flow into paths.

3 Flow on each path is either 1 or 0.

4 Hence there are k paths P1,P2, . . . ,Pk with flow of 1 each.

5 Paths are edge-disjoint since capacities are 1.

Chandra & Ruta (UIUC) CS473 18 Fall 2016 18 / 44

Correctness of Reduction

Lemma
If G has a flow of value k then there are k edge disjoint paths
between s and t.

Proof.
1 Capacities are all 1 and hence there is integer flow of value k ,

that is f (e) = 0 or f (e) = 1 for each e.

2 Decompose flow into paths.

3 Flow on each path is either 1 or 0.

4 Hence there are k paths P1,P2, . . . ,Pk with flow of 1 each.

5 Paths are edge-disjoint since capacities are 1.

Chandra & Ruta (UIUC) CS473 18 Fall 2016 18 / 44

Running Time

Theorem
The number of edge disjoint paths in a simple graph G can be found
in O(mn) time.

Proof.
1 Set capacities of edges in G to 1.

2 Run Ford-Fulkerson algorithm.

3 Maximum value of flow is n and hence run-time is O(nm).

4 Decompose flow into k paths (k ≤ n).
Takes O(k ×m) = O(km) = O(mn) time.

Remark
The algorithm also computes a set of edge-disjoint paths realizing
this optimal solution.

Chandra & Ruta (UIUC) CS473 19 Fall 2016 19 / 44

Running Time

Theorem
The number of edge disjoint paths in a simple graph G can be found
in O(mn) time.

Proof.
1 Set capacities of edges in G to 1.

2 Run Ford-Fulkerson algorithm.

3 Maximum value of flow is n and hence run-time is O(nm).

4 Decompose flow into k paths (k ≤ n).
Takes O(k ×m) = O(km) = O(mn) time.

Remark
The algorithm also computes a set of edge-disjoint paths realizing
this optimal solution.

Chandra & Ruta (UIUC) CS473 19 Fall 2016 19 / 44

Menger’s Theorem

Theorem
Let G be a directed graph. The minimum number of edges whose
removal disconnects s from t (the minimum-cut between s and t) is
equal to the maximum number of edge-disjoint paths in G between s
and t.

Proof.
Maxflow-mincut theorem and integrality of flow.

Menger proved his theorem before Maxflow-Mincut theorem!
Maxflow-Mincut theorem is a generalization of Menger’s theorem to
capacitated graphs.

Chandra & Ruta (UIUC) CS473 20 Fall 2016 20 / 44

Menger’s Theorem

Theorem
Let G be a directed graph. The minimum number of edges whose
removal disconnects s from t (the minimum-cut between s and t) is
equal to the maximum number of edge-disjoint paths in G between s
and t.

Proof.
Maxflow-mincut theorem and integrality of flow.

Menger proved his theorem before Maxflow-Mincut theorem!
Maxflow-Mincut theorem is a generalization of Menger’s theorem to
capacitated graphs.

Chandra & Ruta (UIUC) CS473 20 Fall 2016 20 / 44

Menger’s Theorem

Theorem
Let G be a directed graph. The minimum number of edges whose
removal disconnects s from t (the minimum-cut between s and t) is
equal to the maximum number of edge-disjoint paths in G between s
and t.

Proof.
Maxflow-mincut theorem and integrality of flow.

Menger proved his theorem before Maxflow-Mincut theorem!
Maxflow-Mincut theorem is a generalization of Menger’s theorem to
capacitated graphs.

Chandra & Ruta (UIUC) CS473 20 Fall 2016 20 / 44

Edge Disjoint Paths in Undirected Graphs

Problem
Given an undirected graph G , find the maximum number of edge
disjoint paths in G

Reduction:

1 create directed graph H by adding directed edges (u, v) and
(v , u) for each edge uv in G .

2 compute maximum s-t flow in H .

Problem: Both edges (u, v) and (v , u) may have non-zero flow!

Not a Problem! Can assume maximum flow in H is acyclic and hence
cannot have non-zero flow on both (u, v) and (v , u). Reduction
works. See book for more details.

Chandra & Ruta (UIUC) CS473 21 Fall 2016 21 / 44

Edge Disjoint Paths in Undirected Graphs

Problem
Given an undirected graph G , find the maximum number of edge
disjoint paths in G

Reduction:

1 create directed graph H by adding directed edges (u, v) and
(v , u) for each edge uv in G .

2 compute maximum s-t flow in H .

Problem: Both edges (u, v) and (v , u) may have non-zero flow!

Not a Problem! Can assume maximum flow in H is acyclic and hence
cannot have non-zero flow on both (u, v) and (v , u). Reduction
works. See book for more details.

Chandra & Ruta (UIUC) CS473 21 Fall 2016 21 / 44

Edge Disjoint Paths in Undirected Graphs

Problem
Given an undirected graph G , find the maximum number of edge
disjoint paths in G

Reduction:

1 create directed graph H by adding directed edges (u, v) and
(v , u) for each edge uv in G .

2 compute maximum s-t flow in H .

Problem: Both edges (u, v) and (v , u) may have non-zero flow!

Not a Problem! Can assume maximum flow in H is acyclic and hence
cannot have non-zero flow on both (u, v) and (v , u). Reduction
works. See book for more details.

Chandra & Ruta (UIUC) CS473 21 Fall 2016 21 / 44

Edge Disjoint Paths in Undirected Graphs

Problem
Given an undirected graph G , find the maximum number of edge
disjoint paths in G

Reduction:

1 create directed graph H by adding directed edges (u, v) and
(v , u) for each edge uv in G .

2 compute maximum s-t flow in H .

Problem: Both edges (u, v) and (v , u) may have non-zero flow!

Not a Problem! Can assume maximum flow in H is acyclic and hence
cannot have non-zero flow on both (u, v) and (v , u). Reduction
works. See book for more details.

Chandra & Ruta (UIUC) CS473 21 Fall 2016 21 / 44

Node Disjoint Paths and Meger’s theorem

Definition
A set of s-t paths P are internally node-disjoint if no two paths in P
share a node other than s, t.

