BBM402-Lecture 3: Backtracking: independent set,

longest increasing subsequence

Lecturer: Lale Ozkahya

Resources for the presentation:
https://courses.engr.illinois.edu/cs374 /fa2016 /lectures.html
https://courses.engr.illinois.edu/cs374/fa2015/lectures.html

CS 374

Recursion

* We have seen divide and conquer:

— split into subproblems of size n/c (some c).
— Analyze running time with recursion trees.
 Different style of recursion: Backtracking

— reduce to subproblems of smaller size n-c (some
C).

— Usually exponential time

— Way of developing correct recursive algorithms,
won’t deal with running time often.

8-Queens Puzzle :

S e

CS 374

8-Queens Puzzle :

How long does it take to solve it from scratch?

CS 374

n-Queens Puzzle :

Represent by array Q[1...n].
Q[i] = which square in row i has a queen

CS 374

n-Queens Puzzle :

Place a queen at the first empty row-try all possible places

n-Queens Puzzle :

Place a queen at the first empty row-try all possible places

n-Queens Puzzle :

Place a queen at the first empty row-try all possible places

n-Queens Puzzle :

Place a queen at the first empty row-try all possible places

n-Queens Puzzle

RECURSIVENQUEENS(Q[1..n],r):
ifr=n+1
print Q
else
forje—1ton
legal < TRUE
forie—1tor—1
if(Q[i]=j)or(Qli]=j+r—i)or (Qli]=j—r+i)
legal < FALSE
if legal
Qlr]«j
RECURSIVENQUEENS(Q[1..n],r +1)

n-Queens Puzzle

RN

W/

CS 374

Subset sum

Given a set X of positive integers and a target
positive integer t, is there a subset of elements in
X that add up to t?

Given X, find A subset of X, so that >A=t?

What is the first element to go into A?

Try them all!

If there is an element equal to t, done

If tis zero, we are done! (why?)

If t negative, no!

CS 374

Subset sum

* Given a set X of positive integers and a target
positive integer t, is there a subset of
elements in X that add up to t?

* Given X, find A subset of X, so that YA=t?

* Assume t is positive and no element bigger
than t.

P

CS 374

Subset sum

Given a set X of positive integers and a target
positive integer t, is there a subset of
elements in X that add up to t?

Given X, find A subset of X, so that YA=t?

Example: X={3,2,4,6,9},t =7

What element to try first?

Say x= 6. Then is there subset of {3,2,4,9} that
adds to 17 NO

P

CS 374

Subset sum @

Given a set X of positive integers and a target
positive integer t, is there a subset of elements
in X that add up to t?

Given X, find A subset of X, so that Y A=t?

Example: X={3,2,4,6,9},t =7

What element to try first?

Say x= 6. Then is there subset of {3,2,4,9} that
adds to 17 NO

Two cases: x in A or x not in A.

Subset sum :

e |f there is a subset A with A=t then either
* xin A, call SubsetSum(X-{x},t-x)

* or x not in A call SubsetSum(X-{x},t)

CS 374

CS 374

Subset sum

SuBseTSuM(X[1..n],T):
fT=0
return TRUE
elseif T<Qorn=0
return FALSE

else - .
return (SUBSETSUM(X[l .n—1],T) viSuBserSum(X[1..n—1], T —X[n]))

Call the algorithm with i=n
Canonical order to choose elements in the subset

Subset sum :

e Running time?

* T(n) < O(1)+2T(n-1)

Tower of Hanoi! exponential time 21

Brute force!

NP-Hard!

CS 374

NFA acceptance :

e GivenNFA: N=(Z,0,0,s,A) andw e >*

isO*(s,W)nA=+Q@

* |s there a walk in N from s to an accepting
state labeled w?

CS 374

NFA acceptance

* Input = 01001

5
%@)Q !

