
BBM402-Lecture 3: Backtracking: independent set,

longest increasing subsequence

Lecturer: Lale Özkahya

Resources for the presentation:
https://courses.engr.illinois.edu/cs374/fa2016/lectures.html
https://courses.engr.illinois.edu/cs374/fa2015/lectures.html
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• We have seen divide and conquer:  

    — split into subproblems of size n/c (some c).  

    — Analyze running time with recursion trees. 

• Different style of recursion: Backtracking 

    — reduce to subproblems of smaller size n-c (some 
c).  

    — Usually exponential time 

    — Way of developing correct recursive algorithms, 
won’t deal with running time often.

Recursion
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8-Queens Puzzle

How  long does it take to solve it from scratch? 
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n-Queens Puzzle

Represent by array Q[1…n]. 
Q[i] = which square in row i has a queen
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n-Queens Puzzle

Place a queen at the first empty row-try all possible places
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• Given a set X of positive integers and a target 
positive integer t, is there a subset of elements in 
X that add up to t? 

• Given X, find A subset of X, so that ∑A=t? 

• What is the first element to go into A? 

• Try them all! 

• If there is an element equal to t, done 

• If t is zero, we are done! (why?) 

• If t negative, no!

Subset sum
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• Given a set X of positive integers and a target 
positive integer t, is there a subset of 
elements in X that add up to t? 

• Given X, find A subset of X, so that ∑A=t? 

• Assume t is positive and no element bigger 
than t.

Subset sum
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• Given a set X of positive integers and a target 
positive integer t, is there a subset of 
elements in X that add up to t? 

• Given X, find A subset of X, so that ∑A=t? 

• Example: X={3,2,4,6,9}, t = 7 

• What element to try first? 

• Say x= 6. Then is there subset of {3,2,4,9} that 
adds to 1? NO

Subset sum
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• Given a set X of positive integers and a target 
positive integer t, is there a subset of elements 
in X that add up to t? 

• Given X, find A subset of X, so that ∑A=t? 

• Example: X={3,2,4,6,9}, t = 7 

• What element to try first? 

• Say x= 6. Then is there subset of {3,2,4,9} that 
adds to 1? NO 

• Two cases: x in A or x not in A.

Subset sum
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• If there is a subset A with ∑A=t then either 

• x in A, call SubsetSum(X-{x},t-x) 

• or x not in A call SubsetSum(X-{x},t)

Subset sum
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Subset sum

Call the algorithm with i=n 
Canonical order to choose elements in the subset
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• Running time?  

• T(n) ≤ O(1)+2T(n-1) 

• Tower of Hanoi! exponential time 2n 

• Brute force! 

• NP-Hard!

Subset sum
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• Given NFA : N= (Σ, Q, δ, s, A)  and w ∈ ∑* 

        is δ*(s, w) ∩ A ≠ ø   

• Is there a walk in N from s to an accepting 
state labeled w?

NFA acceptance



• Input = 01001

1

0

1

0

0,1

0,1

• L ={contains either 00 or 11}

NFA acceptance
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NFA

21
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NFA

22
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One of the states are accepting. There needs to be AT LEAST 
one accepting state



• Input = 01001 

• How do I decide what to do once I read 
the first 0? 

• Try both! maybe one of them will work. 

• Smaller subproblem, when we need to 
figure out if the NFA accepts a smaller 
input. 

• Need to specify what state the NFA is in 
and what string is left to read. 

• Accept (q,w)

1

0

1

0

0,1

0,1

NFA acceptance



1

0

1

0

0,1

0,1

NFA acceptance

• A[i] is 1 iff i is an accepting state. 

• δ[q,w[1],r] =1 iff r∈δ(q,w[1]) 

• Every time the recursion branches, there are at most Q states  

• Qn upper bound on running time!!!
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• 3 1 4 1 5 9 2 6 5 3 8 2 7 9 4 6 1 0 4 8  

• Subsequence different than substring. 

• Increasing = in an order. 

• Recursion?

Longest Increasing Subsequence 
(LIS)



C
S 

37
4

• 3 1 4 1 5 9 2 6 5 3 8 2 7 9 4 6 1 0 4 8  

• Look at first element. Keep or ditch?

