BBM402-Lecture 4: Dynamic Programming: Longest Increasing Subsequence, String splitting

Lecturer: Lale Özkahya

Resources for the presentation:
https: //courses.engr.illinois.edu/cs374/fa2016/lectures.html https://courses.engr.illinois.edu/cs473/fa2016/lectures.html https://courses.engr.illinois.edu/cs374/fa2015/lectures.html

Fibonacci

- Fibonacci Numbers (circa 13 th century)

$$
\text { - } F_{n}=\begin{gathered}
0 \text { if } n=0 \\
1 \text { if } n=1 \\
F_{n-1}+F_{n-2} o / w
\end{gathered}
$$

Given n, how long does it take to compute F_{n} ?

Fibonacci

- Translates line by line to code:

RecFibo(n):
if $(n<2)$
return n
else
return $\operatorname{RecFibo}(n-1)+\operatorname{RecFibo}(n-2)$

We will move from mathematical function format to recursive program a lot!

Fibonacci

- Translates line by line to code:

RecFibo(n):
if $(n<2)$
return n
else return $\operatorname{RecFibo}(n-1)+\operatorname{RecFibo}(n-2)$

Running time? (backtracking recurrence)

$$
\begin{gathered}
T(n)=T(n-1)+T(n-2)+O(1) \\
=\boldsymbol{\Theta}\left(F_{n}\right)=\boldsymbol{\Theta}(1.618 n)=\boldsymbol{\Theta}\left(((\sqrt{ } 5+1) / 2)^{n}\right)
\end{gathered}
$$

Running time via Rec Tree

Leaves are always 0 or 1 . How many 1's? How many Os?

There are $F_{n} 1 s$ and $F_{n-1} 0 s$ $\mathrm{F}_{\mathrm{n}+1}$ leaves total!

Running time via Rec Tree

How many intermediate nodes does a full binary tree with m leaves have?

Running time via Rec Tree

$$
2 \mathrm{~F}_{\mathrm{n}+1}-1 \text { nodes (additions) }
$$

Running time via Rec Tree

Running time via Rec Tree

Keep an array to remember the previous values!

Running time via Rec Tree

Memoization= when I look at the table to see the values I computed before

```
MemFibo( \(n\) ):
    if \((n<2)\)
        return \(n\)
    else
if \(F[n]\) is undefined
        \(F[n] \leftarrow \operatorname{MemFibo}(n-1)+\operatorname{MemFibo}(n-2)\)
return \(F[n]\)
```

Given any recursive backtracking algorithm, you can add memoization and will save time, provided the subproblems repeat

```
MemFibo( \(n\) ):
    if \((n<2)\)
        return \(n\)
    else
    if \(F[n]\) is undefined
        \(F[n] \leftarrow \operatorname{MEMFibo}(n-1)+\operatorname{MEMFibo}(n-2)\)
    return \(F[n]\)
```

How many times did I have to call the recursive function? exponential!
How many different values did I have to compute?

$$
O(n)!
$$

Memoization decreases running time : performs only $\mathrm{O}(\mathrm{n})$ additions, exponential improvement

MemFibo(n):

if $(n<2)$
return n
else
if $F[n]$ is undefined
$F[n] \leftarrow \operatorname{MEmFibo}(n-1)+\operatorname{MEmFibo}(n-2)$
return $F[n]$
Memoized algorithm fills in the table from left to right. Why not just do that?

ITERFIBO(n):
 $$
F[0] \leftarrow 0
$$
 $$
F[1] \leftarrow 1
$$
 $$
\text { for } i \leftarrow 2 \text { to } n
$$
 $$
F[i] \leftarrow F[i-1]+F[i-2]
$$
 $$
\text { return } F[n]
$$

Memoized algorithm fills in the table from left to right. Why not just do that?

We get an iterative algorithm

IterFibo(n):
 $F[0] \leftarrow 0$
 $F[1] \leftarrow 1$
 for $i \leftarrow 2$ to n
 $F[i] \leftarrow F[i-1]+F[i-2]$
 return $F[n]$

- Clear that the number of additions it does it $\mathrm{O}(\mathrm{n})$.
- In practice this is faster than memoized algo, cause we don't use stack/ look up the table etc.

```
ITERFIbO \((n)\) :
    \(F[0] \leftarrow 0\)
    \(F[1] \leftarrow 1\)
    for \(i \leftarrow 2\) to \(n\)
        \(F[i] \leftarrow F[i-1]+F[i-2]\)
return \(F[n]\)
```

- Structure mirrors the recurrence
- Only subtle thing is that we want to fill in the array in increasing order.

```
ITERFibo( \(n\) ):
    \(F[0] \leftarrow 0\)
    \(F[1] \leftarrow 1\)
    for \(i \leftarrow 2\) to \(n\)
        \(F[i] \leftarrow F[i-1]+F[i-2]\)
return \(F[n]\)
```

- This is Dynamic Programing Algorithm!
- Dynamic Programming= pretend to do Memoization but do it on purpose
- Memoization: accidentally use something efficient Backwards induction =Dynamic Programming

Dynamic Programming

- Dynamic programming is about smart recursion.
- Not about filling out tables!
- How do I solve the problem, how do I not repeat work, then how to fill up my data structure.

Dynamic Programming

- How can I speed up my algorithm?

$$
\begin{aligned}
& \hline \text { ITERFIBO }(n): \\
& \hline F[0] \leftarrow 0 \\
& F[1] \leftarrow 1 \\
& \text { for } i \leftarrow 2 \text { to } n \\
& \quad F[i] \leftarrow F[i-1]+F[i-2] \\
& \quad \text { return } F[n] \\
& \hline
\end{aligned}
$$

- I only need to keep my last two elements of the array.
- Even more efficient algorithm

Dynamic Programming

- How can I speed up my algorithm?

```
ITERFIBO2(n):
    prev}\leftarrow
    curr }\leftarrow
    for }i\leftarrow1\mathrm{ to }
        next \leftarrow curr + prev
        prev \leftarrowcurr
        curr }\leftarrow\mathrm{ next
    return curr
```

- I only need to keep my last two elements of the array.
- Even more efficient algorithm
- Where is the recursion?

Dynamic Programming

- How can I speed up my algorithm?

```
ITERFIBO2(n):
    prev}\leftarrow
    curr }\leftarrow
    for }i\leftarrow1\mathrm{ to }
        next \leftarrow curr + prev
        prev \leftarrowcurr
        curr }\leftarrow\mathrm{ next
    return curr
```

- I only need to keep my last two elements of the array.
- Even more efficient algorithm
-Where is the recursion?
- Saves space, sometimes important

Dynamic Programming

- How can I speed up my algorithm?

```
ITERFIBO2(n):
    prev }\leftarrow
    curr }\leftarrow
    for }i\leftarrow1\mathrm{ to }
        next \leftarrow curr + prev
        prev }\leftarrow\mathrm{ curr
        curr }\leftarrow\mathrm{ next
    return curr
```

- Is this the fastest Algorithm for Fibonacci?

Dynamic Programming

- How can I speed up my algorithm?

```
ITERFIBO2(n):
    prev }\leftarrow
    curr }\leftarrow
    for }i\leftarrow1\mathrm{ to n
        next \leftarrowcurr + prev
        prev }\leftarrow\mathrm{ curr
        curr }\leftarrow\mathrm{ next
    return curr
```

$$
\left[\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
y \\
x+y
\end{array}\right]
$$

This matrix vector multiplication does exactly the same thing as one iteration of the loop!

What to do to compute the nth Fibonacci number?

Dynamic Programming

- How can I speed up my algorithm?

$$
\left[\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right]^{n}\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
F_{n-1} \\
F_{n}
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
y \\
x+y
\end{array}\right]
$$

Compute the nth power of the matrix.

- With repeated squaring, O(logn) multiplications
- Compute F_{n} in O (logn) arithmetic operations

Double exponential speedup!