Theorem
Let G be an undirected graph. The minimum number of nodes in
V \ {s, t} whose removal disconnects s from t is equal to the
maximum number of internally node-disjoint paths in G between s
and t.

Theorem
The max number of internally node-disjoint paths between s and t in
G can be computed in O(mn) time.

Via reductions to directed graph edge-disjoint case!

Chandra & Ruta (UIUC) CS473 22 Fall 2016 22 / 44

Node Disjoint Paths and Meger’s theorem

Definition
A set of s-t paths P are internally node-disjoint if no two paths in P
share a node other than s, t.

Theorem
Let G be an undirected graph. The minimum number of nodes in
V \ {s, t} whose removal disconnects s from t is equal to the
maximum number of internally node-disjoint paths in G between s
and t.

Theorem
The max number of internally node-disjoint paths between s and t in
G can be computed in O(mn) time.

Via reductions to directed graph edge-disjoint case!

Chandra & Ruta (UIUC) CS473 22 Fall 2016 22 / 44

Node Disjoint Paths and Meger’s theorem

Definition
A set of s-t paths P are internally node-disjoint if no two paths in P
share a node other than s, t.

Theorem
Let G be an undirected graph. The minimum number of nodes in
V \ {s, t} whose removal disconnects s from t is equal to the
maximum number of internally node-disjoint paths in G between s
and t.

Theorem
The max number of internally node-disjoint paths between s and t in
G can be computed in O(mn) time.

Via reductions to directed graph edge-disjoint case!
Chandra & Ruta (UIUC) CS473 22 Fall 2016 22 / 44

Multiple Sources and Sinks

Input:

1 A directed graph G with edge
capacities c(e).

2 Source nodes s1, s2, . . . , sk .

3 Sink nodes t1, t2, . . . , t`.

4 Sources and sinks are disjoint.

s1

s3

t1

t2
s2

Maximum Flow: Send as much flow as possible from the sources to
the sinks. Sinks don’t care which source they get flow from.

Minimum Cut: Find a minimum capacity set of edge E ′ such that
removing E ′ disconnects every source from every sink.

Chandra & Ruta (UIUC) CS473 23 Fall 2016 23 / 44

Multiple Sources and Sinks

Input:

1 A directed graph G with edge
capacities c(e).

2 Source nodes s1, s2, . . . , sk .

3 Sink nodes t1, t2, . . . , t`.

4 Sources and sinks are disjoint.

s1

s3

t1

t2
s2

Maximum Flow: Send as much flow as possible from the sources to
the sinks. Sinks don’t care which source they get flow from.

Minimum Cut: Find a minimum capacity set of edge E ′ such that
removing E ′ disconnects every source from every sink.

Chandra & Ruta (UIUC) CS473 23 Fall 2016 23 / 44

Multiple Sources and Sinks

Input:

1 A directed graph G with edge
capacities c(e).

2 Source nodes s1, s2, . . . , sk .

3 Sink nodes t1, t2, . . . , t`.

4 Sources and sinks are disjoint.

s1

s3

t1

t2
s2

Maximum Flow: Send as much flow as possible from the sources to
the sinks. Sinks don’t care which source they get flow from.

Minimum Cut: Find a minimum capacity set of edge E ′ such that
removing E ′ disconnects every source from every sink.

Chandra & Ruta (UIUC) CS473 23 Fall 2016 23 / 44

Multiple Sources and Sinks: Formal Definition

Input:

1 A directed graph G with edge capacities c(e).

2 Source nodes s1, s2, . . . , sk .

3 Sink nodes t1, t2, . . . , t`.

4 Sources and sinks are disjoint.

A function f : E → R≥0 is a flow if:

1 For each e ∈ E , f (e) ≤ c(e), and

2 for each v which is not a source or a sink f in(v) = f out(v).

Goal: max
∑k

i=1(f out(si)− f in(si)), that is, flow out of sources.

Chandra & Ruta (UIUC) CS473 24 Fall 2016 24 / 44

Reduction to Single-Source Single-Sink

1 Add a source node s and a sink node t.

2 Add edges (s, s1), (s, s2), . . . , (s, sk).

3 Add edges (t1, t), (t2, t), . . . , (t`, t).

4 Set the capacity of the new edges to be∞.

s1

s3

t1

t2
s2

Chandra & Ruta (UIUC) CS473 25 Fall 2016 25 / 44

Reduction to Single-Source Single-Sink

1 Add a source node s and a sink node t.

2 Add edges (s, s1), (s, s2), . . . , (s, sk).

3 Add edges (t1, t), (t2, t), . . . , (t`, t).

4 Set the capacity of the new edges to be∞.

s1

s3

t1

t2
s2

s1

s3

t1

t2
s2

s

t

Chandra & Ruta (UIUC) CS473 25 Fall 2016 25 / 44

Supplies and Demands

A further generalization:

1 source si has a supply of Si ≥ 0

2 since tj has a demand of Dj ≥ 0 units

Question: is there a flow from source to sinks such that supplies are
not exceeded and demands are met? Formally we have the additional
constraints that f out(si)− f in(si) ≤ Si for each source si and
f in(tj)− f out(tj) ≥ Dj for each sink tj .

s1

s3

t1

t2
s2

3

5

10

8

2

Chandra & Ruta (UIUC) CS473 26 Fall 2016 26 / 44

Supplies and Demands

A further generalization:

1 source si has a supply of Si ≥ 0

2 since tj has a demand of Dj ≥ 0 units

Question: is there a flow from source to sinks such that supplies are
not exceeded and demands are met? Formally we have the additional
constraints that f out(si)− f in(si) ≤ Si for each source si and
f in(tj)− f out(tj) ≥ Dj for each sink tj .

s1

s3

t1

t2
s2

3

5

10

8

2 s1

s3

t1

t2
s2

s

t

10

5

3

2

8

Chandra & Ruta (UIUC) CS473 26 Fall 2016 26 / 44

Matching

Problem (Matching)

Input: Given a (undirected) graph G = (V ,E).
Goal: Find a matching of maximum cardinality.

