
BBM402-Lecture 5: Greedy algorithms: tape

sorting, scheduling, exchange arguments

Lecturer: Lale Özkahya

Resources for the presentation:
https://courses.engr.illinois.edu/cs374/fa2016/lectures.html
https://courses.engr.illinois.edu/cs374/fa2015/lectures.html

C
S

37
4

• We have seen Backtracking/DP so far

 — Make a simple choice

 — Recursively solve everything else

e.g. Subset Sum : is a certain element of the set in
the subset or not? If only we could know…

Backtracking

C
S

37
4

• We have seen Backtracking/DP so far

 — Make a simple choice

 — Recursively solve everything else

e.g. Subset Sum : is a certain element of the set in the
subset or not? If only we could know…

Backtracking

Try all options for

For each choice!

LIS: Do I include an element in the sequence or not?

NFA accept: should I transition to a certain state?

(see nondeterminism)

C
S

37
4

• We have seen Backtracking/DP so far

 — Make a simple choice

 — Recursively solve everything else

Backtracking

Try all options for

For each choice!

Greedy

Really tempting to

• Choose one option

• Recurse (e.g. Edit Distance: choose two characters
that are equal to leave them as such)

C
S

37
4

Course Policy on Greedy

• When you use greedy algorithm, you need to
ALWAYS prove correctness. Otherwise you
get a zero, EVEN IF THE ALGORITHM IS
CORRECT!

• Greedy is a loaded gun!

C
S

37
4

• Sorting files on magnetic tape (not RAM)

• Remember music cassettes?

• Blue Water Supercomputer.

Greedy Algorithm Example

C
S

37
4

• Sorting files on magnetic tape (not RAM)

• Remember music cassettes?

• Blue Water Supercomputer.

 The Problem:

• Given an array of lengths of each file: L[1…n]

• I want to sort the files so that if someone asks
me for a random file, the expected time it
takes to wind the tape to the start of the file
and rewind it back is small.

Greedy Algorithm Example

C
S

37
4

 The Problem:

• Given an array of lengths of each file: L[1…n]

• I want to sort the files so that if someone asks
me for a random file, the expected time it
takes to wind the tape to the start of the file
and rewind it back is small.

• Formally, I want to find a permutation that
minimizes

Sorting Files on Tape

nX

k=1

kX

i=1

L[⇡(i)]
Where is the index of the file sorted

in position i of the tape
⇡(i)

C
S

37
4

Sorting Files on Tape

A B C

What order should I sort them?

AB C

Claim:
Sort L, in increasing order of lengths is the best solution

3 2 1

3 2 1

L[⇡(i)] L[⇡(i + 1)] for all i
Needs
proof!!!

C
S

37
4

Sorting Files on Tape
Proof:

Assume in optimal ordering
L[⇡(i)] > L[⇡(i + 1)] for some i

⇡

B

i
A

i+1

B

i
A

i+1

what happens if we switch A and B?

C
S

37
4

Sorting Files on Tape
Proof:

Assume in optimal ordering
L[⇡(i)] > L[⇡(i + 1)] for some i

⇡

B

i
A

i+1

B

i
A

i+1
X

X

Y

Y

Cost(A) increases by L[B]
Cost(B) decreases by L[A]

Total cost increases
by L[B]-L[A] <0

C
S

37
4

Exchange Argument
• Consider any non-greedy solution

• Perform an exchange to make the solution look
more greedy

• Argue that the new solution after doing the
exchange is no worse.

• In out example, the new solution was strictly
better, so greedy is the only way.

C
S

37
4

Sorting Files on Tape
• What if I also had frequencies?

• L[1…n] lengths of files and F[1…n]
frequencies.

• Need to minimize:
nX

k=1

kX

i=1

(F [⇡(k)] · L[⇡(i)])

L F

If both are different?
Sort by L/F (ratio!)

Punchline: Swapping adjacent files A,B
increases cost by L[B]F[A]-L[A]F[B] <0

• If all the lengths the same and frequencies different?

C
S

37
4

• University decides to start a new major, CS+
climbing

• Degree requirements involve taking certain number
of classes, certain hours and certain categories.

• Bulk of the degree is determined by taking a certain
number of classes. None of these classes require
actual work.

• Without the instructors permission, you cannot
register for two classes whose times overlap.

