
BBM402-Lecture 4: Dynamic Programming:

Longest Increasing Subsequence, String splitting

Lecturer: Lale Özkahya

Resources for the presentation:
https://courses.engr.illinois.edu/cs374/fa2016/lectures.html
https://courses.engr.illinois.edu/cs473/fa2016/lectures.html
https://courses.engr.illinois.edu/cs374/fa2015/lectures.html
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• Fibonacci Numbers (circa 13 th century)

0 if n=0
1 if n=1

Fn-1+Fn-2 o/w
• Fn=

Given n, how long does it take to compute Fn?

Fibonacci
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• Translates line by line to code:
Fibonacci

We will move from mathematical function format to 
recursive program a lot!
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• Translates line by line to code:
Fibonacci

Running time? (backtracking recurrence) 
T(n)=T(n-1)+T(n-2)+O(1) 

=𝚯(Fn) = 𝚯(1.618n) = 𝚯(((√5+1)/2)n)
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Running time via Rec Tree

.

.

.

.

.

.

.

.

.

.

.

.

0 1 0 1 0 1
Leaves are always 0 or 1. 

How many 1’s? How many 0s?
There are Fn 1s and Fn-1 0s 

Fn+1 leaves total! 
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Running time via Rec Tree

How many intermediate nodes does a 
full binary  tree with m leaves have?
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Running time via Rec Tree

2Fn+1 -1  nodes (additions)
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Running time via Rec Tree
F5

F4 F3

F3 F2 F2 F1

F2 F1 F1 F0 F1 F0

F1 F0
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Running time via Rec Tree
F5

F4 F3

F3 F2 F2 F1

F2 F1 F1 F0 F1 F0

F1 F0

Keep an array to remember the previous values!

1 0

1
1

1 0

12
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Running time via Rec Tree
F5

F4 F3

F3 F2 F2 F1

F2 F1 F1 F0 F1 F0

F1 F0

F
0 1 2 3 4 5 …
0 1 1 2

1 0

1
1

1 0

12
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Running time via Rec Tree
F5

F4 F3

F3 F2 F2 F1

F2 F1 F1 F0 F1 F0

F1 F0

F
0 1 2 3 4 5 …
0 1 1 2 3

1 0

1
1

1 0

12

look up array for F2

3
2
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Running time via Rec Tree
F5

F4 F3

F3 F2 F2 F1

F2 F1 F1 F0 F1 F0

F1 F0

F
0 1 2 3 4 5 …
0 1 1 2 3 5

1 0

1
1

1 0

12

look up array for F3

3
2



C
S 

37
4

Running time via Rec Tree
F5

F4 F3

F3 F2 F2 F1

F2 F1 F1 F0 F1 F0

F1 F01 0

1
1

1 0

12

look up array for F3

3
2

Memoization= when I look at the table to see the values I 
computed before



Given any recursive backtracking algorithm, 
you can add memoization and will save time, provided the 

subproblems repeat



How many times did I have to call the recursive function?  
exponential!

How many different values did I have to compute? 
O(n)!

Memoization decreases running time : performs only O(n) 
additions, exponential improvement



Memoized algorithm fills in the table from left to right. 
Why not just do that?



Memoized algorithm fills in the table from left to right. 
Why not just do that? 

We get an iterative algorithm



• Clear that the number of additions it does it O(n). 
• In practice this is faster than memoized algo, cause we don’t 

use stack/ look up the table etc.



• Structure mirrors the recurrence 
• Only subtle thing is that we want to fill in the array in  

increasing order.

order



• This is Dynamic Programing Algorithm! 
• Dynamic Programming= pretend to do Memoization but do it 

on purpose 

• Memoization: accidentally use something efficient 
• Backwards induction =Dynamic Programming

order



• Dynamic programming is about smart recursion. 
• Not about filling out tables! 
• How do I solve the problem, how do I not repeat work, then 

how to fill up my data structure. 