1 A matching is M ⊆ E such that at most one edge in M is
incident on any vertex

Chandra & Ruta (UIUC) CS473 27 Fall 2016 27 / 44

Matching

Problem (Matching)

Input: Given a (undirected) graph G = (V ,E).
Goal: Find a matching of maximum cardinality.

1 A matching is M ⊆ E such that at most one edge in M is
incident on any vertex

Chandra & Ruta (UIUC) CS473 27 Fall 2016 27 / 44

Bipartite Matching

Problem (Bipartite matching)

Input: Given a bipartite graph G = (L ∪ R,E).
Goal: Find a matching of maximum cardinality

Maximum matching has 4 edges

Chandra & Ruta (UIUC) CS473 28 Fall 2016 28 / 44

Bipartite Matching

Problem (Bipartite matching)

Input: Given a bipartite graph G = (L ∪ R,E).
Goal: Find a matching of maximum cardinality

Maximum matching has 4 edges

Chandra & Ruta (UIUC) CS473 28 Fall 2016 28 / 44

Bipartite Matching

Problem (Bipartite matching)

Input: Given a bipartite graph G = (L ∪ R,E).
Goal: Find a matching of maximum cardinality

Maximum matching has 4 edges
Chandra & Ruta (UIUC) CS473 28 Fall 2016 28 / 44

Reduction of bipartite matching to max-flow

Max-Flow Construction
Given graph G = (L ∪ R,E) create flow-network G ′ = (V ′,E ′) as
follows:

1 V ′ = L ∪ R ∪ {s, t} where s
and t are the new source and
sink.

2 Direct all edges in E from L to
R, and add edges from s to all
vertices in L and from each
vertex in R to t.

3 Capacity of every edge is 1.

Chandra & Ruta (UIUC) CS473 29 Fall 2016 29 / 44

Reduction of bipartite matching to max-flow

Max-Flow Construction
Given graph G = (L ∪ R,E) create flow-network G ′ = (V ′,E ′) as
follows:

1 V ′ = L ∪ R ∪ {s, t} where s
and t are the new source and
sink.

2 Direct all edges in E from L to
R, and add edges from s to all
vertices in L and from each
vertex in R to t.

3 Capacity of every edge is 1.

Chandra & Ruta (UIUC) CS473 29 Fall 2016 29 / 44

Reduction of bipartite matching to max-flow

Max-Flow Construction
Given graph G = (L ∪ R,E) create flow-network G ′ = (V ′,E ′) as
follows:

1 V ′ = L ∪ R ∪ {s, t} where s
and t are the new source and
sink.

2 Direct all edges in E from L to
R, and add edges from s to all
vertices in L and from each
vertex in R to t.

3 Capacity of every edge is 1.

Chandra & Ruta (UIUC) CS473 29 Fall 2016 29 / 44

Reduction of bipartite matching to max-flow

Max-Flow Construction
Given graph G = (L ∪ R,E) create flow-network G ′ = (V ′,E ′) as
follows:

1 V ′ = L ∪ R ∪ {s, t} where s
and t are the new source and
sink.

2 Direct all edges in E from L to
R, and add edges from s to all
vertices in L and from each
vertex in R to t.

3 Capacity of every edge is 1.

Chandra & Ruta (UIUC) CS473 29 Fall 2016 29 / 44

Correctness: Matching to Flow

Proposition
If G has a matching of size k then G ′ has a flow of value k .

Proof.
Let M be matching of size k . Let M = {(u1, v1), . . . , (uk , vk)}.
Consider following flow f in G ′:

1 f (s, ui) = 1 and f (vi , t) = 1 for 1 ≤ i ≤ k
2 f (ui , vi) = 1 for 1 ≤ i ≤ k
3 for all other edges flow is zero.

Verify that f is a flow of value k (because M is a matching).

Chandra & Ruta (UIUC) CS473 30 Fall 2016 30 / 44

Correctness: Matching to Flow

Proposition
If G has a matching of size k then G ′ has a flow of value k .

Proof.
Let M be matching of size k . Let M = {(u1, v1), . . . , (uk , vk)}.
Consider following flow f in G ′:

1 f (s, ui) = 1 and f (vi , t) = 1 for 1 ≤ i ≤ k
2 f (ui , vi) = 1 for 1 ≤ i ≤ k
3 for all other edges flow is zero.

Verify that f is a flow of value k (because M is a matching).

Chandra & Ruta (UIUC) CS473 30 Fall 2016 30 / 44

Correctness: Flow to Matching

Proposition
If G ′ has a flow of value k then G has a matching of size k .

Proof.
Consider flow f of value k .

1 Can assume f is integral. Thus each edge has flow 1 or 0.
2 Consider the set M of edges from L to R that have flow 1.

1 M has k edges because value of flow is equal to the number of
non-zero flow edges crossing cut (L ∪ {s},R ∪ {t})

2 Each vertex has at most one edge in M incident upon it. Why?

Chandra & Ruta (UIUC) CS473 31 Fall 2016 31 / 44

Correctness of Reduction

Theorem
The maximum flow value in G ′ = maximum cardinality of matching
in G .

Consequence
Thus, to find maximum cardinality matching in G , we construct G ′

and find the maximum flow in G ′. Note that the matching itself (not
just the value) can be found efficiently from the flow.

Chandra & Ruta (UIUC) CS473 32 Fall 2016 32 / 44

Running Time

For graph G with n vertices and m edges G ′ has O(n + m) edges,
and O(n) vertices.

1 Generic Ford-Fulkerson: Running time is O(mC) = O(nm)
since C = n.

2 Capacity scaling: Running time is
O(m2 log C) = O(m2 log n).

Better running time is known: O(m
√

n).

Chandra & Ruta (UIUC) CS473 33 Fall 2016 33 / 44

Running Time

For graph G with n vertices and m edges G ′ has O(n + m) edges,
and O(n) vertices.