* L ={contains either 00 or 11}

CS 374

=

[s]

1001

[b]

[s]

[s]

[a]

001

01

[a]

[t

[tl

NFA

001

@ [b]
‘_) O 0.1

[s] [s]

8
= [a]

[b] [a]

[s]

[t [t

CS 374

One of the states are accepting. There needs to be AT LEAST
one accepting state

22

NFA acceptance

0,1
Input = 01001 O
How do | decide what to do once | read Q :
the first 07 l l
1

Q 0,1
Try both! maybe one of them will work. O @

Smaller subproblem, when we need to
figure out if the NFA accepts a smaller
input.

Need to specify what state the NFA is in
and what string is left to read.

Accept (g,w)

NFA acceptance

0,1
AccerTs?(g,w[1..n]): _\O °
ifn=0 Q (>

return A[q] ; l l 0

for all states r

if 5[q,w[1],r] and AccepTs?(r,w[2..n]) O_—>©Q 0,1

return TRUE
return FALSE

Ali]is 1iff i is an accepting state.
o[q,w[1],r] =1 iff red(q,w[1])
Every time the recursion branches, there are at most Q states

Q" upper bound on running time!!!

. Longest Increasing Subsequence @
(LIS)

31415926£38279461048

Subseqguence different than substring.

* Increasing = in an order.

Recursion?

CS 374

Longest Increasing Subsequence @
(LIS)

* 31415926838279461048

* Look at first element. Keep or ditch?

What went wrong?

» LIS(ALT..n) | didn't use
If n< 1010, brute force INCREASING

keepi 1+LIS(A[2...n])
LIS(A[2...n])

CS 374

ditch

. Longest Increasing Subsequence @
(LIS)

* 31415926838279461048

* LIS(A[1...n])
* What is the correct
If n< 1019, brute force subproblem?
* LIS where every number
keep: 1+ 7? is larger than the number p | keep
* Not the same problem anymore!

CS 374

ditch: LIS(A[2...n])

. Longest Increasing Subsequence @
(LIS)

* 31415926838279461048

* LIS(A[1...n], p)

If n< 1070, brute force ¢ What are the new cases?
* Either use A[1] or not.
keep: * Anything else?

CS 374

ditch:

. Longest Increasing Subsequence @
(LIS)

*+ 31415926£38279461048
e LIS(A[1...n],p)
If n< 1079, brute force
If A[1] < p,

RETURN LIS(A[2...n],p)

else
LIS(A[2...n]

.P)
RETURN MAX: {‘I+LIS(A[2...n],A[1])}

CS 374

. Longest Increasing Subsequence @
(LIS)

* 31415926838279461048

e LIS(A[1...n],p)

* Running time?

If A[1] < p, s 2n

RETURN LIS(A[2...n],p)

else
LIS(A[2...n]

.P)
RETURN MAX: {1+LIS(A[2...n],A[1])]

CS 374

Recursion

Reduction:
Reduce one problem to another

A special case of reduction

© reduce problem to a smaller instance of itself

@ self-reduction

@ Problem instance of size n is reduced to one or more instances
of size n — 1 or less.

@ For termination, problem instances of small size are solved by
some other method as base cases.

Chandra & Manoj (UIUC) CS374 2 Fall 2015 2 /35

Recursion in Algorithm Design

@ Tail Recursion: problem reduced to a single recursive call after
some work. Easy to convert algorithm into iterative or greedy
algorithms. Examples: Interval scheduling, MST algorithms, etc.

@ Divide and Conquer: Problem reduced to multiple
independent sub-problems that are solved separately. Conquer
step puts together solution for bigger problem.

Examples: Closest pair, deterministic median selection, quick
sort.

© Backtracking: Refinement of brute force search. Build solution
incrementally by invoking recursion to try all possibilities for the
decision in each step.

© Dynamic Programming: problem reduced to multiple
(typically) dependent or overlapping sub-problems. Use
memoization to avoid recomputation of common solutions

leading to iterative bottom-up algorithm.
Chandra & Manoj (UIUC) CS374 3 Fall 2015 3/35

Part |

Brute Force Search, Recursion and

Backtracking

Chandra & Manoj (UIUC) Fall 2015 4 /35

Maximum Independent Set in a Graph

Definition
Given undirected graph G = (V, E) a subset of nodes S C V is an

independent set (also called a stable set) if for there are no edges
between nodes in S. That is, if u,v € S then (u,v) ¢ E.