• You only need to sign up! Goal: sign up for as many
classes as possible, without overlapping classes.

Class Scheduling

C
S

37
4

• Given a collection of intervals with start and
end time, want to choose a subset of those
intervals such that no pair overlaps.

• Subset needs to be as large as possible.

• Model it as a graph problem (next time):
Independent Set!

Class Scheduling

C
S

37
4

• Algorithm? DP? Greedy?

• e.g. find the earliest class, take it and recurse

• find the longest class, throw it away and
recurse.

• find the shortest class, take it and recurse.

Class Scheduling

C
S

37
4

• None of those work!

• Instead: pick the class the ends earliest

Class Scheduling

C
S

37
4

• None of those work!

• Instead: pick the class the ends earliest

Class Scheduling

C
S

37
4

• None of those work!

• Instead: pick the class the ends earliest

Class Scheduling

C
S

37
4

• None of those work!

• Instead: pick the class the ends earliest

Class Scheduling

C
S

37
4

• None of those work!

• Instead: pick the class the ends earliest

Class Scheduling

C
S

37
4

• Sort classes according to finish time

Class Scheduling

Because of sorting, O(nlogn), while DP in O(n2)

C
S

37
4

• Why is it optimal? Proof!

• Not the only optimal schedule. There are many
optimal schedules.

Class Scheduling

C
S

37
4

• Exchange argument.

• Think of it as a recursive algorithm. Pick the
class what finishes first and then recurse.

• Proof by induction!

Class Scheduling

 Lemma:

At least one maximal conflict free
schedule includes the class that ends first.

C
S

37
4

Lemma:

At least one maximal conflict free schedule includes
the class that ends first.

Class Scheduling

Proof:

Let f be the class that ends first.
Consider any schedule X that excludes f.
Let g be the first class ending in X.
F[f]<F[g] implies
that f does not overlap any class in X\{g}
Y= X-{g}+{f} is a valid schedule of same size!
What if X is empty?

C
S

37
4

• Binary code assigns a string of 0s and 1s to each
character in the alphabet.

• 7-bit ASCII code, Unicode, Morse

• We want the code to be prefix free (Morse code is not).

• Any prefix free code can be visualized as a binary code
tree, where the characters are stored at the leafs.

• Codeword for each symbol is given by the path from
the root to the corresponding leaf (e.g 1 for right 0 for
left).

• Length of codeword for a symbol is the depth of the
corresponding leaf.

Huffman Codes

C
S

37
4

• Goal is to encode messages in an n-character
alphabet so that the encoded message is as
short as possible.

• Given array of frequencies: f[1…n], we want to
compute a prefix-free binary code that
minimizes the total encoded length of
message.

Huffman Codes

nX

i=1

f [i] · depth(i)

C
S

37
4

Huffman Codes

10111

C
S

37
4

Huffman Codes

Huffman’s algorithm: merge two least frequent letters and
recurse!

C
S

37
4

Huffman Codes

C
S

37
4

Huffman Codes

C
S

37
4

Lemma: Let x and y be the two least frequent
characters. There is an optimal code tree in
which x and y are siblings, and have the
largest depth of any leaf.

Huffman Codes

Proof: Exchange argument!

Assume, for the optimal schedule that the
deepest two leaves are not x and y.

C
S

37
4

Part I

Greedy Algorithms: Tools and
Techniques

Chandra & Manoj (UIUC) CS374 2 Fall 2015 2 / 40

What is a Greedy Algorithm?

No real consensus on a universal definition.

Greedy algorithms:

1 make decision incrementally in small steps without backtracking

2 decision at each step is based on improving local or current state
in a myopic fashion without paying attention to the global
situation

3 decisions often based on some fixed and simple priority rules

Chandra & Manoj (UIUC) CS374 3 Fall 2015 3 / 40

What is a Greedy Algorithm?

No real consensus on a universal definition.

Greedy algorithms:

1 make decision incrementally in small steps without backtracking

2 decision at each step is based on improving local or current state
in a myopic fashion without paying attention to the global
situation

3 decisions often based on some fixed and simple priority rules

Chandra & Manoj (UIUC) CS374 3 Fall 2015 3 / 40

What is a Greedy Algorithm?

No real consensus on a universal definition.