Dynamic Programming

- How can I speed up my algorithm?

$$
\left[\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right]^{n}\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
F_{n-1} \\
F_{n}
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
y \\
x+y
\end{array}\right]
$$

Compute the nth power of the matrix.
But how many bits is the nth Fibonacci number? $O(n)!$
Can't perform arbitrary precision arithmetic in constant time

Longest Increasing Subsequence (LIS)

- 31415926538279461048

Longest Increasing Subsequence (LIS)

- 31415926538279461048
- LIS(A[1...n],p) = length of LIS of $A[1 \ldots n]$ where everything is bigger than p

Longest Increasing Subsequence (LIS)

- 31415926538279461048
- LIS(A[1...n],p) $=4\left[\begin{array}{l}0 \text { if } n=0 \\ \operatorname{LIS}(A[2 \ldots n], p) \text { if } A[1] \leq p \\ \operatorname{MAX}\left\{\begin{array}{l}\text { LIS(A[2 } 2 \ldots n], p) \\ 1+\operatorname{LIS}(A[2 \ldots n], A[1])\}\end{array}\right.\end{array}\right.$

Longest Increasing Subsequence (LIS)

- $\operatorname{LIS}(A[1 \ldots n], p)=4\left[\begin{array}{l}0 \text { if } n=0 \\ \operatorname{LIS}(A[2 \ldots n], p) \text { if } A[1] \leq p \\ \operatorname{MAX}\{\operatorname{LIS}(A[2 \ldots n], p) \\ 1+\operatorname{LIS}(A[2 \ldots n], A[1])\}\end{array}\right.$
- The argument p is always either $-\infty$ or and element of the array A
- Add $A[0]=-\infty$
- We can identify any recursive subproblem with two array indices.
- LIS $(\mathrm{i}, \mathrm{j})=$ length or LIS of $\mathrm{A}[\mathrm{j} . . \mathrm{n}]$ with all elements larger tha $A[i]$

Longest Increasing Subsequence (LIS)

$$
\begin{aligned}
& \text { For } i<j \\
& \operatorname{LIS}(i, j)= \begin{cases}0 & \text { if } j>n \\
\operatorname{LIS}(i, j+1) & \text { if } A[i] \geq A[j] \\
\max \{\operatorname{LIS}(i, j+1), 1+\operatorname{LIS}(j, j+1)\} & \text { otherwise }\end{cases}
\end{aligned}
$$

- LIS(i, j) = length or LIS of $\mathrm{A}[\mathrm{j} . . \mathrm{n}]$ with all elements larger tha A[i]
- We want to compute LIS(0,1)
- Memoize? what data structure to use?
- Two dimensional Array LIS[0...n,1...n+1]

For $\mathrm{i}<\mathrm{j} \quad \operatorname{LIS}(i, j)= \begin{cases}0 & \text { if } j>n \\ \operatorname{LIS}(i, j+1) & \text { if } A[i] \geq A[j] \\ \max \{\operatorname{LIS}(i, j+1), 1+\operatorname{LIS}(j, j+1)\} & \text { otherwise }\end{cases}$

For $\mathrm{i}<\mathrm{j} \quad \operatorname{LIS}(i, j)= \begin{cases}0 & \text { if } j>n \\ \operatorname{LIS}(i, j+1) & \text { if } A[i] \geq A[j] \\ \max \{\operatorname{LIS}(i, j+1), 1+\operatorname{LIS}(j, j+1)\} & \text { otherwise }\end{cases}$

For $\mathrm{i}<\mathrm{j} \quad \operatorname{LIS}(i, j)= \begin{cases}0 & \text { if } j>n \\ \operatorname{LIS(i,j+1)} & \text { if } A[i] \geq A[j] \\ \max \{\operatorname{LIS}(i, j+1), 1+\operatorname{LIS}(j, j+1), & \text { otherwise }\end{cases}$

For $\mathrm{i}<\mathrm{j} \quad \operatorname{LIS}(i, j)= \begin{cases}0 & \text { if } j>n \\ \operatorname{LIS}(i, j+1) & \text { if } A[i] \geq A[j] \\ \max \{\operatorname{LIS}(i, j+1), 1+\operatorname{LIS}(j, j+1) & \text { otherwise }\end{cases}$

For $\mathrm{i}<\mathrm{j} \quad \operatorname{LIS}(i, j)= \begin{cases}0 & \text { if } j>n \\ \operatorname{LIS}(i, j+1) & \text { if } A[i] \geq A[j] \\ \max \{\operatorname{LIS}(i, j+1), 1+\operatorname{LIS}(j, j+1) & \text { otherwise }\end{cases}$

Longest Increasing Subsequence (LIS)

doesn't matter what order I fill the columns in

```
LIS(A[1..n]):
    A[0]\leftarrow-\infty <<Add a sentinel\rangle\rangle
    for }i\leftarrow0\mathrm{ to }
        LIS[i,n+1]\leftarrow0
    for }j\leftarrown\mathrm{ downto 1
            for }i\leftarrow0\mathrm{ to }j-
                if A[i]\geqA[j]
                        LIS[i,j]\leftarrowLIS[i,j+1]
            else
                        LIS[i,j]\leftarrow\operatorname{max}{LIS[i,j+1],1+LIS[j,j+1]}
    return LIS[0,1]
```


Longest Increasing Subsequence (LIS)

- Running time?
- O(n²)
- Two nested for loops
- How man values are there in the recurrence?

```
LIS(A[1..n]):
    A[0]\leftarrow-\infty <<Add a sentinel\rangle\rangle
    for }i\leftarrow0\mathrm{ to }
        LIS[i,n+1]}\leftarrow
    for }j\leftarrown\mathrm{ downto 1
            for }i\leftarrow0\mathrm{ to }j-
                if A[i]\geqA[j]
                        LIS[i,j]\leftarrowLIS[i,j+1]
        else
                        LIS[i,j]\leftarrowmax{LIS[i,j+1],1+LIS[j,j+1]}
    return LIS[0,1]
```


Longest Increasing Subsequence (LIS)

$$
\begin{gathered}
\text { For } \mathrm{i}<\mathrm{j} \\
\operatorname{LIS}(i, j)= \begin{cases}0 & \text { if } j>n \\
\operatorname{LIS}(i, j+1) & \text { if } A[i] \geq A[j] \\
\max \{\operatorname{LIS}(i, j+1), 1+\operatorname{LIS}(j, j+1)\} & \text { otherwise }\end{cases}
\end{gathered}
$$

- As general rule of thumb:
- \# variables on the left =space $O\left(n^{2}\right)$ array for i, j taking n values each
- \# variables on the right =time $O\left(\mathrm{n}^{2}\right)$

Dynamic Programming General Recipe for DP

- Step 1: Find Backtracking Recursive algorithm (e.g. for LIS we leveraged the recursive def. Either empty or there is something that comes first) (6 pts)
- Step 2: Identify the subproblems (e.g. indices i,j for LIS), need english description
- Step 3: Analyze time and space
- Step 4: Choose a memoization data structure (e.g. two dim array)
- Step 5: Find evaluation order (draw picture!!!)

Dynamic Programming

General Recipe for DP

- Step 3: Analyze time and space
- Step 6: write iterative pseudocode

Dynamic Programming

Dynamic Programming is smart recursion plus memoization

Dynamic Programming

Dynamic Programming is smart recursion plus memoization
Question: Suppose we have a recursive program $\mathbf{f o o (x)}$ that takes an input \mathbf{x}.

- On input of size \mathbf{n} the number of distinct sub-problems that $\mathbf{f o o (x)}$ generates is at most $\mathbf{A (n)}$
- foo(x) spends at most $\mathbf{B (n)}$ time not counting the time for its recursive calls.
What is an upper bound on the running time of memoized version of $\mathbf{f o o}(\mathbf{x})$ if $|\mathbf{x}|=\mathbf{n}$?

Dynamic Programming

Dynamic Programming is smart recursion plus memoization
Question: Suppose we have a recursive program $\mathbf{f o o (x)}$ that takes an input \mathbf{x}.

- On input of size \mathbf{n} the number of distinct sub-problems that $\mathbf{f o o (x)}$ generates is at most $\mathbf{A (n)}$
- foo(x) spends at most $\mathbf{B (n)}$ time not counting the time for its recursive calls.
What is an upper bound on the running time of memoized version of $\mathbf{f o o}(\mathrm{x})$ if $|x|=n$? $\mathbf{O}(\mathbf{A}(\mathrm{n}) B(\mathrm{n}))$.

Part I

Longest Increasing Subsequence

Sequences

Definition

Sequence: an ordered list $\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{\mathbf{n}}$. Length of a sequence is number of elements in the list.

Definition

$\mathbf{a}_{\mathbf{i}_{1}}, \ldots, \mathbf{a}_{\mathbf{i}_{k}}$ is a subsequence of $\mathbf{a}_{1}, \ldots, a_{n}$ if
$\mathbf{1} \leq \mathbf{i}_{1}<\mathbf{i}_{2}<\ldots<\mathbf{i}_{\mathbf{k}} \leq \mathbf{n}$.

Definition

A sequence is increasing if $\mathbf{a}_{1}<\mathbf{a}_{2}<\ldots<\mathbf{a}_{\mathbf{n}}$. It is non-decreasing if $\mathbf{a}_{1} \leq \mathbf{a}_{\mathbf{2}} \leq \ldots \leq \mathbf{a}_{\mathbf{n}}$. Similarly decreasing and non-increasing.

Sequences

Example...

Example

(1) Sequence: 6, 3, 5, 2, 7, 8, 1, 9
(2) Subsequence of above sequence: 5, 2, 1
(3) Increasing sequence: $\mathbf{3 , 5 , 9 , 1 7 , 5 4}$
(0. Decreasing sequence: $\mathbf{3 4}, 21,7,5,1$
(0) Increasing subsequence of the first sequence: 2,7,9.