Some independent sets in graph above: {D}, {A,C}, {B,E, F}

Chandra & Manoj (UIUC) CS374 5 Fall 2015 5/35

Maximum Independent Set Problem

Input Graph G = (V, E)
Goal Find maximum sized independent set in G

Chandra & Manoj (UIUC) Fall 2015 6 /35

Maximum Weight Independent Set Problem

Input Graph G = (V, E), weights w(v) > 0 forv € V
Goal Find maximum weight independent set in G

Chandra & Manoj (UIUC) Fall 2015 7/ 35

Maximum Weight Independent Set Problem

© No one knows an efficient (polynomial time) algorithm for this
problem

@ Problem is NP-Complete and it is believed that there is no
polynomial time algorithm

Brute-force algorithm:
Try all subsets of vertices.

Chandra & Manoj (UIUC) Fall 2015 8 /35

Brute-force enumeration

Algorithm to find the size of the maximum weight independent set.

MaxIndSet (G = (V, E)) :
max = 0
for each subset SC V do
check if S is an independent set
if S is an independent set and w(S) > max then
max = w(S)

Output max

TV(a): WT () MIS (a) cV

x N

Chandra & Manoj (UIUC) Fall 2015 9 /35

Brute-force enumeration

Algorithm to find the size of the maximum weight independent set.

MaxIndSet (G = (V, E)) :
max = 0
for each subset SC V do
check if S is an independent set
if S is an independent set and w(S) > max then
max = w(S)

Output max

Running time: suppose G has n vertices and m edges
©Q 2" subsets of V
@ checking each subset S takes O(m) time
@ total time is O(m2")

Chandra & Manoj (UIUC) CS374 9 Fall 2015 9 /35

A Recursive Algorithm

Let V.= {vi,va,...,v,}.
For a vertex u let N(u) be its neighbors.

Chandra & Manoj (UIUC) CS374 10 Fall 2015 10/ 35

A Recursive Algorithm

Let V.= {vi,va,...,v,}.
For a vertex u let N(u) be its neighbors.

Observation

vi: vertex in the graph.
One of the following two cases is true

Case 1 vy is in some maximum independent set.

Case 2 vy is in no maximum independent set.

We can try both cases to “reduce” the size of the problem

Chandra & Manoj (UIUC) CS374 10 Fall 2015 10/ 35

A Recursive Algorithm

Let V.= {vi,va,...,v,}.
For a vertex u let N(u) be its neighbors.

Observation

vi: vertex in the graph.
One of the following two cases is true

Case 1 vy is in some maximum independent set.

Case 2 vy is in no maximum independent set.

We can try both cases to “reduce” the size of the problem

G; = G — v; obtained by removing vy and incident edges from G
G, = G — v; — N(v;) obtained by removing N(v1) U v; from G

MIS(G) = max{MIS(G;), MIS(G,) + w(v;)}

Chandra & Manoj (UIUC) CS374 10 Fall 2015 10/ 35

A Recursive Algorithm

RecursiveMIS (G) :
if G is empty then Output 0
a = RecursiveMIS (G — vy)
b = w(vi) + RecursiveMIS(G — vi — N(vy))
Output max(a, b)

T 2 Tla-0) + T(n1)
4 0w

Chandra & Manoj (UIUC) CS374 11 Fall 2015 11 /35

Fall 2015 12 /35

Recursive Algorithms

..for Maximum Independent Set

Running time:

Tn) =T(n—1) + T(n —1- deg(v1)> + O(1 + deg(v1))

where deg(vy) is the degree of v;. T(0) = T(1) = 1 is base case.

Worst case is when deg(v1) = 0 when the recurrence becomes
T(n) =2T(n —1) + O(1)

Solution to this is T(n) = O(2").