Greedy algorithms:

1 make decision incrementally in small steps without backtracking

2 decision at each step is based on improving local or current state
in a myopic fashion without paying attention to the global
situation

3 decisions often based on some fixed and simple priority rules

Chandra & Manoj (UIUC) CS374 3 Fall 2015 3 / 40

Pros and Cons of Greedy Algorithms

Pros:

1 Usually (too) easy to design greedy algorithms

2 Easy to implement and often run fast since they are simple

3 Several important cases where they are effective/optimal

4 Lead to a first-cut heuristic when problem not well understood

Cons:

1 Very often greedy algorithms don’t work. Easy to lull oneself
into believing they work

2 Many greedy algorithms possible for a problem and no
structured way to find effective ones

CS 374: Every greedy algorithm needs a proof of correctness

Chandra & Manoj (UIUC) CS374 4 Fall 2015 4 / 40

Pros and Cons of Greedy Algorithms

Pros:

1 Usually (too) easy to design greedy algorithms

2 Easy to implement and often run fast since they are simple

3 Several important cases where they are effective/optimal

4 Lead to a first-cut heuristic when problem not well understood

Cons:

1 Very often greedy algorithms don’t work. Easy to lull oneself
into believing they work

2 Many greedy algorithms possible for a problem and no
structured way to find effective ones

CS 374: Every greedy algorithm needs a proof of correctness

Chandra & Manoj (UIUC) CS374 4 Fall 2015 4 / 40

Pros and Cons of Greedy Algorithms

Pros:

1 Usually (too) easy to design greedy algorithms

2 Easy to implement and often run fast since they are simple

3 Several important cases where they are effective/optimal

4 Lead to a first-cut heuristic when problem not well understood

Cons:

1 Very often greedy algorithms don’t work. Easy to lull oneself
into believing they work

2 Many greedy algorithms possible for a problem and no
structured way to find effective ones

CS 374: Every greedy algorithm needs a proof of correctness

Chandra & Manoj (UIUC) CS374 4 Fall 2015 4 / 40

Greedy Algorithm Types

Crude classification:

1 Non-adaptive: fix some ordering of decisions a priori and stick
with the order

2 Adaptive: make decisions adaptively but greedily/locally at each
step

Plan:

1 See several examples

2 Pick up some proof techniques

Chandra & Manoj (UIUC) CS374 5 Fall 2015 5 / 40

Greedy Algorithm Types

Crude classification:

1 Non-adaptive: fix some ordering of decisions a priori and stick
with the order

2 Adaptive: make decisions adaptively but greedily/locally at each
step

Plan:

1 See several examples

2 Pick up some proof techniques

Chandra & Manoj (UIUC) CS374 5 Fall 2015 5 / 40

Part II

Scheduling Jobs to Minimize Average
Waiting Time

Chandra & Manoj (UIUC) CS374 6 Fall 2015 6 / 40

The Problem

n jobs J1, J2, . . . , Jn. Ji has non-negative processing time pi

One server/machine/person available to process jobs.

Schedule/order the jobs to minimize total or average waiting
time

Waiting time of Ji in schedule σ: sum of processing times of all
jobs scheduled before Ji

J1 J2 J3 J4 J5 J6
time 3 4 1 8 2 6

Example: schedule is J1, J2, J3, J4, J5, J6. Total waiting time is

0 + 3 + (3 + 4) + (3 + 4 + 1) + (3 + 4 + 1 + 8) + . . . =

Optimal schedule: Shortest Job First. J3, J5, J1, J2, J6, J4.

Chandra & Manoj (UIUC) CS374 7 Fall 2015 7 / 40

The Problem

n jobs J1, J2, . . . , Jn. Ji has non-negative processing time pi

One server/machine/person available to process jobs.

Schedule/order the jobs to minimize total or average waiting
time

Waiting time of Ji in schedule σ: sum of processing times of all
jobs scheduled before Ji

J1 J2 J3 J4 J5 J6
time 3 4 1 8 2 6

Example: schedule is J1, J2, J3, J4, J5, J6. Total waiting time is

0 + 3 + (3 + 4) + (3 + 4 + 1) + (3 + 4 + 1 + 8) + . . . =

Optimal schedule: Shortest Job First. J3, J5, J1, J2, J6, J4.

Chandra & Manoj (UIUC) CS374 7 Fall 2015 7 / 40

The Problem

n jobs J1, J2, . . . , Jn. Ji has non-negative processing time pi

One server/machine/person available to process jobs.