Longest Increasing Subsequence 
(LIS)

• LIS(A[1…n]) 

If n< 1010, brute force 

keep: 1+LIS(A[2…n]) 

ditch: LIS(A[2…n])

What went wrong? 
I didn’t use 

INCREASING 
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• 3 1 4 1 5 9 2 6 5 3 8 2 7 9 4 6 1 0 4 8 

Longest Increasing Subsequence 
(LIS)

• LIS(A[1…n]) 

If n< 1010, brute force 

keep: 1+    ? 

ditch: LIS(A[2…n])

• What is the correct 
 subproblem? 
• LIS where every number  
is larger than the number p I keep 
• Not the same problem anymore!
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• 3 1 4 1 5 9 2 6 5 3 8 2 7 9 4 6 1 0 4 8

Longest Increasing Subsequence 
(LIS)

• LIS(A[1…n], p) 

If n< 1010, brute force 

keep: 

ditch:

• What are the new cases?  
• Either use A[1] or not. 
• Anything else?
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• 3 1 4 1 5 9 2 6 5 3 8 2 7 9 4 6 1 0 4 8 

Longest Increasing Subsequence 
(LIS)

• LIS(A[1…n],p) 

If n< 1010, brute force 

If A[1] ≤ p, 

RETURN LIS(A[2…n],p) 

else 

RETURN MAX:
LIS(A[2…n],p) 

1+LIS(A[2…n],A[1])
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• 3 1 4 1 5 9 2 6 5 3 8 2 7 9 4 6 1 0 4 8 

Longest Increasing Subsequence 
(LIS)

• LIS(A[1…n],p) 

If n< 1010, brute force 

If A[1] ≤ p, 

RETURN LIS(A[2…n],p) 

else 

RETURN MAX:
LIS(A[2…n],p) 

1+LIS(A[2…n],A[1])

• LIS(A[1…n],−∞) to find LIS 
• Running time?  
• 2n 



Recursion

Reduction:
Reduce one problem to another

Recursion
A special case of reduction

1 reduce problem to a smaller instance of itself

2 self-reduction

1 Problem instance of size n is reduced to one or more instances
of size n− 1 or less.

2 For termination, problem instances of small size are solved by
some other method as base cases.

Chandra & Manoj (UIUC) CS374 2 Fall 2015 2 / 35



Recursion in Algorithm Design

1 Tail Recursion: problem reduced to a single recursive call after
some work. Easy to convert algorithm into iterative or greedy
algorithms. Examples: Interval scheduling, MST algorithms, etc.

2 Divide and Conquer: Problem reduced to multiple
independent sub-problems that are solved separately. Conquer
step puts together solution for bigger problem.

Examples: Closest pair, deterministic median selection, quick
sort.

3 Backtracking: Refinement of brute force search. Build solution
incrementally by invoking recursion to try all possibilities for the
decision in each step.

4 Dynamic Programming: problem reduced to multiple
(typically) dependent or overlapping sub-problems. Use
memoization to avoid recomputation of common solutions
leading to iterative bottom-up algorithm.

Chandra & Manoj (UIUC) CS374 3 Fall 2015 3 / 35



Part I

Brute Force Search, Recursion and
Backtracking

Chandra & Manoj (UIUC) CS374 4 Fall 2015 4 / 35



Maximum Independent Set in a Graph

Definition
Given undirected graph G = (V,E) a subset of nodes S ⊆ V is an
independent set (also called a stable set) if for there are no edges
between nodes in S. That is, if u, v ∈ S then (u, v) 6∈ E.

A

B

C

DE

F

Some independent sets in graph above: {D}, {A,C}, {B,E, F}
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Maximum Independent Set Problem

Input Graph G = (V,E)

Goal Find maximum sized independent set in G

A

B

C

DE

F
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Maximum Weight Independent Set Problem

Input Graph G = (V,E), weights w(v) ≥ 0 for v ∈ V

Goal Find maximum weight independent set in G

A

B

C

DE

F
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Maximum Weight Independent Set Problem

1 No one knows an efficient (polynomial time) algorithm for this
problem

2 Problem is NP-Complete and it is believed that there is no
polynomial time algorithm

Brute-force algorithm:
Try all subsets of vertices.
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Brute-force enumeration

Algorithm to find the size of the maximum weight independent set.