Chandra & Manoj (UIUC) CS374 13 Fall 2015 13 /35

Backtrack Search via Recursion

© Recursive algorithm generates a tree of computation where each
node is a smaller problem (subproblem)

@ Simple recursive algorithm computes/explores the whole tree
blindly in some order.

© Backtrack search is a way to explore the tree intelligently to
prune the search space

@ Some subproblems may be so simple that we can stop the
recursive algorithm and solve it directly by some other method

@ Memoization to avoid recomputing same problem

© Stop the recursion at a subproblem if it is clear that there is no
need to explore further.

O Leads to a number of heuristics that are widely used in practice
although the worst case running time may still be exponential.

Chandra & Manoj (UIUC) CS374 14 Fall 2015 14/ 35

Definition
Sequence: an ordered list a;,az,...,a,. Length of a sequence is
number of elements in the list.

a;,,...,a; is a subsequence of ay,...,a, if
1§i1<i2<...<ik§n.

Definition

A sequence is increasing if a; < ax < ... < a,. Itis
non-decreasing if a; < a; < ... < a,. Similarly decreasing and
non-increasing.

Chandra & Manoj (UIUC) CS374 15 Fall 2015 15 / 35

Sequences

Example...

© Sequence: 6,3,5,2,7,8,1,9

© Subsequence of above sequence: 5,2,1

© Increasing sequence: 3,5,9,17,54

@ Decreasing sequence: 34,21,7,5,1

© Increasing subsequence of the first sequence: 2,7, 9.

Chandra & Manoj (UIUC) CS374 16 Fall 2015 16 / 35

Longest Increasing Subsequence Problem

Input A sequence of numbers ay,az,...,a,

Goal Find an increasing subsequence a; , a;,, . . ., a; of
maximum length

Chandra & Manoj (UIUC) CS374 17 Fall 2015 17 /35

Longest Increasing Subsequence Problem

Input A sequence of numbers ay,az,...,a,

Goal Find an increasing subsequence a; , a;,, . . ., a; of
maximum length

@ Sequence: 6,3,5,2,7,8 1,7
@ Increasing subsequences: 6, 7, 8 and 3, 5, 7, 8 and 2, 7 etc

© Longest increasing subsequence: 3, 5, 7, 8

Chandra & Manoj (UIUC) CS374 17 Fall 2015 17 /35

Naive Enumeration

Assume a1, as, ..., a, is contained in an array A

algLISNaive(A[l..n]):
max = 0
for each subsequence B of A do
if B is increasing and |B| > max then
max = |B|

Output max

Chandra & Manoj (UIUC) CS374 18 Fall 2015 18 /35

Naive Enumeration

Assume a1, as, ..., a, is contained in an array A

algLISNaive(A[l..n]):
max = 0
for each subsequence B of A do
if B is increasing and |B| > max then
max = |B|

Output max

Running time:

Chandra & Manoj (UIUC) CS374 18 Fall 2015 18 /35

Naive Enumeration

Assume a1, as, ..., a, is contained in an array A

algLISNaive(A[l..n]):
max = 0
for each subsequence B of A do

if B is increasing and |B| > max then
max = |B|

Output max

Running time: O(n2").
2" subsequences of a sequence of length n and O(n) time to check if
a given sequence is increasing.

Chandra & Manoj (UIUC) CS374 18 Fall 2015 18 /35

Recursive Approach: Take 1

LIS: Longest increasing subsequence

Can we find a recursive algorithm for LIS?

LIS(A[L..n]):

Chandra & Manoj (UIUC) CS374 19 Fall 2015 19 /35

Recursive Approach: Take 1

LIS: Longest increasing subsequence
Can we find a recursive algorithm for LIS?
LIS(A[1..n]):
@ Case 1: Does not contain A[n] in which case
LIS(A[1..n]) = LIS(A[1..(n — 1)])
@ Case 2: contains A[n] in which case LIS(A[1..n]) is

Chandra & Manoj (UIUC) CS374 19 Fall 2015 19 /35

Recursive Approach: Take 1

LIS: Longest increasing subsequence

Can we find a recursive algorithm for LIS?