Dynamic Programming



Dynamic Programming

• I only need to keep my last two elements of the array. 
• Even more efficient algorithm

• How can I speed up my algorithm?



• How can I speed up my algorithm?

Dynamic Programming

• I only need to keep my last two elements of the array. 
• Even more efficient algorithm 
• Where is the recursion?



Dynamic Programming

• I only need to keep my last two elements of the array. 
• Even more efficient algorithm 
• Where is the recursion? 
• Saves space, sometimes important

• How can I speed up my algorithm?



Dynamic Programming

• Is this the fastest Algorithm for Fibonacci?

• How can I speed up my algorithm?



Dynamic Programming

• How can I speed up my algorithm?

This matrix vector multiplication does  
exactly the same thing as one iteration of the loop!

What to do to compute the nth Fibonacci number?



Dynamic Programming

• How can I speed up my algorithm?

Compute the nth power of the matrix. 

• With repeated squaring, O(logn) multiplications 
• Compute Fn in O(logn) arithmetic operations 
• Double exponential speedup!



Dynamic Programming

• How can I speed up my algorithm?

Compute the nth power of the matrix. 

• But how many bits is the nth Fibonacci number?  
• O(n)! 
• Can’t perform arbitrary precision arithmetic in constant time 
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• 3 1 4 1 5 9 2 6 5 3 8 2 7 9 4 6 1 0 4 8 

Longest Increasing Subsequence 
(LIS)
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• 3 1 4 1 5 9 2 6 5 3 8 2 7 9 4 6 1 0 4 8 

Longest Increasing Subsequence 
(LIS)

• LIS(A[1…n],p) = length of LIS of A[1…n] where             
everything is bigger than p
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• 3 1 4 1 5 9 2 6 5 3 8 2 7 9 4 6 1 0 4 8 

Longest Increasing Subsequence 
(LIS)

• LIS(A[1…n],p)=

0 if n=0 

LIS(A[2…n],p) if A[1]≤p 

MAX { LIS(A[2…n],p) 
            1+LIS(A[2…n],A[1])} 



C
S 

37
4

Longest Increasing Subsequence 
(LIS)

• LIS(A[1…n],p)=

0 if n=0 

LIS(A[2…n],p) if A[1]≤p 

MAX { LIS(A[2…n],p) 
            1+LIS(A[2…n],A[1])} 

• The argument  p is always either −∞ or and element of the 
array A  

• Add A[0]=−∞ 
• We can identify any recursive subproblem with two array 

indices. 
• LIS(i,j) = length or LIS of A[j…n] with all elements larger than 

A[i]
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Longest Increasing Subsequence 
(LIS)

• LIS(i,j) = length or LIS of A[j…n] with all elements larger than 
A[i] 

• We want to compute LIS(0,1) 
• Memoize? what data structure to use? 
• Two dimensional Array LIS[0…n,1…n+1]

For i<j
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For i<j

1 2 3 4 n+1

0

1

2

3

n

i

j
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For i<j

1 2 3 4 n+1

0

1

2

3

n

i

j

Figure out an order to fill out the table 
that works!
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For i<j

1 j n+1

0

i

n

LIS(i,j+1)

LIS(j,j+1)
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For i<j

1 j n+1

0

i

n

LIS(i,j+1)

LIS(j,j+1)

Purple squares must be 
filled before pink



C
S 

37
4

For i<j

1 j n+1

0

i

n

LIS[0,1]
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Longest Increasing Subsequence 
(LIS)

doesn’t matter what  
order I fill the columns in
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Longest Increasing Subsequence 
(LIS)

• Running time? 
• O(n2) 
• Two nested for loops 
• How man values are there in the recurrence?
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Longest Increasing Subsequence 
(LIS)

• As general rule of thumb:  
• # variables on the left =space O(n2) array for i,j taking              

n values each 
• # variables on the right =time O(n2) 

For i<j
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Dynamic Programming
General Recipe for DP