Longest Increasing Subsequence Problem

Input A sequence of numbers $\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{\mathbf{n}}$
Goal Find an increasing subsequence $\mathbf{a}_{\mathbf{i}_{1}}, \mathbf{a}_{\mathbf{i}_{2}}, \ldots, \mathbf{a}_{\mathbf{i}_{\mathrm{k}}}$ of maximum length

Longest Increasing Subsequence Problem

Input A sequence of numbers $\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{\mathbf{n}}$
Goal Find an increasing subsequence $\mathbf{a}_{\mathbf{i}_{1}}, \mathbf{a}_{\mathbf{i}_{2}}, \ldots, \mathbf{a}_{\mathbf{i}_{k}}$ of maximum length

Example

(1) Sequence: $6,3,5,2,7,8,1$
(2) Increasing subsequences: 6, 7, 8 and 3,5,7, 8 and 2, 7 etc
(3) Longest increasing subsequence: $3,5,7,8$

Recursive Approach: Take 1

LIS: Longest increasing subsequence

Can we find a recursive algorithm for LIS?
$\operatorname{LIS}(\mathbf{A}[\mathbf{1 . . n]}):$

Recursive Approach: Take 1

LIS: Longest increasing subsequence

Can we find a recursive algorithm for LIS?
$\operatorname{LIS}(\mathbf{A}[\mathbf{1 . . n]}):$
(1) Case 1: Does not contain $\mathbf{A}[\mathbf{n}]$ in which case $\operatorname{LIS}(\mathbf{A}[\mathbf{1} . . \mathbf{n}])=\operatorname{LIS}(\mathbf{A}[\mathbf{1 . .}(\mathbf{n} \mathbf{- 1})])$
(2) Case 2: contains $\mathbf{A}[\mathbf{n}]$ in which case $\operatorname{LIS}(\mathbf{A}[\mathbf{1} . . \mathbf{n}])$ is not so clear.

Observation

For second case we want to find a subsequence in $\mathbf{A}[1 . .(\mathbf{n}-\mathbf{1})]$ that is restricted to numbers less than $\mathbf{A}[\mathbf{n}]$. This suggests that a more general problem is LIS_smaller(A[1..n], \mathbf{x}) which gives the longest increasing subsequence in \mathbf{A} where each number in the sequence is less than \mathbf{x}.

Recursive Approach

$\operatorname{LIS}(\mathbf{A}[\mathbf{1 . . n}]):$ the length of longest increasing subsequence in \mathbf{A}
LIS_smaller($\mathbf{A}[\mathbf{1 . . n}], \mathbf{x})$: length of longest increasing subsequence in $\mathbf{A}[\mathbf{1} . . n]$ with all numbers in subsequence less than \mathbf{x}

```
LIS_smaller(A[1..n], x) :
    if ( }\textrm{n}=0)\mathrm{ then return 0
    m = LIS_smaller(A[1..(n-1)],x)
    if (A[n]<x) then
        m = max(m,1 + LIS_smaller(A[1..(n-1)],A[n]))
```

 Output m
 $\operatorname{LIS}(A[1 . . n]):$
return LIS_smaller (A[1..n], ∞)

Example

Sequence: $\mathbf{A}[1 . .8]=6,3,5,2,7,8,1,9$

Recursive Approach

```
LIS_smaller (A[1..n], x) :
    if \((\mathbf{n}=0)\) then return 0
    \(m=\) LIS_smaller(A[1..(n-1)], x)
    if \((\mathbf{A}[\mathrm{n}]<\mathrm{x})\) then
        \(m=\max (m, 1+\) LIS_smaller \((A[1 . .(n-1)], A[n]))\)
    Output m
```

 LIS (A[1..n]) :
 return LIS_smaller (A[1..n], \(\infty\))
 - How many distinct sub-problems will LIS_smaller(A[1..n], ∞) generate?

Recursive Approach

```
LIS_smaller (A[1..n], x) :
    if ( \(n=0\) ) then return 0
    \(m=\) LIS_smaller (A[1..(n-1)], x)
    if \((\mathbf{A}[\mathrm{n}]<\mathrm{x})\) then
        \(m=\max (m, 1+\) LIS_smaller \((A[1 . .(n-1)], A[n]))\)
    Output m
```

LIS (A[1..n]) :
return LIS_smaller (A[1..n], ∞)

- How many distinct sub-problems will LIS_smaller(A[1..n], ∞) generate? $\mathbf{O}\left(\mathbf{n}^{2}\right)$

Recursive Approach

```
LIS_smaller (A[1..n], x) :
    if ( \(n=0\) ) then return 0
    \(m=\) LIS_smaller(A[1..(n-1)], x)
    if \((\mathbf{A}[\mathrm{n}]<\mathrm{x})\) then
        \(m=\max (m, 1+\) LIS_smaller \((A[1 . .(n-1)], A[n]))\)
    Output m
```

LIS (A[1..n]) :
return LIS_smaller (A[1..n], ∞)

- How many distinct sub-problems will LIS_smaller(A[1..n], ∞) generate? $\mathbf{O}\left(\mathbf{n}^{2}\right)$
- What is the running time if we memoize recursion?

Recursive Approach

```
LIS_smaller (A[1..n], x) :
    if \((\mathbf{n}=0)\) then return 0
    \(m=\) LIS_smaller(A[1..(n-1)], x)
    if \((A[n]<x)\) then
        \(m=\max (m, 1+\) LIS_smaller \((A[1 . .(n-1)], A[n]))\)
    Output m
```

LIS (A[1..n]) :
return LIS_smaller(A[1..n], ∞)

- How many distinct sub-problems will LIS_smaller(A[1..n], ∞) generate? $\mathbf{O}\left(\mathbf{n}^{2}\right)$
- What is the running time if we memoize recursion? $\mathbf{O}\left(\mathbf{n}^{2}\right)$ since each call takes $\mathbf{O (1)}$ time to assemble the answers from to recursive calls and no other computation.

Recursive Approach

```
LIS_smaller (A[1..n], x) :
    if \((n=0)\) then return 0
    \(m=\) LIS_smaller \((A[1 . .(n-1)], x)\)
    if \((\mathbf{A}[\mathrm{n}]<\mathrm{x})\) then
        \(m=\max (m, 1+\) LIS_smaller \((A[1 . .(n-1)], A[n]))\)
    Output m
```

$\operatorname{LIS}(A[1 . . n])$:
return LIS_smaller (A[1..n], ∞)

- How many distinct sub-problems will LIS_smaller(A[1..n], ∞) generate? $\mathbf{O}\left(\mathbf{n}^{2}\right)$
- What is the running time if we memoize recursion? $\mathbf{O}\left(\mathbf{n}^{2}\right)$ since each call takes $\mathbf{O}(\mathbf{1})$ time to assemble the answers from to recursive calls and no other computation.
- How much space for memoization?

Recursive Approach

```
LIS_smaller (A[1..n], x) :
    if \((\mathbf{n}=0)\) then return 0
    \(m=\) LIS_smaller(A[1..(n-1)], x)
    if ( \(A[n]<x\) ) then
        \(m=\max (m, 1+\) LIS_smaller \((A[1 . .(n-1)], A[n]))\)
    Output m
```

LIS (A[1..n]) :
return LIS_smaller(A[1..n], ∞)

- How many distinct sub-problems will LIS_smaller(A[1..n], ∞) generate? $\mathbf{O}\left(\mathbf{n}^{2}\right)$
- What is the running time if we memoize recursion? $\mathbf{O}\left(\mathbf{n}^{2}\right)$ since each call takes $\mathbf{O}(1)$ time to assemble the answers from to recursive calls and no other computation.
- How much space for memoization? $\mathbf{O}\left(\mathbf{n}^{2}\right)$

Recursive Algorithm: Take 2

Definition
LISEnding(A[1..n]): length of longest increasing sub-sequence that ends in $\mathbf{A}[\mathbf{n}]$.

Question: can we obtain a recursive expression?

$$
\begin{aligned}
& 6,3,5,2,7,8,1,9 \\
& \operatorname{LISE}(A[1 . .8]]=4 \\
& \operatorname{CISE}(A[1 \ldots 7])=1 \quad(3,5,7,8,9) \\
&(A[1.6])=4 \quad(3,5,7,8)
\end{aligned}
$$

Recursive Algorithm: Take 2

Definition

LISEnding(A[1..n]): length of longest increasing sub-sequence that ends in $\mathbf{A}[\mathbf{n}]$.

Question: can we obtain a recursive expression?

$$
\operatorname{LISEnding}(A[1 . . n])=\max _{\mathrm{i}: A[\mathrm{i}]<A[n]}(1+\operatorname{LISEnding}(A[1 . . i]))
$$

Example
Sequence: $A[1 . .8]=6,3,5,2,7,8,1,9$

Recursive Algorithm: Take 2

```
LIS_ending_alg (A[1..n]) :
if \((\mathbf{n}=\mathbf{0})\) return 0
\(\mathrm{m}=1\)
for \(\mathbf{i}=\mathbf{1}\) to \(\mathbf{n}-\mathbf{1}\) do
        if ( \(A[i]<A[n]\) ) then
        \(\mathrm{m}=\max (\mathrm{m}, 1+\) LIS_ending_alg(A[1..i] \())\)
    return m
```

```
LIS(A[1..n]) :
    return max i=1 LIS_ending_alg(A[1...i])
```


Recursive Algorithm: Take 2

```
LIS_ending_alg (A[1..n]) :
if \((\mathbf{n}=\mathbf{0})\) return 0
\(\mathrm{m}=1\)
for \(\mathbf{i}=\mathbf{1}\) to \(\mathbf{n}-\mathbf{1}\) do
        if ( \(A[i]<A[n]\) ) then
        \(\mathbf{m}=\max (\mathbf{m}, 1+\) LIS_ending_alg(A[1..i] \())\)
```

 return m
 LIS (A[1..n]) :
return $\max _{\mathrm{i}=1}^{\mathrm{n}}$ LIS_ending_alg(A[1...i])

- How many distinct sub-problems will LIS_ending_alg(A[1..n]) generate?