1 Generic Ford-Fulkerson: Running time is O(mC) = O(nm)
since C = n.

2 Capacity scaling: Running time is
O(m2 log C) = O(m2 log n).

Better running time is known: O(m
√

n).

Chandra & Ruta (UIUC) CS473 33 Fall 2016 33 / 44

Perfect Matchings

Definition
A matching M is said to be perfect if every vertex has one edge in
M incident upon it.

Figure: This graph does not have a perfect matching

Chandra & Ruta (UIUC) CS473 34 Fall 2016 34 / 44

Characterizing Perfect Matchings

Problem
When does a bipartite graph have a perfect matching?

1 Clearly |L| = |R|
2 Are there any necessary and sufficient conditions?

Chandra & Ruta (UIUC) CS473 35 Fall 2016 35 / 44

A Necessary Condition

Lemma
If G = (L ∪ R,E) has a perfect matching then for any X ⊆ L,
|N(X)| ≥ |X |, where N(X) is the set of neighbors of vertices in X .

Proof.
Since G has a perfect matching, every vertex of X is matched to a
different neighbor, and so |N(X)| ≥ |X |.

Chandra & Ruta (UIUC) CS473 36 Fall 2016 36 / 44

A Necessary Condition

Lemma
If G = (L ∪ R,E) has a perfect matching then for any X ⊆ L,
|N(X)| ≥ |X |, where N(X) is the set of neighbors of vertices in X .

Proof.
Since G has a perfect matching, every vertex of X is matched to a
different neighbor, and so |N(X)| ≥ |X |.

Chandra & Ruta (UIUC) CS473 36 Fall 2016 36 / 44

Hall’s Theorem

Theorem (Frobenius-Hall)

Let G = (L ∪ R,E) be a bipartite graph with |L| = |R|. G has a
perfect matching if and only if for every X ⊆ L, |N(X)| ≥ |X |.

One direction is the necessary condition.

For the other direction we will show the following:

1 Create flow network G ′ from G .

2 If |N(X)| ≥ |X | for all X , show that minimum s-t cut in G ′ is
of capacity n = |L| = |R|.

3 Implies that G has a perfect matching.

Chandra & Ruta (UIUC) CS473 37 Fall 2016 37 / 44

Hall’s Theorem

Theorem (Frobenius-Hall)

Let G = (L ∪ R,E) be a bipartite graph with |L| = |R|. G has a
perfect matching if and only if for every X ⊆ L, |N(X)| ≥ |X |.

One direction is the necessary condition.
For the other direction we will show the following:

1 Create flow network G ′ from G .

2 If |N(X)| ≥ |X | for all X , show that minimum s-t cut in G ′ is
of capacity n = |L| = |R|.

3 Implies that G has a perfect matching.

Chandra & Ruta (UIUC) CS473 37 Fall 2016 37 / 44

Proof of Sufficiency

Assume |N(X)| ≥ |X | for any X ⊆ L. Then show that min s-t cut
in G ′ is of capacity at least n.

Let (A,B) be an arbitrary s-t cut in G ′

1 Let X = A ∩ L and Y = A ∩ R.

2 Cut capacity is at least (|L| − |X |) + |Y |+ |N(X) \ Y |

Chandra & Ruta (UIUC) CS473 38 Fall 2016 38 / 44

Proof of Sufficiency

Assume |N(X)| ≥ |X | for any X ⊆ L. Then show that min s-t cut
in G ′ is of capacity at least n.

Let (A,B) be an arbitrary s-t cut in G ′

1 Let X = A ∩ L and Y = A ∩ R.

2 Cut capacity is at least (|L| − |X |) + |Y |+ |N(X) \ Y |

Chandra & Ruta (UIUC) CS473 38 Fall 2016 38 / 44

Proof of Sufficiency

Assume |N(X)| ≥ |X | for any X ⊆ L. Then show that min s-t cut
in G ′ is of capacity at least n.

Let (A,B) be an arbitrary s-t cut in G ′

1 Let X = A ∩ L and Y = A ∩ R.

2 Cut capacity is at least (|L| − |X |) + |Y |+ |N(X) \ Y |

Chandra & Ruta (UIUC) CS473 38 Fall 2016 38 / 44

Proof of Sufficiency

Assume |N(X)| ≥ |X | for any X ⊆ L. Then show that min s-t cut
in G ′ is of capacity at least n.

Let (A,B) be an arbitrary s-t cut in G ′
1 Let X = A ∩ L and Y = A ∩ R.
2 Cut capacity is at least (|L| − |X |) + |Y |+ |N(X) \ Y |

A

B

X

Y

|L| − |X|

|Y |

|N(X) \ Y |

s t

Because there are...

1 |L|− |X | edges from s to L∩B.

2 |Y | edges from Y to t.

3 there are at least |N(X) \ Y |
edges from X to vertices on the
right side that are not in Y .

Chandra & Ruta (UIUC) CS473 38 Fall 2016 38 / 44

Proof of Sufficiency
Continued...

1 By the above, cut capacity is at least
α = (|L| − |X |) + |Y |+ |N(X) \ Y |.

2 |N(X) \ Y | ≥ |N(X)| − |Y |.
(This holds for any two sets.)

3 By assumption |N(X)| ≥ |X | and hence

|N(X) \ Y | ≥ |N(X)| − |Y | ≥ |X | − |Y |.
4 Cut capacity is therefore at least

α = (|L| − |X |) + |Y |+ |N(X) \ Y |
≥ |L| − |X |+ |Y |+ |X | − |Y | ≥ |L| = n.

5 Any s-t cut capacity is at least n =⇒ max flow at least n
units =⇒ perfect matching. QED

Chandra & Ruta (UIUC) CS473 39 Fall 2016 39 / 44

Hall’s Theorem: Generalization

Theorem (Frobenius-Hall)

Let G = (L ∪ R,E) be a bipartite graph with |L| ≤ |R|. G has a
matching that matches all nodes in L if and only if for every X ⊆ L,
|N(X)| ≥ |X |.

Proof is essentially the same as the previous one.