MaxIndSet(G = (V,E)):
max = 0
for each subset S ⊆ V do

check if S is an independent set

if S is an independent set and w(S) > max then
max = w(S)

Output max

Running time: suppose G has n vertices and m edges

1 2n subsets of V

2 checking each subset S takes O(m) time

3 total time is O(m2n)

Chandra & Manoj (UIUC) CS374 9 Fall 2015 9 / 35
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A Recursive Algorithm

Let V = {v1, v2, . . . , vn}.
For a vertex u let N(u) be its neighbors.

Observation
v1: vertex in the graph.
One of the following two cases is true

Case 1 v1 is in some maximum independent set.

Case 2 v1 is in no maximum independent set.

We can try both cases to “reduce” the size of the problem

G1 = G− v1 obtained by removing v1 and incident edges from G
G2 = G− v1 − N(v1) obtained by removing N(v1) ∪ v1 from G

MIS(G) = max{MIS(G1),MIS(G2) + w(v1)}

Chandra & Manoj (UIUC) CS374 10 Fall 2015 10 / 35
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A Recursive Algorithm

RecursiveMIS(G):

if G is empty then Output 0
a = RecursiveMIS(G− v1)

b = w(v1) + RecursiveMIS(G− v1 − N(vn))
Output max(a, b)

Chandra & Manoj (UIUC) CS374 11 Fall 2015 11 / 35



Example
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Recursive Algorithms
..for Maximum Independent Set

Running time:

T(n) = T(n− 1) + T
(

n− 1− deg(v1)
)

+ O(1 + deg(v1))

where deg(v1) is the degree of v1. T(0) = T(1) = 1 is base case.

Worst case is when deg(v1) = 0 when the recurrence becomes

T(n) = 2T(n− 1) + O(1)

Solution to this is T(n) = O(2n).
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Backtrack Search via Recursion

1 Recursive algorithm generates a tree of computation where each
node is a smaller problem (subproblem)

2 Simple recursive algorithm computes/explores the whole tree
blindly in some order.

3 Backtrack search is a way to explore the tree intelligently to
prune the search space

1 Some subproblems may be so simple that we can stop the
recursive algorithm and solve it directly by some other method

2 Memoization to avoid recomputing same problem
3 Stop the recursion at a subproblem if it is clear that there is no

need to explore further.
4 Leads to a number of heuristics that are widely used in practice

although the worst case running time may still be exponential.
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Sequences

Definition
Sequence: an ordered list a1, a2, . . . , an. Length of a sequence is
number of elements in the list.

Definition
ai1, . . . , aik is a subsequence of a1, . . . , an if
1 ≤ i1 < i2 < . . . < ik ≤ n.

Definition
A sequence is increasing if a1 < a2 < . . . < an. It is
non-decreasing if a1 ≤ a2 ≤ . . . ≤ an. Similarly decreasing and
non-increasing.
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Sequences
Example...

Example
1 Sequence: 6, 3, 5, 2, 7, 8, 1, 9

2 Subsequence of above sequence: 5, 2, 1

3 Increasing sequence: 3, 5, 9, 17, 54

4 Decreasing sequence: 34, 21, 7, 5, 1

5 Increasing subsequence of the first sequence: 2, 7, 9.
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Longest Increasing Subsequence Problem

Input A sequence of numbers a1, a2, . . . , an

Goal Find an increasing subsequence ai1, ai2, . . . , aik of
maximum length

Example
1 Sequence: 6, 3, 5, 2, 7, 8, 1

2 Increasing subsequences: 6, 7, 8 and 3, 5, 7, 8 and 2, 7 etc

3 Longest increasing subsequence: 3, 5, 7, 8

Chandra & Manoj (UIUC) CS374 17 Fall 2015 17 / 35
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Näıve Enumeration

Assume a1, a2, . . . , an is contained in an array A

algLISNaive(A[1..n]):
max = 0
for each subsequence B of A do

if B is increasing and |B| > max then
max = |B|

Output max

Running time: O(n2n).
2n subsequences of a sequence of length n and O(n) time to check if
a given sequence is increasing.
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Recursive Approach: Take 1
LIS: Longest increasing subsequence

Can we find a recursive algorithm for LIS?