LIS(A[1..n]):
@ Case 1: Does not contain A[n] in which case
LIS(A[1..n]) = LIS(A[1..(n — 1)])
@ Case 2: contains A[n] in which case LIS(A[1..n]) is not so
clear.

Chandra & Manoj (UIUC) CS374 19 Fall 2015 19 /35

Recursive Approach: Take 1

LIS: Longest increasing subsequence

Can we find a recursive algorithm for LIS?

LIS(A[1..n]):
@ Case 1: Does not contain A[n] in which case
LIS(A[1..n]) = LIS(A[1..(n — 1)])
@ Case 2: contains A[n] in which case LIS(A[1..n]) is not so
clear.

For second case we want to find a subsequence in A[1..(n — 1)] that
is restricted to numbers less than A[n]. This suggests that a more
general problem is LIS _smaller(A[1..n], x) which gives the longest
increasing subsequence in A where each number in the sequence is
less than x.

v

Chandra & Manoj (UIUC) CS374 19 Fall 2015 19 /35

Recursive Approach

LIS _smaller(A[1..n], x) : length of longest increasing subsequence
in A[1..n] with all numbers in subsequence less than x

LIS_smaller (A[1..n], x) :
if (n=0) then return 0
m = LIS_smaller(A[1..(n — 1)],x)
if (A[n] <x) then

m = max(m, 1 + LIS_smaller(A[1..(n — 1)], A[n]))
Output m

LISCA[1..n]):
return LIS _smaller (A[1..n], co)

Chandra & Manoj (UIUC)

Fall 2015 20 / 35

Sequence: A[1..7] =6,3,5,2,7,8,1

Chandra & Manoj (UIUC) Fall 2015 21 /35

Part Il

Recursion and Memoization

Chandra & Manoj (UIUC) 22 Fall 2015 22 /35

Fibonacci Numbers

Fibonacci numbers defined by recurrence:

F(n) = F(n — 1) + F(n — 2) and F(0) = 0, F(1) = 1.

These numbers have many interesting and amazing properties.
A journal The Fibonacci Quarterly!

@ F(n) = (¢" — (1 — ¢)")/+/5 where ¢ is the golden ratio
(1 +/5)/2 ~ 1.618.
Q limyooF(n+1)/F(n) = ¢

Chandra & Manoj (UIUC) Fall 2015 23 /35

Consider the nth Fibonacci number F(n). Writing the number F(n)
in base 2 requires

(A) ©(n?) bits.

(B) O(n) bits.

(C) ©(logn) bits.
(D) ©(loglog n) bits.

Chandra & Manoj (UIUC) Fall 2015 24 /35

Recursive Algorithm for Fibonacci Numbers

Question: Given n, compute F(n).

Fib(n) :
if (n=0)
return 0
else if (n=1)
return 1
else
return Fib(n — 1) + Fib(n — 2)

T(V\): T(M—l) vla-) + o)
£ T (x1) ATl1) 4 o(i)
< ’LT[V\-I)_\ 0[4)

Chandra & Manoj (UIUC) 2 Fall 2015 25 /35

Recursive Algorithm for Fibonacci Numbers

Question: Given n, compute F(n).

Fib(n) :
if (n=0)
return 0
else if (n=1)
return 1
else
return Fib(n — 1) + Fib(n — 2)

Running time? Let T(n) be the number of additions in Fib(n).

CL/

Chandra & Manoj (UIUC) Fall 2015 25 /35

Recursive Algorithm for Fibonacci Numbers

Question: Given n, compute F(n).

Fib(n) :
if (n=0)
return 0
else if (n=1)
return 1
else
return Fib(n — 1) + Fib(n — 2)

Running time? Let T(n) be the number of additions in Fib(n).