Recursive Algorithm: Take 2

```
LIS_ending_alg (A[1..n]) :
if \((\mathbf{n}=\mathbf{0})\) return 0
\(\mathrm{m}=1\)
for \(\mathbf{i}=\mathbf{1}\) to \(\mathbf{n}-\mathbf{1}\) do
        if ( \(A[i]<A[n]\) ) then
        \(\mathrm{m}=\max (\mathrm{m}, 1+\) LIS_ending_alg(A[1..i] \())\)
```

 return m
 LIS (A[1..n]) :
return $\max _{\mathrm{i}=1}^{\mathrm{n}}$ LIS_ending_alg(A[1...i])

- How many distinct sub-problems will LIS_ending_alg(A[1..n]) generate? $\mathbf{O (n)}$

Recursive Algorithm: Take 2

```
LIS_ending_alg (A[1..n]) :
if \((\mathbf{n}=\mathbf{0})\) return 0
\(\mathrm{m}=1\)
for \(\mathbf{i}=\mathbf{1}\) to \(\mathbf{n}-\mathbf{1}\) do
        if ( \(A[i]<A[n]\) ) then
        \(\mathrm{m}=\max (\mathrm{m}, 1+\) LIS_ending_alg(A[1..i]) \()\)
```

 return m
 LIS (A[1..n]) :
return $\max _{\mathrm{i}=1}^{\mathrm{n}}$ LIS_ending_alg(A[1...i])

- How many distinct sub-problems will LIS_ending_alg(A[1..n]) generate? $\mathbf{O}(n)$
- What is the running time if we memoize recursion?

Recursive Algorithm: Take 2

LIS_ending_alg (A[1..n]) :
if $(\mathbf{n}=\mathbf{0})$ return 0
$\mathrm{m}=1$
for $\mathbf{i}=\mathbf{1}$ to $\mathbf{n}-\mathbf{1}$ do

$$
\begin{aligned}
& \text { if }(\mathbf{A}[\mathrm{i}]<\mathbf{A}[\mathrm{n}]) \text { then } \\
& \qquad \mathbf{m}=\max (\mathbf{m}, 1+\text { LIS_ending_alg }(\mathbf{A}[1 . . \mathrm{i}]))
\end{aligned}
$$

return m

```
LIS(A[1..n]) :
    return maxi=1 LIS_ending_alg(A[1...i])
```

- How many distinct sub-problems will LIS_ending_alg(A[1..n]) generate? $\mathbf{O}(n)$
- What is the running time if we memoize recursion? $\mathbf{O}\left(\mathbf{n}^{2}\right)$ since each call takes $\mathbf{O}(\mathbf{n})$ time

Recursive Algorithm: Take 2

```
LIS_ending_alg (A[1..n]) :
if \((\mathbf{n}=\mathbf{0})\) return 0
\(\mathrm{m}=1\)
for \(\mathbf{i}=\mathbf{1}\) to \(\mathbf{n}-\mathbf{1}\) do
        if ( \(A[i]<A[n]\) ) then
        \(\mathrm{m}=\max (\mathrm{m}, 1+\) LIS_ending_alg(A[1..i] \())\)
```

 return m
 LIS (A[1..n]) :
return max ${ }_{i=1}^{n}$ LIS_ending_alg(A[1...i])

- How many distinct sub-problems will LIS_ending_alg(A[1..n]) generate? $\mathbf{O}(n)$
- What is the running time if we memoize recursion? $\mathbf{O}\left(\mathbf{n}^{2}\right)$ since each call takes $\mathbf{O}(\mathbf{n})$ time
- How much space for memoization?

Recursive Algorithm: Take 2

```
LIS_ending_alg (A[1..n]) :
if \((\mathbf{n}=\mathbf{0})\) return 0
\(\mathrm{m}=1\)
for \(\mathbf{i}=\mathbf{1}\) to \(\mathbf{n}-\mathbf{1}\) do
        if ( \(A[i]<A[n]\) ) then
        \(\mathbf{m}=\max (\mathbf{m}, 1+\) LIS_ending_alg(A[1..i]) \()\)
```

 return m
 LIS (A[1..n]) :
return max ${ }_{i=1}^{n}$ LIS_ending_alg(A[1...i])

- How many distinct sub-problems will LIS_ending_alg(A[1..n]) generate? $\mathbf{O}(n)$
- What is the running time if we memoize recursion? $\mathbf{O}\left(\mathbf{n}^{2}\right)$ since each call takes $\mathbf{O}(\mathbf{n})$ time
- How much space for memoization? O(n)

Removing recursion to obtain iterative algorithm

Typically, after finding a dynamic programming recursion, we often convert the recursive algorithm into an iterative algorithm via explicit memoization and bottom up computation.

Why?

Removing recursion to obtain iterative algorithm

Typically, after finding a dynamic programming recursion, we often convert the recursive algorithm into an iterative algorithm via explicit memoization and bottom up computation.

Why? Mainly for further optimization of running time and space.

Removing recursion to obtain iterative algorithm

Typically, after finding a dynamic programming recursion, we often convert the recursive algorithm into an iterative algorithm via explicit memoization and bottom up computation.

Why? Mainly for further optimization of running time and space.

How?

- First, allocate a data structure (usually an array or a multi-dimensional array that can hold values for each of the subproblems)
- Figure out a way to order the computation of the sub-problems starting from the base case.

Removing recursion to obtain iterative algorithm

Typically, after finding a dynamic programming recursion, we often convert the recursive algorithm into an iterative algorithm via explicit memoization and bottom up computation.

Why? Mainly for further optimization of running time and space.
How?

- First, allocate a data structure (usually an array or a multi-dimensional array that can hold values for each of the subproblems)
- Figure out a way to order the computation of the sub-problems starting from the base case.

Caveat: Dynamic programming is not about filling tables. It is about finding a smart recursion. First, find the correct

Iterative Algorithm via Memoization

Compute the values LIS_ending_alg(A[1..i]) iteratively in a bottom up fashion.

LIS_ending_alg (A[1..n]):
Array L[1..n] (* L[i] = value of LIS_ending_alg(A[1..i]) *)
for $\mathbf{i}=\mathbf{1}$ to \mathbf{n} do

$$
\mathrm{L}[\mathrm{i}]=1
$$

$$
\text { for } j=1 \text { to } i-1 \text { do }
$$

if $(A[j]<A[i])$ do
$\mathrm{L}[\mathrm{i}]=\max (\mathrm{L}[\mathrm{i}], 1+\mathrm{L}[\mathrm{j}])$
return L
$\operatorname{LIS}(A[1 . . n])$:
L = LIS_ending_alg(A[1..n])
return the maximum value in \mathbf{L}

Iterative Algorithm via Memoization

Simplifying:
LIS(A[1..n]):
Array L[1..n] (* L[i] stores the value LISEnding(A[1..i]) *) m $=0$
for $\mathbf{i}=1$ to \mathbf{n} do
$\mathrm{L}[\mathrm{i}]=1$
for $\mathrm{j}=1$ to $\mathbf{i}-\mathbf{1}$ do
if $(\mathbf{A}[\mathrm{j}]<\mathbf{A}[\mathrm{i}])$ do
$\mathrm{L}[\mathrm{i}]=\max (\mathrm{L}[\mathrm{i}], 1+\mathrm{L}[\mathrm{j}])$
$m=\max (\mathrm{m}, \mathrm{L}[\mathrm{i}])$
return m

Iterative Algorithm via Memoization

Simplifying:
LIS(A[1..n]):
Array $\mathrm{L}[1 . . \mathrm{n}]$ (* L[i] stores the value LISEnding(A[1..i]) *) $\mathrm{m}=0$
for $\mathbf{i}=\mathbf{1}$ to \mathbf{n} do
$\mathrm{L}[\mathrm{i}]=1$
for $\mathrm{j}=1$ to $\mathbf{i}-\mathbf{1}$ do
if $(\mathbf{A}[\mathbf{j}]<\mathbf{A}[\mathrm{i}])$ do
$\mathrm{L}[\mathrm{i}]=\max (\mathrm{L}[\mathrm{i}], 1+\mathrm{L}[\mathrm{j}])$
$m=\max (\mathrm{m}, \mathrm{L}[\mathrm{i}])$
return m
Correctness: Via induction following the recursion Running time:

Iterative Algorithm via Memoization

Simplifying:
LIS(A[1..n]):

```
Array L[1..n] (* L[i] stores the value LISEnding(A[1..i]) *)
    m=0
    for i= 1 to n do
        L[i] = 1
        for j=1 to i-1 do
        if (A[j]<A[i]) do
            L[i] = max(L[i], 1 + L[j])
    m}=\operatorname{max}(m,L[\textrm{i}]
    return m
```

Correctness: Via induction following the recursion Running time: $\mathbf{O}\left(\mathbf{n}^{\mathbf{2}}\right)$ Space:

Iterative Algorithm via Memoization

Simplifying:

$$
\operatorname{LIS}(A[1 . . n]):
$$

Array $\mathrm{L}[1 . . \mathrm{n}]$ (* L[i] stores the value LISEnding(A[1..i]) *)

$$
\mathbf{m}=0
$$

$$
\text { for } \mathbf{i}=\mathbf{1} \text { to } \mathbf{n} \text { do }
$$

$$
\mathrm{L}[i]=1
$$

$$
\text { for } \mathrm{j}=1 \text { to } \mathrm{i}-1 \text { do }
$$

$$
\text { if }(\mathbf{A}[\mathbf{j}]<\mathbf{A}[\mathrm{i}]) \text { do }
$$

$$
\mathrm{L}[\mathrm{i}]=\max (\mathrm{L}[\mathrm{i}], 1+\mathrm{L}[\mathrm{j}])
$$

$$
m=\max (m, L[i])
$$

return m
Correctness: Via induction following the recursion Running time: $\mathbf{O}\left(\mathbf{n}^{\mathbf{2}}\right)$
Space: $\boldsymbol{\Theta}(\mathbf{n})$

Iterative Algorithm via Memoization

Simplifying:

$$
\operatorname{LIS}(A[1 . . n]):
$$

```
Array L[1..n] (* L[i] stores the value LISEnding(A[1..i]) *)
    \(\mathrm{m}=0\)
    for \(\mathbf{i}=\mathbf{1}\) to \(\mathbf{n}\) do
        \(\mathrm{L}[\mathrm{i}]=1\)
        for \(\mathrm{j}=1\) to \(\mathbf{i}-\mathbf{1}\) do
        if \((\mathbf{A}[\mathbf{j}]<\mathbf{A}[\mathrm{i}])\) do
        \(\mathrm{L}[\mathrm{i}]=\max (\mathrm{L}[\mathrm{i}], 1+\mathrm{L}[\mathrm{j}])\)
        \(\mathbf{m}=\max (\mathrm{m}, \mathrm{L}[\mathrm{i}])\)
    return m
```

Correctness: Via induction following the recursion Running time: $\mathbf{O}\left(\mathbf{n}^{\mathbf{2}}\right)$
Space: $\boldsymbol{\Theta}(\mathbf{n})$
$\mathbf{O}(\mathbf{n} \log \mathbf{n})$ run-time achievable via better data structures.

Example
Example

- Sequence: 6, 3, 5, 2, 7, 8, 1, 9

Longest increasing subsequence: $3,5,7,8,9$

$$
\begin{aligned}
& L[1 . .8] \quad L[i]=L \text { Sending }(A[1 . . i]) \\
& L[1]=1 \\
& L[2]=\max ((\$ 1,1+1+0)=1 \\
& L[3)=\max (1,1+L[2], 1+0)= \\
& L[4]=\max (1,1+0) \\
& L[5]=
\end{aligned}
$$

Example

Example

(1) Sequence: $6,3,5,2,7,8,1$
(2) Longest increasing subsequence: $3,5,7,8$
(1) $\mathrm{L}[\mathbf{i}]$ is value of longest increasing subsequence ending in $\mathbf{A}[\mathbf{i}]$
(2) Recursive algorithm computes $L[i]$ from $L[1]$ to $L[i-1]$
(3) Iterative algorithm builds up the values from $L[1]$ to $L[n]$

Computing Solutions

(1) Memoization + Recursion/Iteration allows one to compute the optimal value. What about the actual sub-sequence?
(2) Two methods
(1) Explicit: For each subproblem find an optimum solution for that subproblem while computing the optimum value for that subproblem. Typically slow but automatic.
(2) Implicit: For each subproblem keep track of sufficient information (decision) on how optimum solution for subproblem was computed. Reconstruct optimum solution later via stored information. Typically much more efficient but requires more thought.

Computing Solution: Explicit method for LIS

LIS(A[1..n]) :

Array $\mathbf{S}[1 . . n]$ (* $\mathrm{S}[\mathrm{i}]$ stores the sequence achieving $\mathrm{L}[\mathrm{i}] *$)
$\mathrm{m}=0$
$h=0$
for $\mathbf{i}=\mathbf{1}$ to \mathbf{n} do
$\mathrm{L}[\mathrm{i}]=1$
$\mathrm{S}[\mathrm{i}]=[\mathrm{i}]$
for $\mathbf{j}=1$ to $\mathbf{i}-\mathbf{1}$ do
if ($\mathrm{A}[\mathrm{j}]<\mathrm{A}[\mathrm{i}]$) and ($\mathrm{L}[\mathrm{i}]<\mathbf{1}+\mathrm{L}[\mathrm{j}]$) do
$\mathrm{L}[\mathrm{i}]=1+\mathrm{L}[\mathrm{j}]$
$\mathrm{S}[\mathrm{i}]=\operatorname{concat}(\mathrm{S}[\mathrm{j}],[\mathrm{i}])$
if $(\mathbf{m}<\mathrm{L}[\mathrm{i}]) \mathrm{m}=\mathrm{L}[\mathrm{i}], \mathrm{h}=\mathbf{i}$
return $m, S[h]$

Computing Solution: Explicit method for LIS

LIS (A[1..n]) :

```
Array L[1..n] (* L[i] stores the value LISEnding(A[1..i]) *)
Array S[1..n] (* S[i] stores the sequence achieving L[i] *)
\(\mathrm{m}=0\)
\(h=0\)
for \(\mathbf{i}=\mathbf{1}\) to \(\mathbf{n}\) do
```

$$
\mathrm{L}[\mathrm{i}]=1
$$

$$
\mathrm{S}[\mathrm{i}]=[\mathrm{i}]
$$

$$
\text { for } \mathrm{j}=1 \text { to } \mathrm{i}-\mathbf{1} \text { do }
$$

$$
\text { if }(\mathbf{A}[\mathbf{j}]<\mathbf{A}[\mathrm{i}]) \text { and }(\mathrm{L}[\mathrm{i}]<\mathbf{1}+\mathrm{L}[\mathrm{j}]) \text { do }
$$

$$
L[i]=1+L[j]
$$

$$
\mathrm{S}[\mathrm{i}]=\operatorname{concat}(\mathrm{S}[\mathrm{j}],[\mathrm{i}])
$$

$$
\text { if }(m<L[i]) m=L[i], h=i
$$

return m, S[h]
Running time: $\mathbf{O}\left(\mathbf{n}^{\mathbf{3}}\right)$ Space: $\mathbf{O}\left(\mathbf{n}^{\mathbf{2}} \mathbf{)}\right.$. Extra time/space to store, copy

Computing Solution: Implicit method for LIS

LIS (A[1..n]) :

```
Array L[1..n] (* L[i] stores the value LISEnding(A[1..i]) *)
Array D[1..n] (* D[i] stores how L[i] was computed *)
m}=
h}=
for i=1 to n do
    L[i] = 1
    D[i] = i
    for j=1 to i-1 do
        if (A[j]<A[i]) and (L[i]<1+L[j]) do
        L[i] = 1 + L[j]
        D[i] = j
```

 if \((\mathbf{m}<\mathrm{L}[\mathrm{i}]) \mathbf{m}=\mathrm{L}[\mathrm{i}], \mathrm{h}=\mathbf{i}\)
 \(\mathbf{m}=\mathrm{L}[\mathbf{h}]\) is optimum value

Computing Solution: Implicit method for LIS

$\operatorname{LIS}(A[1 . . n])$:

Array L[1..n] (* L[i] stores the value LISEnding(A[1..i]) *)
Array $\mathrm{D}[1 . . \mathrm{n}]$ (* $\mathrm{D}[\mathrm{i}]$ stores how $\mathrm{L}[\mathrm{i}]$ was computed $*$)
$\mathrm{m}=0$
$h=0$
for $\mathbf{i}=\mathbf{1}$ to \mathbf{n} do
$\mathrm{L}[\mathrm{i}]=1$
$\mathrm{D}[\mathrm{i}]=\mathrm{i}$
for $\mathbf{j}=1$ to $\mathbf{i}-\mathbf{1}$ do
if ($\mathbf{A}[\mathrm{j}]<\mathbf{A}[\mathrm{i}]$) and ($\mathrm{L}[\mathrm{i}]<\mathbf{1}+\mathrm{L}[\mathrm{j}]$) do
$\mathrm{L}[\mathrm{i}]=1+\mathrm{L}[\mathrm{j}]$
$\mathrm{D}[\mathrm{i}]=\mathrm{j}$
if $(\mathbf{m}<\mathrm{L}[\mathrm{i}]) \mathrm{m}=\mathrm{L}[\mathrm{i}], \mathrm{h}=\mathbf{i}$
$\mathbf{m}=\mathrm{L}[\mathrm{h}]$ is optimum value

Question: Can we obtain solution from stored \mathbf{D} values and \mathbf{h} ?