LIS(A[1..n]):

1 Case 1: Does not contain A[n] in which case
LIS(A[1..n]) = LIS(A[1..(n− 1)])

2 Case 2: contains A[n] in which case LIS(A[1..n]) is not so
clear.

Observation
For second case we want to find a subsequence in A[1..(n− 1)] that
is restricted to numbers less than A[n]. This suggests that a more
general problem is LIS smaller(A[1..n], x) which gives the longest
increasing subsequence in A where each number in the sequence is
less than x.

Chandra & Manoj (UIUC) CS374 19 Fall 2015 19 / 35
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Recursive Approach

LIS smaller(A[1..n], x) : length of longest increasing subsequence
in A[1..n] with all numbers in subsequence less than x

LIS smaller(A[1..n], x):
if (n = 0) then return 0
m = LIS smaller(A[1..(n− 1)], x)
if (A[n] < x) then

m = max(m, 1 + LIS smaller(A[1..(n− 1)],A[n]))
Output m

LIS(A[1..n]):
return LIS smaller(A[1..n],∞)
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Example

Sequence: A[1..7] = 6, 3, 5, 2, 7, 8, 1
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Part II

Recursion and Memoization
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Fibonacci Numbers

Fibonacci numbers defined by recurrence:

F(n) = F(n− 1) + F(n− 2) and F(0) = 0, F(1) = 1.

These numbers have many interesting and amazing properties.
A journal The Fibonacci Quarterly!

1 F(n) = (φn − (1− φ)n)/
√

5 where φ is the golden ratio

(1 +
√

5)/2 ' 1.618.

2 limn→∞F(n + 1)/F(n) = φ
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How many bits?

Consider the nth Fibonacci number F(n). Writing the number F(n)
in base 2 requires

(A) Θ(n2) bits.

(B) Θ(n) bits.

(C) Θ(log n) bits.

(D) Θ(log log n) bits.
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Recursive Algorithm for Fibonacci Numbers

Question: Given n, compute F(n).

Fib(n):
if (n = 0)

return 0

else if (n = 1)
return 1

else
return Fib(n− 1) + Fib(n− 2)

Running time? Let T(n) be the number of additions in Fib(n).

T(n) = T(n− 1) + T(n− 2) + 1 and T(0) = T(1) = 0

Chandra & Manoj (UIUC) CS374 25 Fall 2015 25 / 35
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Recursive Algorithm for Fibonacci Numbers

Question: Given n, compute F(n).

Fib(n):
if (n = 0)

return 0

else if (n = 1)
return 1

else
return Fib(n− 1) + Fib(n− 2)

Running time? Let T(n) be the number of additions in Fib(n).

T(n) = T(n− 1) + T(n− 2) + 1 and T(0) = T(1) = 0

Roughly same as F(n)

T(n) = Θ(φn)

The number of additions is exponential in n. Can we do better?
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An iterative algorithm for Fibonacci numbers

FibIter(n):
if (n = 0) then

return 0

if (n = 1) then
return 1

F[0] = 0
F[1] = 1
for i = 2 to n do

F[i] = F[i− 1] + F[i− 2]
return F[n]

What is the running time of the algorithm? O(n) additions.
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What is the difference?

1 Recursive algorithm is computing the same numbers again and
again.

2 Iterative algorithm is storing computed values and building
bottom up the final value.

Memoization.

Dynamic Programming:

Fnding a recursion that can be effectively/efficiently memoized.

Leads to polynomial time algorithm if number of sub-problems is
polynomial in input size.
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Automatic Memoization

Can we convert recursive algorithm into an efficient algorithm
without explicitly doing an iterative algorithm?