T()=T(n—1)+T(h—2)+1and T(0) = T(1) =0

Chandra & Manoj (UIUC) Fall 2015 25 /35

Recursive Algorithm for Fibonacci Numbers

Question: Given n, compute F(n).

Fib(n):
if (n=0)
return 0
else if (n=1)
return 1
else
return Fib(n — 1) + Fib(n — 2)

Running time? Let T(n) be the number of additions in Fib(n).
Tn)=T(n—1)+T(n—2)+1and T(0) =T(1) =0

Roughly same as F(n)
T(n) = 6(¢")

The number of additions is exponential in n. Can we do better?

Chandra & Manoj (UIUC) Fall 2015 25 /35

An iterative algorithm for Fibonacci numbers

Fiblter(n):
if (n=0) then
return 0
if (n=1) then
return 1
F[o]=0
F[1]=1
for i = 2 to n do
F[i] = F[i — 1] + F[i — 2]
return F[n]

Chandra & Manoj (UIUC) Fall 2015 26 / 35

An iterative algorithm for Fibonacci numbers

Fiblter(n):
if (n=0) then
return 0
if (n=1) then
return 1
F[o]=0
F[1]=1
for i = 2 to n do
F[i] = F[i — 1] + F[i — 2]
return F[n]

What is the running time of the algorithm?

Chandra & Manoj (UIUC) Fall 2015 26 / 35

An iterative algorithm for Fibonacci numbers

Fiblter(n):
if (n=0) then
return 0
if (n=1) then
return 1
F[o]=0
F[1]=1
for i = 2 to n do
F[i] = F[i — 1] + F[i — 2]
return F[n]

What is the running time of the algorithm? O(n) additions.

Chandra & Manoj (UIUC) Fall 2015 26 / 35

What is the difference?

© Recursive algorithm is computing the same numbers again and
again.

@ lterative algorithm is storing computed values and building
bottom up the final value.

Chandra & Manoj (UIUC) Fall 2015 27 / 35

What is the difference?

© Recursive algorithm is computing the same numbers again and
again.

@ lterative algorithm is storing computed values and building
bottom up the final value. Memoization.

Chandra & Manoj (UIUC) Fall 2015 27 / 35

What is the difference?

© Recursive algorithm is computing the same numbers again and
again.

@ lterative algorithm is storing computed values and building
bottom up the final value. Memoization.

Dynamic Programming;:
Fnding a recursion that can be effectively/efficiently memoized.

Leads to polynomial time algorithm if number of sub-problems is
polynomial in input size.

Chandra & Manoj (UIUC) Fall 2015 27 / 35

Automatic Memoization

Can we convert recursive algorithm into an efficient algorithm
without explicitly doing an iterative algorithm?

Chandra & Manoj (UIUC) Fall 2015 28 / 35

Automatic Memoization

Can we convert recursive algorithm into an efficient algorithm
without explicitly doing an iterative algorithm?

Fib(n):
if (n=0)
return 0
if (n=1)
return 1
if (Fib(n) was previously computed)
return stored value of Fib(n)
else
return Fib(n — 1) + Fib(n — 2)

Chandra & Manoj (UIUC) Fall 2015 28 / 35

Automatic Memoization

Can we convert recursive algorithm into an efficient algorithm
without explicitly doing an iterative algorithm?

Fib(n):
if (n=0)
return 0
if (n=1)
return 1
if (Fib(n) was previously computed)
return stored value of Fib(n)
else
return Fib(n — 1) + Fib(n — 2)

How do we keep track of previously computed values?

Chandra & Manoj (UIUC) Fall 2015 28 / 35

Automatic Memoization

Can we convert recursive algorithm into an efficient algorithm
without explicitly doing an iterative algorithm?