Computing Solution: Implicit method for LIS

LIS (A[1..n]) :

```
Array \(\mathrm{L}[1 . . \mathrm{n}]\) (* L[i] stores the value LISEnding(A[1..i]) *)
    Array \(\mathrm{D}[1 . . \mathrm{n}]\) (* \(\mathrm{D}[\mathrm{i}]\) stores how \(\mathrm{L}[\mathrm{i}]\) was computed \(*\) )
    \(\mathrm{m}=0, \mathrm{~h}=0\)
    for \(\mathbf{i}=\mathbf{1}\) to \(\mathbf{n}\) do
        \(\mathrm{L}[\mathrm{i}]=1\)
        \(\mathrm{D}[\mathrm{i}]=0\)
        for \(\mathrm{j}=1\) to \(\mathbf{i}-\mathbf{1}\) do
        if ( \(\mathrm{A}[\mathrm{j}]<\mathrm{A}[\mathrm{i}]\) ) and ( \(\mathrm{L}[\mathrm{i}]<\mathbf{1}+\mathrm{L}[\mathrm{j}]\) ) do
        \(\mathrm{L}[\mathrm{i}]=1+\mathrm{L}[\mathrm{j}], \mathrm{D}[\mathrm{i}]=\mathrm{j}\)
    if \((\mathbf{m}<\mathrm{L}[\mathrm{i}]) \mathbf{m}=\mathrm{L}[\mathrm{i}], \mathrm{h}=\mathbf{i}\)
    S = empty sequence
    while ( \(h>0\) ) do
        add \(\mathbf{L}[\mathbf{h}]\) to front of \(\mathbf{S}\)
        \(h=D[h]\)
Output optimum value \(\mathbf{m}\), and an optimum subsequence \(\mathbf{S}\)
```


Computing Solution: Implicit method for LIS

LIS (A[1..n]) :

```
Array \(\mathrm{L}[1 . . \mathrm{n}]\) (* L[i] stores the value LISEnding(A[1..i]) *)
    Array \(\mathrm{D}[1 . . \mathrm{n}]\) (* \(\mathrm{D}[\mathrm{i}]\) stores how \(\mathrm{L}[\mathrm{i}]\) was computed \(*\) )
    \(\mathrm{m}=0, \mathrm{~h}=0\)
    for \(\mathbf{i}=\mathbf{1}\) to \(\mathbf{n}\) do
        \(\mathrm{L}[\mathrm{i}]=1\)
        \(\mathrm{D}[\mathrm{i}]=0\)
        for \(\mathrm{j}=1\) to \(\mathbf{i}-\mathbf{1}\) do
        if ( \(\mathrm{A}[\mathrm{j}]<\mathrm{A}[\mathrm{i}]\) ) and ( \(\mathrm{L}[\mathrm{i}]<\mathbf{1}+\mathrm{L}[\mathrm{j}]\) ) do
        \(\mathrm{L}[\mathrm{i}]=1+\mathrm{L}[\mathrm{j}], \mathrm{D}[\mathrm{i}]=\mathrm{j}\)
    if \((\mathbf{m}<\mathrm{L}[\mathrm{i}]) \mathbf{m}=\mathrm{L}[\mathrm{i}], \mathrm{h}=\mathbf{i}\)
    \(\mathbf{S}=\) empty sequence
    while ( \(h>0\) ) do
        add \(\mathbf{L}[\mathbf{h}]\) to front of \(\mathbf{S}\)
        \(h=D[h]\)
    Output optimum value \(\mathbf{m}\), and an optimum subsequence \(\mathbf{S}\)
```

Running time: $\mathbf{O}\left(\mathbf{n}^{\mathbf{2}}\right)$ Space: $\mathbf{O (n)}$.

Dynamic Programming

(1) Find a "smart" recursion for the problem in which the number of distinct subproblems is small; polynomial in the original problem size.
(2) Estimate the number of subproblems, the time to evaluate each subproblem and the space needed to store the value. This gives an upper bound on the total running time if we use automatic memoization.
(0 Eliminate recursion and find an iterative algorithm to compute the problems bottom up by storing the intermediate values in an appropriate data structure; need to find the right way or order the subproblem evaluation. This leads to an explicit algorithm.

- Optimize the resulting algorithm further

Part II

Checking if string in

Problem

Input A string $\mathbf{w} \in \boldsymbol{\Sigma}^{*}$ and access to a language $\mathbf{L} \subseteq \boldsymbol{\Sigma}^{*}$ via function IsStringinL(string \mathbf{x}) that decides whether \mathbf{x} is in L
Goal Decide if $\mathbf{w} \in \mathbf{L}^{*}$ using IsStringinL(string \mathbf{x}) as a black box sub-routine

Example

Suppose \mathbf{L} is English and we have a procedure to check whether a string/word is in the English dictionary.

- Is the string "isthisanenglishsentence" in English*?
- Is "stampstamp" in English*?
- Is "zibzzzad" in English*?

Recursive Solution

When is $\mathbf{w} \in \mathbf{L}^{*}$?

Recursive Solution

When is $\mathbf{w} \in \mathbf{L}^{*}$?
$\mathbf{w} \in \mathbf{L}^{*}$ if $\mathbf{w} \in \mathbf{L}$ or if $\mathbf{w}=\mathbf{u v}$ where $\mathbf{u} \in \mathbf{L}$ and $\mathbf{v} \in \mathbf{L}^{*}$

Recursive Solution

When is $\mathbf{w} \in \mathbf{L}^{*}$?
$\mathbf{w} \in \mathbf{L}^{*}$ if $\mathbf{w} \in \mathbf{L}$ or if $\mathbf{w}=\mathbf{u v}$ where $\mathbf{u} \in \mathbf{L}$ and $\mathbf{v} \in \mathbf{L}^{*}$
Assume wis stored in array \mathbf{A} [1..n]
IsStringinLstar(A[1..n]):
If (IsStringinL(A[1..n]))
Output YES
Else

$$
\text { For }(\mathbf{i}=\mathbf{1} \text { to } \mathbf{n}-\mathbf{1}) \text { do }
$$

If (IsStringinL(A[1..i]) and IsStringinLstar(A[i+1..n])) Output YES

Output NO

Recursive Solution

Assume wis stored in array \mathbf{A} [1..n]
IsStringinLstar(A[1..n]):
If (IsStringinL(A[1..n]))
Output YES
Else

$$
\text { For }(\mathbf{i}=\mathbf{1} \text { to } \mathbf{n}-\mathbf{1} \text {) do }
$$

If (IsStringinL(A[1..i]) and IsStringinLstar(A[i+1..n]))
Output YES
Output NO

- How many distinct sub-problems does IsStringinLstar(A[1..n]) generate?

Recursive Solution

Assume wis stored in array \mathbf{A} [1..n]
IsStringinLstar(A[1..n]):
If (IsStringinL(A[1..n]))
Output YES
Else

$$
\text { For }(\mathbf{i}=\mathbf{1} \text { to } \mathbf{n}-\mathbf{1} \text {) do }
$$

If (IsStringinL(A[1..i]) and IsStringinLstar(A[i+1..n]))
Output YES
Output NO

- How many distinct sub-problems does IsStringinLstar(A[1..n]) generate? $\mathbf{O}(\mathrm{n})$

Recursive Solution

Assume wis stored in array $\mathbf{A}[\mathbf{1 . . n}]$
IsStringinLstar(A[1..n]):
If (IsStringinL(A[1..n]))
Output YES
Else

$$
\text { For }(\mathbf{i}=\mathbf{1} \text { to } \mathbf{n}-\mathbf{1} \text {) do }
$$

If (IsStringinL(A[1..i]) and IsStringinLstar(A[i+1..n]))
Output YES
Output NO

- How many distinct sub-problems does IsStringinLstar(A[1..n]) generate? $\mathbf{O}(\mathrm{n})$
- What is running time of memoized version of IsStringinLstar(A[1..n])?

Recursive Solution

Assume wis stored in array $\mathbf{A}[\mathbf{1 . . n}]$
IsStringinLstar(A[1..n]):
If (IsStringinL(A[1..n]))
Output YES
Else

$$
\text { For }(\mathbf{i}=\mathbf{1} \text { to } \mathbf{n}-\mathbf{1} \text {) do }
$$

If (IsStringinL(A[1..i]) and IsStringinLstar(A[i+1..n]))
Output YES
Output NO

- How many distinct sub-problems does IsStringinLstar(A[1..n]) generate? $\mathbf{O}(\mathrm{n})$
- What is running time of memoized version of IsStringinLstar(A[1..n])? O(\mathbf{n}^{2})

Recursive Solution

Assume wis stored in array $\mathbf{A}[\mathbf{1 . . n}]$
IsStringinLstar(A[1..n]):
If (IsStringinL(A[1..n]))
Output YES
Else

$$
\text { For (} \mathbf{i}=\mathbf{1} \text { to } \mathbf{n}-\mathbf{1} \text {) do }
$$

If (IsStringinL(A[1..i]) and IsStringinLstar(A[i+1..n])) Output YES

Output NO

- How many distinct sub-problems does IsStringinLstar(A[1..n]) generate? $\mathbf{O}(\mathrm{n})$
- What is running time of memoized version of IsStringinLstar(A[1..n])? O(n ${ }^{2}$)
- What is space requirement of memoized version of IsStringinLstar(A[1..n])?