Chandra & Ruta (UIUC) CS473 40 Fall 2016 40 / 44

Assigning jobs to people

1 n jobs, n/2 people

2 For each job: a set of people who can do that job.

3 Each person j has to do exactly two jobs.

4 Goal: find an assignment of 2 jobs to each person, such that all
jobs are assigned.

Solution: Build bipartite graph, compute maximum matching, remove
it, compute another maximum matching. Both matchings together
form a valid solution if it exists. This algorithm is

(A) Correct.

(B) Incorrect.

Chandra & Ruta (UIUC) CS473 41 Fall 2016 41 / 44

Application: Assigning jobs to people

1 n jobs or tasks

2 m people

3 for each job a set of people who can do that job

4 for each person j a limit on number of jobs kj

5 Goal: find an assignment of jobs to people so that all jobs are
assigned and no person is overloaded

Reduce to max-flow similar to matching.

Arises in many settings. Using minimum-cost flows can also handle
the case when assigning a job i to person j costs cij and goal is
assign all jobs but minimize cost of assignment.

Chandra & Ruta (UIUC) CS473 42 Fall 2016 42 / 44

Application: Assigning jobs to people

1 n jobs or tasks

2 m people

3 for each job a set of people who can do that job

4 for each person j a limit on number of jobs kj

5 Goal: find an assignment of jobs to people so that all jobs are
assigned and no person is overloaded

Reduce to max-flow similar to matching.

Arises in many settings. Using minimum-cost flows can also handle
the case when assigning a job i to person j costs cij and goal is
assign all jobs but minimize cost of assignment.

Chandra & Ruta (UIUC) CS473 42 Fall 2016 42 / 44

Reduction to Maximum Flow

1 Create directed graph G = (V ,E) as follows
1 V = {s, t} ∪ L ∪ R: L set of n jobs, R set of m people
2 add edges (s, i) for each job i ∈ L, capacity 1
3 add edges (j , t) for each person j ∈ R, capacity kj
4 if job i can be done by person j add an edge (i , j), capacity 1

2 Compute max s-t flow. There is an assignment if and only if
flow value is n.

Chandra & Ruta (UIUC) CS473 43 Fall 2016 43 / 44

Matchings in General Graphs

Matchings in general graphs more complicated.

There is a polynomial time algorithm to compute a maximum
matching in a general graph. Best known running time was until very
recenlty O(m

√
n) due to Hopcroft and Karp. Now there is another

algorithm that runs in Õ(m10/7)-time due to Madry (2015).

Chandra & Ruta (UIUC) CS473 44 Fall 2016 44 / 44

Part I

Baseball Pennant Race

Chandra & Ruta (UIUC) CS473 2 Fall 2016 2 / 31

Pennant Race

Chandra & Ruta (UIUC) CS473 3 Fall 2016 3 / 31

Pennant Race: Example

Example

Team Won Left
New York 92 2
Baltimore 91 3
Toronto 91 3
Boston 89 2

Can Boston win the pennant?

No, because Boston can win at most 91 games.

Chandra & Ruta (UIUC) CS473 4 Fall 2016 4 / 31

Pennant Race: Example

Example

Team Won Left
New York 92 2
Baltimore 91 3
Toronto 91 3
Boston 89 2

Can Boston win the pennant?
No, because Boston can win at most 91 games.

Chandra & Ruta (UIUC) CS473 4 Fall 2016 4 / 31

Another Example

Example

Team Won Left
New York 92 2
Baltimore 91 3
Toronto 91 3
Boston 90 2

Can Boston win the pennant?

Not clear unless we know what the remaining games are!

Chandra & Ruta (UIUC) CS473 5 Fall 2016 5 / 31

Another Example

Example

Team Won Left
New York 92 2
Baltimore 91 3
Toronto 91 3
Boston 90 2

Can Boston win the pennant?
Not clear unless we know what the remaining games are!

Chandra & Ruta (UIUC) CS473 5 Fall 2016 5 / 31

Refining the Example

Example

Team Won Left NY Bal Tor Bos
New York 92 2 − 1 1 0
Baltimore 91 3 1 − 1 1
Toronto 91 3 1 1 − 1
Boston 90 2 0 1 1 −

Can Boston win the pennant?

Suppose Boston does

1 Boston wins both its games to get 92 wins

2 New York must lose both games

; now both Baltimore and
Toronto have at least 92

3 Winner of Baltimore-Toronto game has 93 wins!

Chandra & Ruta (UIUC) CS473 6 Fall 2016 6 / 31

Refining the Example

Example

Team Won Left NY Bal Tor Bos
New York 92 2 − 1 1 0
Baltimore 91 3 1 − 1 1
Toronto 91 3 1 1 − 1
Boston 90 2 0 1 1 −

Can Boston win the pennant? Suppose Boston does

1 Boston wins both its games to get 92 wins

2 New York must lose both games

; now both Baltimore and
Toronto have at least 92

3 Winner of Baltimore-Toronto game has 93 wins!

Chandra & Ruta (UIUC) CS473 6 Fall 2016 6 / 31

Refining the Example

Example

Team Won Left NY Bal Tor Bos
New York 92 2 − 1 1 0
Baltimore 91 3 1 − 1 1
Toronto 91 3 1 1 − 1
Boston 90 2 0 1 1 −

Can Boston win the pennant? Suppose Boston does

1 Boston wins both its games to get 92 wins

2 New York must lose both games

; now both Baltimore and
Toronto have at least 92

3 Winner of Baltimore-Toronto game has 93 wins!

Chandra & Ruta (UIUC) CS473 6 Fall 2016 6 / 31

Refining the Example

Example

Team Won Left NY Bal Tor Bos
New York 92 2 − 1 1 0
Baltimore 91 3 1 − 1 1
Toronto 91 3 1 1 − 1
Boston 90 2 0 1 1 −