• Step 1: Find Backtracking Recursive 
algorithm (e.g. for LIS we leveraged the 
recursive def. Either empty or there is 
something that comes first) (6 pts) 

• Step 2: Identify the subproblems (e.g. indices 
i,j for LIS), need english description 

• Step 3: Analyze time and space 

• Step 4: Choose a memoization data structure 
(e.g. two dim array) 

• Step 5: Find evaluation order (draw picture!!!)
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Dynamic Programming

General Recipe for DP

• Step 3: Analyze time and space 

• Step 6: write iterative pseudocode 



Dynamic Programming

Dynamic Programming is smart recursion plus memoization

Question: Suppose we have a recursive program foo(x) that takes
an input x.

On input of size n the number of distinct sub-problems that
foo(x) generates is at most A(n)

foo(x) spends at most B(n) time not counting the time for its
recursive calls.

What is an upper bound on the running time of memoized version of
foo(x) if|x| = n? O(A(n)B(n)).

Chandra & Manoj (UIUC) CS374 2 Fall 2015 2 / 32
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Part I

Longest Increasing Subsequence

Chandra & Manoj (UIUC) CS374 3 Fall 2015 3 / 32



Sequences

Definition
Sequence: an ordered list a1, a2, . . . , an. Length of a sequence is
number of elements in the list.

Definition
ai1, . . . , aik is a subsequence of a1, . . . , an if
1 ≤ i1 < i2 < . . . < ik ≤ n.

Definition
A sequence is increasing if a1 < a2 < . . . < an. It is
non-decreasing if a1 ≤ a2 ≤ . . . ≤ an. Similarly decreasing and
non-increasing.

Chandra & Manoj (UIUC) CS374 4 Fall 2015 4 / 32



Sequences
Example...

Example
1 Sequence: 6, 3, 5, 2, 7, 8, 1, 9

2 Subsequence of above sequence: 5, 2, 1

3 Increasing sequence: 3, 5, 9, 17, 54

4 Decreasing sequence: 34, 21, 7, 5, 1

5 Increasing subsequence of the first sequence: 2, 7, 9.

Chandra & Manoj (UIUC) CS374 5 Fall 2015 5 / 32



Longest Increasing Subsequence Problem

Input A sequence of numbers a1, a2, . . . , an

Goal Find an increasing subsequence ai1, ai2, . . . , aik of
maximum length

Example
1 Sequence: 6, 3, 5, 2, 7, 8, 1

2 Increasing subsequences: 6, 7, 8 and 3, 5, 7, 8 and 2, 7 etc

3 Longest increasing subsequence: 3, 5, 7, 8

Chandra & Manoj (UIUC) CS374 6 Fall 2015 6 / 32
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Recursive Approach: Take 1
LIS: Longest increasing subsequence

Can we find a recursive algorithm for LIS?

LIS(A[1..n]):

1 Case 1: Does not contain A[n] in which case
LIS(A[1..n]) = LIS(A[1..(n− 1)])

2 Case 2: contains A[n] in which case LIS(A[1..n]) is not so
clear.

Observation
For second case we want to find a subsequence in A[1..(n− 1)] that
is restricted to numbers less than A[n]. This suggests that a more
general problem is LIS smaller(A[1..n], x) which gives the longest
increasing subsequence in A where each number in the sequence is
less than x.

Chandra & Manoj (UIUC) CS374 7 Fall 2015 7 / 32
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Recursive Approach

LIS(A[1..n]): the length of longest increasing subsequence in A

LIS smaller(A[1..n], x): length of longest increasing subsequence in
A[1..n] with all numbers in subsequence less than x

LIS smaller(A[1..n], x):
if (n = 0) then return 0
m = LIS smaller(A[1..(n− 1)], x)
if (A[n] < x) then

m = max(m, 1 + LIS smaller(A[1..(n− 1)],A[n]))
Output m

LIS(A[1..n]):
return LIS smaller(A[1..n],∞)

Chandra & Manoj (UIUC) CS374 8 Fall 2015 8 / 32



Example

Sequence: A[1..8] = 6, 3, 5, 2, 7, 8, 1, 9
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Recursive Approach

LIS smaller(A[1..n], x):
if (n = 0) then return 0
m = LIS smaller(A[1..(n− 1)], x)
if (A[n] < x) then

m = max(m, 1 + LIS smaller(A[1..(n− 1)],A[n]))
Output m

LIS(A[1..n]):
return LIS smaller(A[1..n],∞)

How many distinct sub-problems will LIS smaller(A[1..n],∞)
generate?