Recursive Solution

Assume wis stored in array $\mathbf{A}[\mathbf{1 . . n}]$
IsStringinLstar(A[1..n]):
If (IsStringinL(A[1..n]))
Output YES
Else

$$
\text { For }(\mathbf{i}=\mathbf{1} \text { to } \mathbf{n}-\mathbf{1} \text {) do }
$$

If (IsStringinL(A[1..i]) and IsStringinLstar(A[i+1..n])) Output YES

Output NO

- How many distinct sub-problems does IsStringinLstar(A[1..n]) generate? $\mathbf{O}(\mathrm{n})$
- What is running time of memoized version of IsStringinLstar(A[1..n])? O(n ${ }^{2}$)
- What is space requirement of memoized version of IsStringinLstar(A[1..n])? O(n)

A variation

Input A string $\mathbf{w} \in \boldsymbol{\Sigma}^{*}$ and access to a language $\mathbf{L} \subseteq \boldsymbol{\Sigma}^{*}$ via function IsStringinL(string \mathbf{x}) that decides whether \mathbf{x} is in \mathbf{L}, and non-negative integer \mathbf{k}
Goal Decide if $\mathbf{w} \in \mathbf{L}^{\mathbf{k}}$ using IsStringinL(string \mathbf{x}) as a black box sub-routine

Example

Suppose L is English and we have a procedure to check whether a string/word is in the English dictionary.

- Is the string "isthisanenglishsentence" in English ${ }^{5}$?
- Is the string "isthisanenglishsentence" in English ${ }^{4}$?
- Is "asinineat" in English ${ }^{2}$?
- Is "asinineat" in English ${ }^{4}$?
- Is "zibzzzad" in English?

Recursive Solution

When is $\mathbf{w} \in \mathbf{L}^{\mathrm{k}}$?

Recursive Solution

When is $\mathbf{w} \in \mathbf{L}^{\mathrm{k}}$?
$\mathrm{k}=0: \mathbf{w} \in \mathrm{L}^{\mathrm{k}}$ iff $\mathbf{w}=\boldsymbol{\epsilon}$
$\mathbf{k}=\mathbf{1}: \mathbf{w} \in \mathbf{L}^{\mathrm{k}}$ iff $\mathbf{w} \in \mathbf{L}$
$\mathbf{k}>\mathbf{1}: \mathbf{w} \in \mathbf{L}^{\mathbf{k}}$ if $\mathbf{w}=\mathbf{u v}$ with $\mathbf{u} \in \mathbf{L}$ and $\mathbf{v} \in \mathbf{L}^{\mathbf{k}-\mathbf{1}}$

Recursive Solution

When is $\mathbf{w} \in \mathbf{L}^{\mathrm{k}}$?
$\mathrm{k}=0: \mathbf{w} \in \mathrm{L}^{\mathrm{k}}$ iff $\mathbf{w}=\boldsymbol{\epsilon}$
$\mathbf{k}=\mathbf{1}: \mathbf{w} \in \mathbf{L}^{\mathrm{k}}$ iff $\mathbf{w} \in \mathbf{L}$
$\mathbf{k}>\mathbf{1}: \mathbf{w} \in \mathbf{L}^{\mathbf{k}}$ if $\mathbf{w}=\mathbf{u v}$ with $\mathbf{u} \in \mathbf{L}$ and $\mathbf{v} \in \mathbf{L}^{\mathbf{k}-1}$
Assume \mathbf{w} is stored in array $\mathbf{A}[\mathbf{1 . . n}]$
IsStringinLk(A[1..n], k):
If ($\mathbf{k}=0$)
If ($\mathbf{n}=\mathbf{0}$) Output YES
Else Ouput NO
If ($k=1$)
Output IsStringinL(A[1..n])
Else

$$
\begin{aligned}
\text { For } & (\mathbf{i}=1 \text { to } \mathbf{n}-1) \text { do } \\
\text { If } & \text { (IsStringinL(A }[1 . . i]) \text { and IsStringinLk(A[i+1..n], } k-1)) \\
& \text { Output YES }
\end{aligned}
$$

Output NO

Analysis

```
IsStringinLk(A[1..n], k):
    If (k = 0)
        If (n=0) Output YES
        Else Ouput NO
    If (k=1)
    Output IsStringinL(A[1..n])
    Else
        For (i=1 to n-1) do
        If (IsStringinL(A[1..i]) and IsStringinLk(A[i+1..n],k-1))
        Output YES
```

Output NO

- How many distinct sub-problems are generated by IsStringinLk(A[1..n], k)?

Analysis

```
IsStringinLk(A[1..n], k):
    If (k = 0)
        If (n=0) Output YES
        Else Ouput NO
    If (k=1)
    Output IsStringinL(A[1..n])
    Else
        For (i=1 to n-1) do
        If (IsStringinL(A[1..i]) and IsStringinLk(A[i+1..n],k - 1))
        Output YES
```

Output NO

- How many distinct sub-problems are generated by IsStringinLk(A[1..n], k)? O(nk)

Analysis

```
IsStringinLk(A[1..n], k):
    If (k = 0)
        If (n=0) Output YES
        Else Ouput NO
    If (k=1)
    Output IsStringinL(A[1..n])
    Else
        For (i=1 to n-1) do
        If (IsStringinL(A[1..i]) and IsStringinLk(A[i+1..n],k - 1))
        Output YES
```

Output NO

- How many distinct sub-problems are generated by IsStringinLk(A[1..n], k)? O(nk)
- How much space?

Analysis

```
IsStringinLk(A[1..n], k):
    If \((k=0)\)
        If ( \(\mathbf{n}=\mathbf{0}\) ) Output YES
        Else Ouput NO
    If ( \(k=1\) )
    Output IsStringinL(A[1..n])
    Else
        For ( \(\mathbf{i}=\mathbf{1}\) to \(\mathbf{n}-\mathbf{1}\) ) do
        If (IsStringinL(A[1..i]) and IsStringinLk(A[i+1..n],k-1))
        Output YES
    Output NO
```

- How many distinct sub-problems are generated by IsStringinLk(A[1..n], k)? O(nk)
- How much space? $\mathbf{O}(\mathbf{n k})$ pause
- Running time?

Analysis

```
IsStringinLk(A[1..n], k):
    If (k = 0)
        If (n=0) Output YES
        Else Ouput NO
    If (k=1)
    Output IsStringinL(A[1..n])
    Else
        For (i=1 to n-1) do
        If (IsStringinL(A[1..i]) and IsStringinLk(A[i+1..n],k - 1))
        Output YES
```

Output NO

- How many distinct sub-problems are generated by IsStringinLk(A[1..n], k)? O(nk)
- How much space? $\mathbf{O}(\mathbf{n k})$ pause
- Running time? $\mathbf{O}\left(\mathbf{n}^{2} \mathbf{k}\right)$

Another variant

Question: What if we want to check if $\mathbf{w} \in \mathbf{L}^{\mathbf{i}}$ for some $\mathbf{0} \leq \mathbf{i} \leq \mathbf{k}$? That is, is $\mathbf{w} \in \cup_{i=0}^{k} L^{i}$?

Exercise

Definition

A string is a palindrome if $\mathbf{w}=\mathbf{w}^{R}$. Examples: I, RACECAR, MALAYALAM, DOOFFOOD

Exercise

Definition

A string is a palindrome if $\mathbf{w}=\mathbf{w}^{\mathbf{R}}$.
Examples: I, RACECAR, MALAYALAM, DOOFFOOD

Problem: Given a string w find the longest subsequence of \mathbf{w} that is a palindrome.

Example

MAHDYNAMICPROGRAMZLETMESHOWYOUTHEM has MHYMRORMYHM as a palindromic subsequence

Exercise

Assume \mathbf{w} is stored in an array $\mathbf{A}[\mathbf{1 . . n}]$
$\operatorname{LPS}(\mathbf{A}[1 . . n])$: length of longest palindromic subsequence of \mathbf{A}.
Recursive expression/code?

Edit Distance

Definition

Edit distance between two words X and Y is the number of letter insertions, letter deletions and letter substitutions required to obtain Y from X.

Example

The edit distance between FOOD and MONEY is at most 4: $\underline{F O O D} \rightarrow$ MOQD \rightarrow MONOD \rightarrow MONED \rightarrow MONEY

Edit Distance: Alternate View

Alignment

Place words one on top of the other, with gaps in the first word indicating insertions, and gaps in the second word indicating deletions.

F	O	O		D
M	O	N	E	Y

Edit Distance: Alternate View

Alignment

Place words one on top of the other, with gaps in the first word indicating insertions, and gaps in the second word indicating deletions.