Can Boston win the pennant? Suppose Boston does

1 Boston wins both its games to get 92 wins

2 New York must lose both games

; now both Baltimore and
Toronto have at least 92

3 Winner of Baltimore-Toronto game has 93 wins!

Chandra & Ruta (UIUC) CS473 6 Fall 2016 6 / 31

Refining the Example

Example

Team Won Left NY Bal Tor Bos
New York 92 2 − 1 1 0
Baltimore 91 3 1 − 1 1
Toronto 91 3 1 1 − 1
Boston 90 2 0 1 1 −

Can Boston win the pennant? Suppose Boston does

1 Boston wins both its games to get 92 wins

2 New York must lose both games; now both Baltimore and
Toronto have at least 92

3 Winner of Baltimore-Toronto game has 93 wins!

Chandra & Ruta (UIUC) CS473 6 Fall 2016 6 / 31

Refining the Example

Example

Team Won Left NY Bal Tor Bos
New York 92 2 − 1 1 0
Baltimore 91 3 1 − 1 1
Toronto 91 3 1 1 − 1
Boston 90 2 0 1 1 −

Can Boston win the pennant? Suppose Boston does

1 Boston wins both its games to get 92 wins

2 New York must lose both games; now both Baltimore and
Toronto have at least 92

3 Winner of Baltimore-Toronto game has 93 wins!

Chandra & Ruta (UIUC) CS473 6 Fall 2016 6 / 31

Can Boston win the penant?

Team Won Left NY Bal Tor Bos
New York 3 6 − 2 3 1
Baltimore 5 4 2 − 1 1
Toronto 4 6 3 1 − 2
Boston 2 4 1 1 2 −

(A) Yes.

(B) No.

Chandra & Ruta (UIUC) CS473 7 Fall 2016 7 / 31

Abstracting the Problem

Given

1 A set of teams S
2 For each x ∈ S , the current number of wins wx

3 For any x, y ∈ S , the number of remaining games gxy between
x and y

4 A team z
Can z win the pennant?

Chandra & Ruta (UIUC) CS473 8 Fall 2016 8 / 31

Towards a Reduction

z can win the pennant if

1 z wins at least m games

2 no other team wins more than m games

Chandra & Ruta (UIUC) CS473 9 Fall 2016 9 / 31

Towards a Reduction

z can win the pennant if
1 z wins at least m games

1 to maximize z ’s chances we make z win all its remaining games
and hence m = wz +

∑
x∈S gxz

2 no other team wins more than m games

Chandra & Ruta (UIUC) CS473 9 Fall 2016 9 / 31

Towards a Reduction

z can win the pennant if
1 z wins at least m games

1 to maximize z ’s chances we make z win all its remaining games
and hence m = wz +

∑
x∈S gxz

2 no other team wins more than m games
1 for each x, y ∈ S the gxy games between them have to be

assigned to either x or y .
2 each team x 6= z can win at most m − wx − gxz remaining

games

Is there an assignment of remaining games to teams such that no
team x 6= z wins more than m − wx games?

Chandra & Ruta (UIUC) CS473 9 Fall 2016 9 / 31

Flow Network: The basic gadget

1 s: source

2 t: sink

3 x , y : two teams

4 gxy : number of games
remaining between x and
y .

5 wx : number of points x
has.

6 m: maximum number of
points x can win before
team of interest is
eliminated.

vx

vy

uxy
gxys

m−
w
x

m
− w

y

∞

∞
t

Chandra & Ruta (UIUC) CS473 10 Fall 2016 10 / 31

Flow Network: An Example
Can Boston win?

Team Won Left NY Bal Tor Bos
New York 90 11 − 1 6 4
Baltimore 88 6 1 − 1 4
Toronto 87 11 6 1 − 4

Boston 79 12 4 4 4 −

1 m = 79 + 12 = 91:
Boston can get at most
91 points.

s

BT

NB

NT

B

T

N

t

1

1

6

3

4

1

Chandra & Ruta (UIUC) CS473 11 Fall 2016 11 / 31

Constructing Flow Network

Notations
1 S : set of teams,

2 wx wins for each
team, and

3 gxy games left
between x and y .

4 m be the maximum
number of wins for z ,

5 and S ′ = S \ {z}.

Reduction
Construct the flow network G as
follows

1 One vertex vx for each team
x ∈ S ′, one vertex uxy for each
pair of teams x and y in S ′

2 A new source vertex s and sink t
3 Edges (uxy , vx) and (uxy , vy) of

capacity∞
4 Edges (s, uxy) of capacity gxy

5 Edges (vx , t) of capacity equal
m − wx

Chandra & Ruta (UIUC) CS473 12 Fall 2016 12 / 31

Correctness of reduction

Theorem
G ′ has a maximum flow of value g∗ =

∑
x,y∈S′ gxy if and only if z

can win the most number of games (including possibly tie with other
teams).

Chandra & Ruta (UIUC) CS473 13 Fall 2016 13 / 31

Proof of Correctness

Proof.
Existence of g∗ flow⇒ z wins pennant

1 An integral flow saturating edges out of s, ensures that each
remaining game between x and y is added to win total of either
x or y

2 Capacity on (vx , t) edges ensures that no team wins more than
m games

Conversely, z wins pennant⇒ flow of value g∗

1 Scenario determines flow on edges; if x wins k of the games
against y , then flow on (uxy , vx) edge is k and on (uxy , vy)
edge is gxy − k

Chandra & Ruta (UIUC) CS473 14 Fall 2016 14 / 31

Proof that z cannot with the pennant

1 Suppose z cannot win the pennant since g∗ < g . How do we
prove to some one compactly that z cannot win the pennant?

2 Show them the min-cut in the reduction flow network!

3 See Kleinberg-Tardos book for a natural interpretation of the
min-cut as a certificate.

Chandra & Ruta (UIUC) CS473 15 Fall 2016 15 / 31

Proof that z cannot with the pennant

1 Suppose z cannot win the pennant since g∗ < g . How do we
prove to some one compactly that z cannot win the pennant?

2 Show them the min-cut in the reduction flow network!

3 See Kleinberg-Tardos book for a natural interpretation of the
min-cut as a certificate.

Chandra & Ruta (UIUC) CS473 15 Fall 2016 15 / 31

Proof that z cannot with the pennant

1 Suppose z cannot win the pennant since g∗ < g . How do we
prove to some one compactly that z cannot win the pennant?

2 Show them the min-cut in the reduction flow network!

3 See Kleinberg-Tardos book for a natural interpretation of the
min-cut as a certificate.

Chandra & Ruta (UIUC) CS473 15 Fall 2016 15 / 31

The biggest loser?