O(n2)

What is the running time if we memoize recursion? O(n2) since
each call takes O(1) time to assemble the answers from to
recursive calls and no other computation.

How much space for memoization? O(n2)

Chandra & Manoj (UIUC) CS374 10 Fall 2015 10 / 32
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Recursive Algorithm: Take 2

Definition
LISEnding(A[1..n]): length of longest increasing sub-sequence that
ends in A[n].

Question: can we obtain a recursive expression?

LISEnding(A[1..n]) = max
i:A[i]<A[n]

(
1 + LISEnding(A[1..i])

)

Chandra & Manoj (UIUC) CS374 11 Fall 2015 11 / 32
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Example

Sequence: A[1..8] = 6, 3, 5, 2, 7, 8, 1, 9
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Recursive Algorithm: Take 2

LIS ending alg(A[1..n]):
if (n = 0) return 0

m = 1
for i = 1 to n− 1 do

if (A[i] < A[n]) then

m = max
(

m, 1 + LIS ending alg(A[1..i])
)

return m

LIS(A[1..n]):
return maxn

i=1LIS ending alg(A[1 . . . i])

How many distinct sub-problems will LIS ending alg(A[1..n])
generate? O(n)

What is the running time if we memoize recursion? O(n2) since
each call takes O(n) time

How much space for memoization? O(n)

Chandra & Manoj (UIUC) CS374 13 Fall 2015 13 / 32
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Removing recursion to obtain iterative algorithm

Typically, after finding a dynamic programming recursion, we often
convert the recursive algorithm into an iterative algorithm via explicit
memoization and bottom up computation.

Why?

Mainly for further optimization of running time and space.

How?
First, allocate a data structure (usually an array or a
multi-dimensional array that can hold values for each of the
subproblems)
Figure out a way to order the computation of the sub-problems
starting from the base case.

Caveat: Dynamic programming is not about filling tables. It
is about finding a smart recursion. First, find the correct
recursion.
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Iterative Algorithm via Memoization

Compute the values LIS ending alg(A[1..i]) iteratively in a bottom
up fashion.

LIS ending alg(A[1..n]):
Array L[1..n] (* L[i] = value of LIS ending alg(A[1..i]) *)

for i = 1 to n do
L[i] = 1
for j = 1 to i− 1 do

if (A[j] < A[i]) do
L[i] = max(L[i], 1 + L[j])

return L

LIS(A[1..n]):
L = LIS ending alg(A[1..n])
return the maximum value in L
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Iterative Algorithm via Memoization

Simplifying:

LIS(A[1..n]):
Array L[1..n] (* L[i] stores the value LISEnding(A[1..i]) *)

m = 0
for i = 1 to n do

L[i] = 1
for j = 1 to i− 1 do

if (A[j] < A[i]) do

L[i] = max(L[i], 1 + L[j])
m = max(m, L[i])

return m

Correctness: Via induction following the recursion
Running time: O(n2)
Space: Θ(n)

O(n log n) run-time achievable via better data structures.
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Example

Example
1 Sequence: 6, 3, 5, 2, 7, 8, 1

2 Longest increasing subsequence: 3, 5, 7, 8

1 L[i] is value of longest increasing subsequence ending in A[i]

2 Recursive algorithm computes L[i] from L[1] to L[i− 1]

3 Iterative algorithm builds up the values from L[1] to L[n]
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Computing Solutions

1 Memoization + Recursion/Iteration allows one to compute the
optimal value. What about the actual sub-sequence?

2 Two methods
1 Explicit: For each subproblem find an optimum solution for

that subproblem while computing the optimum value for that
subproblem. Typically slow but automatic.