Fib(n):
if (n=0)
return 0
if (n=1)
return 1
if (Fib(n) was previously computed)
return stored value of Fib(n)
else
return Fib(n — 1) + Fib(n — 2)

How do we keep track of previously computed values?
Two methods: explicitly and implicitly (via data structure)

Chandra & Manoj (UIUC) CS374 28 Fall 2015 28 / 35

Automatic explicit memoization

Initialize table/array M of size n such that M[i] = —1 for
i=0,...,n

Chandra & Manoj (UIUC) Fall 2015 29 / 35

Automatic explicit memoization

Initialize table/array M of size n such that M[i] = —1 for
i=0,...,n

Fib(n):

if (n=0)
return 0

if (n=1)
return 1

if (M[n] # —1) (* M[n] has stored value of Fib(n) *)
return M[n]

M[n] <= Fib(n — 1) + Fib(n — 2)

return M[n]

To allocate memory need to know upfront the number of
subproblems for a given input size n

Chandra & Manoj (UIUC) Fall 2015 29 / 35

Automatic implicit memoization

Initialize a (dynamic) dictionary data structure D to empty

Fib(n):
if (n=0)
return 0
if (n=1)
return 1
if (n is already in D)
return value stored with n in D
val <= Fib(n — 1) + Fib(n — 2)
Store (n,val) in D
return val

Chandra & Manoj (UIUC) CS374 30 Fall 2015 30 /35

Explicit vs Implicit Memoization

@ Explicit memoization or iterative algorithm preferred if one can
analyze problem ahead of time. Allows for efficient memory
allocation and access.

@ Implicit and automatic memoization used when problem
structure or algorithm is either not well understood or in fact
unknown to the underlying system.

@ Need to pay overhead of data-structure.
@ Functional languages such as LISP automatically do
memoization, usually via hashing based dictionaries.

Chandra & Manoj (UIUC) CS374 31 Fall 2015 31/35

How many distinct calls?

binom(t, b) // computes (;)
if t =0 then return 0
if b=t or b=0 then return 1
return binom(t — 1,b — 1) 4 binom(t — 1, b).

How many distinct calls does binom(n, [n/2]) makes during its
recursive execution?

(A) ©Q1).

(B) ©(n). (&))
(C) ©(nlogn).

(D) ©(n?). W @ &2 &)
(8) ©((72)))-

That is, if the algorithm calls recursively binom(17,5) about 5000

times during the computation, we count this is a single distinct call.
Chandra & Manoj (UIUC)

Fall 2015 32 /35

Running time of memoized binom?

D: 1Initially an empty dictionary.
binomM(t, b) // computes (;)
if b =t then return 1
if b =0 then return 0
if D[t,b] is defined then return DI[t, b]
D[t, b] <= binomM(t — 1,b — 1) 4+ binomM(t — 1, b).
return DJ[t, b]

Assuming that every arithmetic operation takes O(1) time, What is
the running time of binomM(n, [n/2])?

(A) ©(1).

(B) ©(n).

(C) ©(n?).

(D) ©(n?).

(B) ©((12)).

Chandra & Manoj (UIUC) CS374 33 Fall 2015 33 /35

Back to Fibonacci Numbers

Is the iterative algorithm a polynomial time algorithm? Does it take
O(n) time?

Chandra & Manoj (UIUC) CS374 34 Fall 2015 34 /35

Back to Fibonacci Numbers

Is the iterative algorithm a polynomial time algorithm? Does it take
O(n) time?

@ input is n and hence input size is ©(log n)

@ output is F(n) and output size is ©@(n). Why?

© Hence output size is exponential in input size so no polynomial
time algorithm possible!

© Running time of iterative algorithm: @(n) additions but number

sizes are O(n) bits long! Hence total time is O(n?), in fact
©(n?). Why?

Chandra & Manoj (UIUC) CS374 34 Fall 2015 34 /35

Back to Fibonacci Numbers

Saving space. Do we need an array of n numbers? Not really.

Fiblter(n) :

if (n=0) then
return 0

if (n=1) then
return 1

prev2 =0

prevl =1

for i = 2 to n do

temp = prevl + prev2
prev2 = prevl
prevl = temp

return prevl

Fall 2015 35 /35

Chandra & Manoj (UIUC)