Given an input as above for the pennant competition, deciding if a
team can come in the last place can be done in

(A) Can be done using the same reduction as just seen.

(B) Can not be done using the same reduction as just seen.

(C) Can be done using flows but we need lower bounds on the
flow, instead of upper bounds.

(D) The problem is NP-Hard and requires exponential time.

(E) Can be solved by negating all the numbers, and using the
above reduction.

(F) Can be solved efficiently only by running a reality show on
the problem.

Chandra & Ruta (UIUC) CS473 16 Fall 2016 16 / 31

Part II

An Application of Min-Cut to Project
Scheduling

Chandra & Ruta (UIUC) CS473 17 Fall 2016 17 / 31

Project Scheduling

Problem:

1 n projects/tasks 1, 2, . . . , n
2 dependencies between projects: i depends on j implies i cannot

be done unless j is done. dependency graph is acyclic
3 each project i has a cost/profit pi

1 pi < 0 implies i requires a cost of −pi units
2 pi > 0 implies that i generates pi profit

Goal: Find projects to do so as to maximize profit.

Chandra & Ruta (UIUC) CS473 18 Fall 2016 18 / 31

ExampleExample

Chekuri CS473ug

Chandra & Ruta (UIUC) CS473 19 Fall 2016 19 / 31

Notation

For a set A of projects:

1 A is a valid solution if A is dependency closed, that is for every
i ∈ A, all projects that i depends on are also in A.

2 profit(A) =
∑

i∈A pi . Can be negative or positive.

Goal: find valid A to maximize profit(A).

Chandra & Ruta (UIUC) CS473 20 Fall 2016 20 / 31

Notation

For a set A of projects:

1 A is a valid solution if A is dependency closed, that is for every
i ∈ A, all projects that i depends on are also in A.

2 profit(A) =
∑

i∈A pi . Can be negative or positive.

Goal: find valid A to maximize profit(A).

Chandra & Ruta (UIUC) CS473 20 Fall 2016 20 / 31

Notation

For a set A of projects:

1 A is a valid solution if A is dependency closed, that is for every
i ∈ A, all projects that i depends on are also in A.

2 profit(A) =
∑

i∈A pi . Can be negative or positive.

Goal: find valid A to maximize profit(A).

Chandra & Ruta (UIUC) CS473 20 Fall 2016 20 / 31

Idea: Reduction to Minimum-Cut

Finding a set of projects is partitioning the projects into two sets:
those that are done and those that are not done.

Can we express this is a minimum cut problem?

Several issues:

1 We are interested in maximizing profit but we can solve
minimum cuts.

2 We need to convert negative profits into positive capacities.

3 Need to ensure that chosen projects is a valid set.

4 The cut value captures the profit of the chosen set of projects.

Chandra & Ruta (UIUC) CS473 21 Fall 2016 21 / 31

Idea: Reduction to Minimum-Cut

Finding a set of projects is partitioning the projects into two sets:
those that are done and those that are not done.

Can we express this is a minimum cut problem?

Several issues:

1 We are interested in maximizing profit but we can solve
minimum cuts.

2 We need to convert negative profits into positive capacities.

3 Need to ensure that chosen projects is a valid set.

4 The cut value captures the profit of the chosen set of projects.

Chandra & Ruta (UIUC) CS473 21 Fall 2016 21 / 31

Reduction to Minimum-Cut

Note: We are reducing a maximization problem to a minimization
problem.

1 projects represented as nodes in a graph

2 if i depends on j then (i , j) is an edge

3 add source s and sink t
4 for each i with pi > 0 add edge (s, i) with capacity pi

5 for each i with pi < 0 add edge (i , t) with capacity −pi

6 for each dependency edge (i , j) put capacity∞ (more on this
later)

Chandra & Ruta (UIUC) CS473 22 Fall 2016 22 / 31

Reduction: Flow Network Example

4 6 2 3

−8−5−3−2 ∞
∞∞ ∞

∞ ∞

∞

2
3 5

8

t

s
4

6 2
3

Chandra & Ruta (UIUC) CS473 23 Fall 2016 23 / 31

Reduction contd

Algorithm:

1 form graph as in previous slide

2 compute s-t minimum cut (A,B)

3 output the projects in A− {s}

Chandra & Ruta (UIUC) CS473 24 Fall 2016 24 / 31

Understanding the Reduction

Let C =
∑

i :pi>0 pi : maximum possible profit.

Observation: The minimum s-t cut value is ≤ C . Why?

Lemma
Suppose (A,B) is an s-t cut of finite capacity (no∞) edges. Then
projects in A− {s} are a valid solution.

Proof.
If A− {s} is not a valid solution then there is a project i ∈ A and a
project j 6∈ A such that i depends on j

Since (i , j) capacity is∞, implies (A,B) capacity is∞,
contradicting assumption.

Chandra & Ruta (UIUC) CS473 25 Fall 2016 25 / 31

Understanding the Reduction

Let C =
∑

i :pi>0 pi : maximum possible profit.

Observation: The minimum s-t cut value is ≤ C . Why?

Lemma
Suppose (A,B) is an s-t cut of finite capacity (no∞) edges. Then
projects in A− {s} are a valid solution.

Proof.
If A− {s} is not a valid solution then there is a project i ∈ A and a
project j 6∈ A such that i depends on j

Since (i , j) capacity is∞, implies (A,B) capacity is∞,
contradicting assumption.

Chandra & Ruta (UIUC) CS473 25 Fall 2016 25 / 31

Understanding the Reduction

Let C =
∑

i :pi>0 pi : maximum possible profit.

Observation: The minimum s-t cut value is ≤ C . Why?