2 Implicit: For each subproblem keep track of sufficient
information (decision) on how optimum solution for subproblem
was computed. Reconstruct optimum solution later via stored
information. Typically much more efficient but requires more
thought.
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Computing Solution: Explicit method for LIS

LIS(A[1..n]):
Array L[1..n] (* L[i] stores the value LISEnding(A[1..i]) *)

Array S[1..n] (* S[i] stores the sequence achieving L[i] *)

m = 0
h = 0
for i = 1 to n do

L[i] = 1
S[i] = [i]
for j = 1 to i− 1 do

if (A[j] < A[i]) and (L[i] < 1 + L[j]) do
L[i] = 1 + L[j]
S[i] = concat(S[j], [i])

if (m < L[i]) m = L[i], h = i

return m, S[h]

Running time: O(n3) Space: O(n2). Extra time/space to store, copy
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Computing Solution: Implicit method for LIS

LIS(A[1..n]):
Array L[1..n] (* L[i] stores the value LISEnding(A[1..i]) *)

Array D[1..n] (* D[i] stores how L[i] was computed *)

m = 0
h = 0
for i = 1 to n do

L[i] = 1
D[i] = i
for j = 1 to i− 1 do

if (A[j] < A[i]) and (L[i] < 1 + L[j]) do
L[i] = 1 + L[j]
D[i] = j

if (m < L[i]) m = L[i], h = i

m = L[h] is optimum value

Question: Can we obtain solution from stored D values and h?
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S = empty sequence

while (h > 0) do
add L[h] to front of S
h = D[h]

Output optimum value m, and an optimum subsequence S

Running time: O(n2) Space: O(n).

Chandra & Manoj (UIUC) CS374 21 Fall 2015 21 / 32



Computing Solution: Implicit method for LIS

LIS(A[1..n]):
Array L[1..n] (* L[i] stores the value LISEnding(A[1..i]) *)

Array D[1..n] (* D[i] stores how L[i] was computed *)

m = 0, h = 0
for i = 1 to n do

L[i] = 1
D[i] = 0
for j = 1 to i− 1 do

if (A[j] < A[i]) and (L[i] < 1 + L[j]) do
L[i] = 1 + L[j], D[i] = j

if (m < L[i]) m = L[i], h = i
S = empty sequence

while (h > 0) do
add L[h] to front of S
h = D[h]

Output optimum value m, and an optimum subsequence S

Running time: O(n2) Space: O(n).
Chandra & Manoj (UIUC) CS374 21 Fall 2015 21 / 32



Dynamic Programming

1 Find a “smart” recursion for the problem in which the number of
distinct subproblems is small; polynomial in the original problem
size.

2 Estimate the number of subproblems, the time to evaluate each
subproblem and the space needed to store the value. This gives
an upper bound on the total running time if we use automatic
memoization.

3 Eliminate recursion and find an iterative algorithm to compute
the problems bottom up by storing the intermediate values in an
appropriate data structure; need to find the right way or order
the subproblem evaluation. This leads to an explicit algorithm.

4 Optimize the resulting algorithm further
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Part II

Checking if string in L∗
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Problem

Input A string w ∈ Σ∗ and access to a language L ⊆ Σ∗ via
function IsStringinL(string x) that decides whether x
is in L

Goal Decide if w ∈ L∗ using IsStringinL(string x) as a
black box sub-routine

Example
Suppose L is English and we have a procedure to check whether a
string/word is in the English dictionary.

Is the string “isthisanenglishsentence” in English∗?

Is “stampstamp” in English∗?