Formally, an alignment is a set M of pairs (i, j) such that each index appears at most once, and there is no "crossing": $i<i$ ' and \boldsymbol{i} is matched to j implies i^{\prime} is matched to $j^{\prime}>j$. In the above example, this is $M=\{(1,1),(2,2),(3,3),(4,5)\}$.

Edit Distance: Alternate View

Alignment

Place words one on top of the other, with gaps in the first word indicating insertions, and gaps in the second word indicating deletions.

Formally, an alignment is a set M of pairs (i, j) such that each index appears at most once, and there is no "crossing": $i<i$ ' and \boldsymbol{i} is matched to j implies i^{\prime} is matched to $j^{\prime}>j$. In the above example, this is $M=\{(1,1),(2,2),(3,3),(4,5)\}$. Cost of an alignment is the number of mismatched columns plus number of unmatched indices in both strings.

Edit Distance Problem

Problem

Given two words, find the edit distance between them, i.e., an alignment of smallest cost.

Edit Distance

Basic observation

Let $X=\alpha x$ and $Y=\beta y$
$\boldsymbol{\alpha}, \boldsymbol{\beta}$: strings. x and y single characters.
Possible alignments between X and Y

α	x
$\boldsymbol{\beta}$	\boldsymbol{y}

or
or

αx	
β	y

Observation

Prefixes must have optimal alignment!

Edit Distance

Basic observation

Let $X=\alpha x$ and $Y=\beta y$
$\boldsymbol{\alpha}, \boldsymbol{\beta}$: strings. x and y single characters.
Possible alignments between X and Y

α	x			
β	y	or	α	x
:---:	:---:			
βy		\quad or	αx	
:---:				
$\boldsymbol{\beta}$				

Observation

Prefixes must have optimal alignment!

$$
\operatorname{EDIST}(X, Y)=\min \left\{\begin{array}{l}
\operatorname{EDIST}(\alpha, \beta)+[x=y] \\
1+\operatorname{EDIST}(\alpha, Y) \\
1+\operatorname{EDIST}(X, \beta)
\end{array}\right.
$$

Recursive Algorithm

Assume X is stored in array $\boldsymbol{A}[\mathbf{1 . . m}]$ and Y is stored in $B[\mathbf{1 . . n}]$

$$
\begin{aligned}
& \text { EDIST }(A[1 . . m], B[1 . . n]) \\
& \text { If }(m=0) \text { return } n \\
& \text { If }(n=0) \text { return } m \\
& m_{1}=1+E D I S T(A[1 . .(m-1)], B[1 . . n]) \\
& \left.m_{2}=1+E D I S T(A[1 . . m], B[1 . .(n-1)])\right) \\
& \text { If }(A[m]=B[n]) \text { then } \\
& \quad m_{3}=E D I S T(A[1 . .(m-1)], B[1 . .(n-1)]) \\
& \text { Else } \\
& \quad m_{3}=1+E D I S T(A[1 . .(m-1)], B[1 . .(n-1)]) \\
& \text { return } \min \left(m_{1}, m_{2}, m_{3}\right)
\end{aligned}
$$

Example

DEED and DREAD

Subproblems and Recurrence

Each subproblem corresponds to a prefix of X and a prefix of Y

Optimal Costs

Let $\operatorname{Opt}(i, j)$ be optimal cost of aligning $x_{1} \cdots x_{i}$ and $y_{1} \cdots y_{j}$. Then

$$
\operatorname{Opt}(i, j)=\min \left\{\begin{array}{l}
{\left[x_{i}=y_{j}\right]+\operatorname{Opt}(i-1, j-1),} \\
1+\operatorname{Opt}(i-1, j), \\
1+\operatorname{Opt}(i, j-1)
\end{array}\right.
$$

Base Cases: $\operatorname{Opt}(i, 0)=i$ and $\operatorname{Opt}(\mathbf{0}, j)=j$

Memoizing the Recursive Algorithm

```
int M[0..m][0..n]
Initialize all entries of M[i][j] to }
return EDIST(A[1..m],B[1..n])
```


$\operatorname{EDIST}(A[1 . . m], B[1 . . n])$

```
If \((M[i][j]<\infty)\) return \(M[i][j]\) (* return stored value *)
If ( \(\boldsymbol{m}=0\) )
\(M[i][j]=n\)
```

ElseIf ($\boldsymbol{n}=0$)
$M[i][j]=m$

Else
$m_{1}=1+\operatorname{EDIST}(A[1 . .(m-1)], B[1 . . n])$
$\left.m_{2}=1+\operatorname{EDIST}(A[1 . . m], B[1 . .(n-1)])\right)$
If $(A[m]=B[n]) m_{3}=\operatorname{EDIST}(A[1 . .(m-1)], B[1 . .(n-1)])$
Else $m_{3}=1+\operatorname{EDIST}(A[1 . .(m-1)], B[1 . .(n-1)])$
$M[i][j]=\min \left(m_{1}, m_{2}, m_{3}\right)$
return $M[i][j]$

Removing Recursion to obtain Iterative Algorithm

$$
\begin{aligned}
& \text { EDIST }(A[1 . . m], B[1 . . n]) \\
& \text { int } M[0 . . m][0 . . n] \\
& \text { for } i=1 \text { to } m \text { do } M[i, 0]=i \\
& \text { for } j=1 \text { to } n \text { do } M[0, j]=j \\
& \text { for } i=1 \text { to } m \text { do } \\
& \text { for } j=1 \text { to } n \text { do } \\
& \qquad M[i][j]=\min \left\{\begin{array}{l}
{\left[x_{i}=y_{j}\right]+M[i-1][j-1],} \\
1+M[i-1][j] \\
1+M[i][j-1]
\end{array}\right. \\
& \hline
\end{aligned}
$$

Removing Recursion to obtain Iterative Algorithm

$$
\begin{aligned}
& \operatorname{EDIST}(A[1 . . m], B[1 . . n]) \\
& \text { int } M[0 . . m][0 . . n] \\
& \text { for } i=1 \text { to } m \text { do } M[i, 0]=i \\
& \text { for } j=1 \text { to } n \text { do } M[0, j]=j \\
& \text { for } i=1 \text { to } m \text { do } \\
& \text { for } j=1 \text { to } n \text { do } \\
& \qquad M[i][j]=\min \left\{\begin{array}{l}
{\left[x_{i}=y_{j}\right]+M[i-1][j-1],} \\
1+M[i-1][j] \\
1+M[i][j-1]
\end{array}\right.
\end{aligned}
$$

Analysis

Removing Recursion to obtain Iterative Algorithm

$$
\begin{aligned}
& \operatorname{EDIST}(A[1 . . m], B[1 . . n]) \\
& \text { int } M[0 . . m][0 . . n] \\
& \text { for } i=1 \text { to } m \text { do } M[i, 0]=i \\
& \text { for } j=1 \text { to } n \text { do } M[0, j]=j \\
& \text { for } i=1 \text { to } m \text { do } \\
& \text { for } j=1 \text { to } n \text { do } \\
& \qquad M[i][j]=\min \left\{\begin{array}{l}
{\left[x_{i}=y_{j}\right]+M[i-1][j-1],} \\
1+M[i-1][j] \\
1+M[i][j-1]
\end{array}\right.
\end{aligned}
$$

Analysis

(1) Running time is $O(m n)$.
(2) Space used is $O(\mathbf{m n})$.

Matrix and DAG of Computation

Figure: Iterative algorithm in previous slide computes values in row order.

Finding an Optimum Solution

The DP algorithm finds the minimum edit distance in $O(n m)$ space and time.

Question: Can we find a specific alignment which achieves the minimum?

Finding an Optimum Solution

The DP algorithm finds the minimum edit distance in $O(n m)$ space and time.

Question: Can we find a specific alignment which achieves the minimum?

Exercise: Show that one can find an optimum solution after computing the optimum value. Key idea is to store back pointers when computing $\operatorname{Opt}(i, j)$ to know how we calculated it. See notes for more details.

Longest Palindromic Subsequence

Definition

A sequence is a palindrome if the sequence is equal to its reverse. Examples: m,a,l,a,y,a,l,a,m and 1,10,10,1 and a.

Longest Palindromic Subsequence

Definition

A sequence is a palindrome if the sequence is equal to its reverse. Examples: m,a,l,a,y,a,l,a,m and 1,10,10,1 and a.

Problem: Given a sequence $a_{0}, a_{1}, \ldots, a_{\boldsymbol{n}}$ find the longest palindromic sub-sequence.

Examples:

- 1, 10, 11
- a, c, c, r, a
- $A, C, G, T, G, T, C, A, A, A, A, T, C, G$

Dynamic Programming Template

(1) Come up with a recursive algorithm to solve problem
(2) Understand the structure/number of the subproblems generated by recursion
(3) Memoize the recursion

- set up compact notation for subproblems
- set up a data structure for storing subproblems
(1) Iterative algorithm
- Understand dependency graph on subproblems
- Pick an evaluation order (any topological sort of the dependency dag)
(5) Analyze time and space
(C) Optimize