Lemma
Suppose (A,B) is an s-t cut of finite capacity (no∞) edges. Then
projects in A− {s} are a valid solution.

Proof.
If A− {s} is not a valid solution then there is a project i ∈ A and a
project j 6∈ A such that i depends on j

Since (i , j) capacity is∞, implies (A,B) capacity is∞,
contradicting assumption.

Chandra & Ruta (UIUC) CS473 25 Fall 2016 25 / 31

Understanding the Reduction

Let C =
∑

i :pi>0 pi : maximum possible profit.

Observation: The minimum s-t cut value is ≤ C . Why?

Lemma
Suppose (A,B) is an s-t cut of finite capacity (no∞) edges. Then
projects in A− {s} are a valid solution.

Proof.
If A− {s} is not a valid solution then there is a project i ∈ A and a
project j 6∈ A such that i depends on j

Since (i , j) capacity is∞, implies (A,B) capacity is∞,
contradicting assumption.

Chandra & Ruta (UIUC) CS473 25 Fall 2016 25 / 31

Understanding the Reduction

Let C =
∑

i :pi>0 pi : maximum possible profit.

Observation: The minimum s-t cut value is ≤ C . Why?

Lemma
Suppose (A,B) is an s-t cut of finite capacity (no∞) edges. Then
projects in A− {s} are a valid solution.

Proof.
If A− {s} is not a valid solution then there is a project i ∈ A and a
project j 6∈ A such that i depends on j

Since (i , j) capacity is∞, implies (A,B) capacity is∞,
contradicting assumption.

Chandra & Ruta (UIUC) CS473 25 Fall 2016 25 / 31

Example

Chandra & Ruta (UIUC) CS473 26 Fall 2016 26 / 31

Example

Chandra & Ruta (UIUC) CS473 27 Fall 2016 27 / 31

Correctness of Reduction

Recall that for a set of projects X , profit(X) =
∑

i∈X pi .

Lemma
Suppose (A,B) is an s-t cut of finite capacity (no∞) edges. Then
c(A,B) = C − profit(A− {s}).

Proof.
Edges in (A,B):

1 (s, i) for i ∈ B and pi > 0: capacity is pi

2 (i , t) for i ∈ A and pi < 0: capacity is −pi

3 cannot have∞ edges

Chandra & Ruta (UIUC) CS473 28 Fall 2016 28 / 31

Correctness of Reduction

Recall that for a set of projects X , profit(X) =
∑

i∈X pi .

Lemma
Suppose (A,B) is an s-t cut of finite capacity (no∞) edges. Then
c(A,B) = C − profit(A− {s}).

Proof.
Edges in (A,B):

1 (s, i) for i ∈ B and pi > 0: capacity is pi

2 (i , t) for i ∈ A and pi < 0: capacity is −pi

3 cannot have∞ edges

Chandra & Ruta (UIUC) CS473 28 Fall 2016 28 / 31

Correctness of Reduction

Recall that for a set of projects X , profit(X) =
∑

i∈X pi .

Lemma
Suppose (A,B) is an s-t cut of finite capacity (no∞) edges. Then
c(A,B) = C − profit(A− {s}).

Proof.
Edges in (A,B):

1 (s, i) for i ∈ B and pi > 0: capacity is pi

2 (i , t) for i ∈ A and pi < 0: capacity is −pi

3 cannot have∞ edges

Chandra & Ruta (UIUC) CS473 28 Fall 2016 28 / 31

Proof contd

For project set A let
1 cost(A) =

∑
i∈A:pi<0−pi

2 benefit(A) =
∑

i∈A:pi>0 pi

3 profit(A) = benefit(A)− cost(A).

Proof.
Let A′ = A ∪ {s}.

c(A′,B) = cost(A) + benefit(B)

= cost(A)− benefit(A) + benefit(A) + benefit(B)

= −profit(A) + C
= C − profit(A)

Chandra & Ruta (UIUC) CS473 29 Fall 2016 29 / 31

Correctness of Reduction contd

We have shown that if (A,B) is an s-t cut in G with finite capacity
then

1 A− {s} is a valid set of projects

2 c(A,B) = C − profit(A− {s})

Therefore a minimum s-t cut (A∗,B∗) gives a maximum profit set
of projects A∗ − {s} since C is fixed.

Question: How can we use∞ in a real algorithm?

Set capacity of∞ arcs to C + 1 instead. Why does this work?

Chandra & Ruta (UIUC) CS473 30 Fall 2016 30 / 31

Correctness of Reduction contd

We have shown that if (A,B) is an s-t cut in G with finite capacity
then

1 A− {s} is a valid set of projects

2 c(A,B) = C − profit(A− {s})
Therefore a minimum s-t cut (A∗,B∗) gives a maximum profit set
of projects A∗ − {s} since C is fixed.

Question: How can we use∞ in a real algorithm?

Set capacity of∞ arcs to C + 1 instead. Why does this work?

Chandra & Ruta (UIUC) CS473 30 Fall 2016 30 / 31

Correctness of Reduction contd

We have shown that if (A,B) is an s-t cut in G with finite capacity
then

1 A− {s} is a valid set of projects

2 c(A,B) = C − profit(A− {s})
Therefore a minimum s-t cut (A∗,B∗) gives a maximum profit set
of projects A∗ − {s} since C is fixed.

Question: How can we use∞ in a real algorithm?

Set capacity of∞ arcs to C + 1 instead. Why does this work?

Chandra & Ruta (UIUC) CS473 30 Fall 2016 30 / 31

Correctness of Reduction contd

We have shown that if (A,B) is an s-t cut in G with finite capacity
then

1 A− {s} is a valid set of projects

2 c(A,B) = C − profit(A− {s})
Therefore a minimum s-t cut (A∗,B∗) gives a maximum profit set
of projects A∗ − {s} since C is fixed.

Question: How can we use∞ in a real algorithm?

Set capacity of∞ arcs to C + 1 instead. Why does this work?

Chandra & Ruta (UIUC) CS473 30 Fall 2016 30 / 31