Is “zibzzzad” in English∗?
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Recursive Solution

When is w ∈ L∗?

w ∈ L∗ if w ∈ L or if w = uv where u ∈ L and v ∈ L∗

Assume w is stored in array A[1..n]

IsStringinLstar(A[1..n]):
If (IsStringinL(A[1..n]))

Output YES

Else

For (i = 1 to n− 1) do

If (IsStringinL(A[1..i]) and IsStringinLstar(A[i + 1..n]))
Output YES

Output NO
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A variation

Input A string w ∈ Σ∗ and access to a language L ⊆ Σ∗ via
function IsStringinL(string x) that decides whether x
is in L, and non-negative integer k

Goal Decide if w ∈ Lk using IsStringinL(string x) as a
black box sub-routine

Example
Suppose L is English and we have a procedure to check whether a
string/word is in the English dictionary.

Is the string “isthisanenglishsentence” in English5?

Is the string “isthisanenglishsentence” in English4?

Is “asinineat” in English2?

Is “asinineat” in English4?

Is “zibzzzad” in English1?
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Recursive Solution

When is w ∈ Lk?

k = 0: w ∈ Lk iff w = ε
k = 1: w ∈ Lk iff w ∈ L
k > 1: w ∈ Lk if w = uv with u ∈ L and v ∈ Lk−1

Assume w is stored in array A[1..n]

IsStringinLk(A[1..n], k):
If (k = 0)

If (n = 0) Output YES

Else Ouput NO

If (k = 1)
Output IsStringinL(A[1..n])

Else

For (i = 1 to n− 1) do

If (IsStringinL(A[1..i]) and IsStringinLk(A[i + 1..n], k− 1))
Output YES

Output NO
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Analysis

IsStringinLk(A[1..n], k):
If (k = 0)

If (n = 0) Output YES

Else Ouput NO

If (k = 1)
Output IsStringinL(A[1..n])

Else

For (i = 1 to n− 1) do

If (IsStringinL(A[1..i]) and IsStringinLk(A[i + 1..n], k− 1))
Output YES

Output NO

How many distinct sub-problems are generated by
IsStringinLk(A[1..n], k)?

O(nk)

How much space? O(nk) pause

Running time? O(n2k)
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Another variant

Question: What if we want to check if w ∈ Li for some 0 ≤ i ≤ k?
That is, is w ∈ ∪k

i=0Li?
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Exercise

Definition
A string is a palindrome if w = wR.
Examples: I, RACECAR, MALAYALAM, DOOFFOOD

Problem: Given a string w find the longest subsequence of w that is
a palindrome.

Example
MAHDYNAMICPROGRAMZLETMESHOWYOUTHEM has
MHYMRORMYHM as a palindromic subsequence
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Exercise

Assume w is stored in an array A[1..n]

LPS(A[1..n]): length of longest palindromic subsequence of A.

Recursive expression/code?
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Edit Distance

Definition
Edit distance between two words X and Y is the number of letter
insertions, letter deletions and letter substitutions required to obtain
Y from X .

Example
The edit distance between FOOD and MONEY is at most 4:

FOOD→MOOD→MONOD→MONED→MONEY

Chandra & Ruta (UIUC) CS473 18 Fall 2016 18 / 40



Edit Distance: Alternate View

Alignment
Place words one on top of the other, with gaps in the first word
indicating insertions, and gaps in the second word indicating
deletions.

F O O D
M O N E Y

Formally, an alignment is a set M of pairs (i , j) such that each index
appears at most once, and there is no “crossing”: i < i ′ and i is
matched to j implies i ′ is matched to j ′ > j . In the above example,
this is M = {(1, 1), (2, 2), (3, 3), (4, 5)}. Cost of an alignment is
the number of mismatched columns plus number of unmatched
indices in both strings.
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Edit Distance Problem

Problem
Given two words, find the edit distance between them, i.e., an
alignment of smallest cost.
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Edit Distance
Basic observation

Let X = αx and Y = βy
α, β: strings. x and y single characters.
Possible alignments between X and Y

α x
β y or

α x
βy or

αx
β y

Observation
Prefixes must have optimal alignment!