Fib(n):
if (n = 0)

return 0
if (n = 1)

return 1
if (Fib(n) was previously computed)

return stored value of Fib(n)

else
return Fib(n− 1) + Fib(n− 2)

How do we keep track of previously computed values?
Two methods: explicitly and implicitly (via data structure)
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Automatic explicit memoization

Initialize table/array M of size n such that M[i] = −1 for
i = 0, . . . , n.

Fib(n):
if (n = 0)

return 0

if (n = 1)
return 1

if (M[n] 6= −1) (* M[n] has stored value of Fib(n) *)

return M[n]
M[n]⇐ Fib(n− 1) + Fib(n− 2)
return M[n]

To allocate memory need to know upfront the number of
subproblems for a given input size n

Chandra & Manoj (UIUC) CS374 29 Fall 2015 29 / 35



Automatic explicit memoization

Initialize table/array M of size n such that M[i] = −1 for
i = 0, . . . , n.

Fib(n):
if (n = 0)

return 0

if (n = 1)
return 1

if (M[n] 6= −1) (* M[n] has stored value of Fib(n) *)

return M[n]
M[n]⇐ Fib(n− 1) + Fib(n− 2)
return M[n]

To allocate memory need to know upfront the number of
subproblems for a given input size n

Chandra & Manoj (UIUC) CS374 29 Fall 2015 29 / 35



Automatic implicit memoization

Initialize a (dynamic) dictionary data structure D to empty

Fib(n):
if (n = 0)

return 0

if (n = 1)
return 1

if (n is already in D)

return value stored with n in D
val⇐ Fib(n− 1) + Fib(n− 2)

Store (n, val) in D
return val
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Explicit vs Implicit Memoization

1 Explicit memoization or iterative algorithm preferred if one can
analyze problem ahead of time. Allows for efficient memory
allocation and access.

2 Implicit and automatic memoization used when problem
structure or algorithm is either not well understood or in fact
unknown to the underlying system.

1 Need to pay overhead of data-structure.
2 Functional languages such as LISP automatically do

memoization, usually via hashing based dictionaries.
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How many distinct calls?

binom(t, b) // computes
(t

b

)

if t = 0 then return 0

if b = t or b = 0 then return 1

return binom(t− 1, b− 1) + binom(t− 1, b).

How many distinct calls does binom(n, bn/2c) makes during its
recursive execution?

(A) Θ(1).

(B) Θ(n).

(C) Θ(n log n).

(D) Θ(n2).

(E) Θ
(( n

bn/2c
))

.

That is, if the algorithm calls recursively binom(17, 5) about 5000
times during the computation, we count this is a single distinct call.

Chandra & Manoj (UIUC) CS374 32 Fall 2015 32 / 35



Running time of memoized binom?

D: Initially an empty dictionary.

binomM(t, b) // computes
(t

b

)

if b = t then return 1

if b = 0 then return 0

if D[t, b] is defined then return D[t, b]
D[t, b]⇐ binomM(t− 1, b− 1) + binomM(t− 1, b).
return D[t, b]

Assuming that every arithmetic operation takes O(1) time, What is
the running time of binomM(n, bn/2c)?

(A) Θ(1).

(B) Θ(n).

(C) Θ(n2).

(D) Θ
(
n3
)
.

(E) Θ
(( n

bn/2c
))

.
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Back to Fibonacci Numbers

Is the iterative algorithm a polynomial time algorithm? Does it take
O(n) time?

1 input is n and hence input size is Θ(log n)

2 output is F(n) and output size is Θ(n). Why?

3 Hence output size is exponential in input size so no polynomial
time algorithm possible!

4 Running time of iterative algorithm: Θ(n) additions but number
sizes are O(n) bits long! Hence total time is O(n2), in fact
Θ(n2). Why?
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Back to Fibonacci Numbers

Saving space. Do we need an array of n numbers? Not really.

FibIter(n):
if (n = 0) then

return 0

if (n = 1) then
return 1

prev2 = 0
prev1 = 1
for i = 2 to n do

temp = prev1 + prev2
prev2 = prev1
prev1 = temp

return prev1
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