EDIST (X ,Y ) = min





EDIST (α, β) + [x = y ]

1 + EDIST (α,Y )

1 + EDIST (X , β)
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Recursive Algorithm

Assume X is stored in array A[1..m] and Y is stored in B[1..n]

EDIST (A[1..m],B[1..n])
If (m = 0) return n
If (n = 0) return m
m1 = 1 + EDIST (A[1..(m − 1)],B[1..n])
m2 = 1 + EDIST (A[1..m],B[1..(n − 1)]))
If (A[m] = B[n]) then

m3 = EDIST (A[1..(m − 1)],B[1..(n − 1)])
Else

m3 = 1 + EDIST (A[1..(m − 1)],B[1..(n − 1)])
return min(m1,m2,m3)
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Example

DEED and DREAD
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Subproblems and Recurrence

Each subproblem corresponds to a prefix of X and a prefix of Y

Optimal Costs

Let Opt(i , j) be optimal cost of aligning x1 · · · xi and y1 · · · yj .
Then

Opt(i , j) = min





[xi = yj ] + Opt(i − 1, j − 1),

1 + Opt(i − 1, j),
1 + Opt(i , j − 1)

Base Cases: Opt(i , 0) = i and Opt(0, j) = j
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Memoizing the Recursive Algorithm

int M[0..m][0..n]
Initialize all entries of M[i ][j ] to ∞
return EDIST (A[1..m],B[1..n])

EDIST (A[1..m],B[1..n])
If (M[i ][j ] <∞) return M[i ][j ] (* return stored value *)

If (m = 0)
M[i ][j ] = n

ElseIf (n = 0)
M[i ][j ] = m

Else

m1 = 1 + EDIST (A[1..(m − 1)],B[1..n])
m2 = 1 + EDIST (A[1..m],B[1..(n − 1)]))
If (A[m] = B[n]) m3 = EDIST (A[1..(m − 1)],B[1..(n − 1)])
Else m3 = 1 + EDIST (A[1..(m − 1)],B[1..(n − 1)])
M[i ][j ] = min(m1,m2,m3)

return M[i ][j ]
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Removing Recursion to obtain Iterative Algorithm

EDIST (A[1..m],B[1..n])
int M[0..m][0..n]
for i = 1 to m do M[i , 0] = i
for j = 1 to n do M[0, j ] = j

for i = 1 to m do
for j = 1 to n do

M[i ][j ] = min





[xi = yj ] + M[i − 1][j − 1],

1 + M[i − 1][j ],
1 + M[i ][j − 1]

Analysis
1 Running time is O(mn).
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Matrix and DAG of Computation
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Figure: Iterative algorithm in previous slide computes values in row order.
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Finding an Optimum Solution

The DP algorithm finds the minimum edit distance in O(nm) space
and time.

Question: Can we find a specific alignment which achieves the
minimum?

Exercise: Show that one can find an optimum solution after
computing the optimum value. Key idea is to store back pointers
when computing Opt(i , j) to know how we calculated it. See notes
for more details.
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Longest Palindromic Subsequence

Definition
A sequence is a palindrome if the sequence is equal to its reverse.
Examples: m,a,l,a,y,a,l,a,m and 1,10,10,1 and a.

Problem: Given a sequence a0, a1, . . . , an find the longest
palindromic sub-sequence.

Examples:

1, 10, 11

a, c, c, r , a
A,C ,G ,T ,G ,T ,C ,A,A,A,A,T ,C ,G
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Dynamic Programming Template

1 Come up with a recursive algorithm to solve problem

2 Understand the structure/number of the subproblems generated
by recursion

3 Memoize the recursion

set up compact notation for subproblems
set up a data structure for storing subproblems

4 Iterative algorithm

Understand dependency graph on subproblems
Pick an evaluation order (any topological sort of the
dependency dag)

5 Analyze time and space

6 Optimize
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