Schedule/order the jobs to minimize total or average waiting
time

Waiting time of Ji in schedule σ: sum of processing times of all
jobs scheduled before Ji

J1 J2 J3 J4 J5 J6
time 3 4 1 8 2 6

Example: schedule is J1, J2, J3, J4, J5, J6. Total waiting time is

0 + 3 + (3 + 4) + (3 + 4 + 1) + (3 + 4 + 1 + 8) + . . . =

Optimal schedule:

Shortest Job First. J3, J5, J1, J2, J6, J4.

Chandra & Manoj (UIUC) CS374 7 Fall 2015 7 / 40

The Problem

n jobs J1, J2, . . . , Jn. Ji has non-negative processing time pi

One server/machine/person available to process jobs.

Schedule/order the jobs to minimize total or average waiting
time

Waiting time of Ji in schedule σ: sum of processing times of all
jobs scheduled before Ji

J1 J2 J3 J4 J5 J6
time 3 4 1 8 2 6

Example: schedule is J1, J2, J3, J4, J5, J6. Total waiting time is

0 + 3 + (3 + 4) + (3 + 4 + 1) + (3 + 4 + 1 + 8) + . . . =

Optimal schedule: Shortest Job First. J3, J5, J1, J2, J6, J4.
Chandra & Manoj (UIUC) CS374 7 Fall 2015 7 / 40

Optimality of SJF

Theorem
Shortest Job First gives an optimum schedule for the problem of
minimizing total waiting time.

Proof strategy: exchange argument

Assume without loss of generality that job sorted in increasing order
of processing time and hence p1 ≤ p2 ≤ . . . ≤ pn and SJF order is
J1, J2, . . . , Jn.

Chandra & Manoj (UIUC) CS374 8 Fall 2015 8 / 40

Optimality of SJF

Theorem
Shortest Job First gives an optimum schedule for the problem of
minimizing total waiting time.

Proof strategy: exchange argument

Assume without loss of generality that job sorted in increasing order
of processing time and hence p1 ≤ p2 ≤ . . . ≤ pn and SJF order is
J1, J2, . . . , Jn.

Chandra & Manoj (UIUC) CS374 8 Fall 2015 8 / 40

Optimality of SJF

Theorem
Shortest Job First gives an optimum schedule for the problem of
minimizing total waiting time.

Proof strategy: exchange argument

Assume without loss of generality that job sorted in increasing order
of processing time and hence p1 ≤ p2 ≤ . . . ≤ pn and SJF order is
J1, J2, . . . , Jn.

Chandra & Manoj (UIUC) CS374 8 Fall 2015 8 / 40

Inversions

Definition
A schedule Ji1, Ji2, . . . , Jin is said to have an inversion if there are
jobs Ja and Jb such that S schedules Ja before Jb, but pa > pb.

Claim
If a schedule has an inversion then there is an inversion between two
adjacently scheduled jobs.

Proof: exercise.

Chandra & Manoj (UIUC) CS374 9 Fall 2015 9 / 40

Inversions

Definition
A schedule Ji1, Ji2, . . . , Jin is said to have an inversion if there are
jobs Ja and Jb such that S schedules Ja before Jb, but pa > pb.

Claim
If a schedule has an inversion then there is an inversion between two
adjacently scheduled jobs.

Proof: exercise.

Chandra & Manoj (UIUC) CS374 9 Fall 2015 9 / 40

Proof of optimality of SJF

Recall SJF order is J1, J2, . . . , Jn.

Let Ji1, Ji2, . . . , Jin be an optimum schedule with fewest
inversions.

If schedule has no inversions then it is identical to SJF schedule
and we are done.

Otherwise there is an 1 ≤ ` < n such that i` > i`+1 since
schedule has inversion among two adjacently scheduled jobs

Claim
The schedule obtained from Ji1, Ji2, . . . , Jin by exchanging/swapping
positions of jobs Ji` and Ji`+1

is also optimal and has one fewer
inversion.

Assuming claim we obtain a contradiction and hence optimum
schedule with fewest inversions must be the SJF schedule.

Chandra & Manoj (UIUC) CS374 10 Fall 2015 10 / 40

Proof of optimality of SJF

Recall SJF order is J1, J2, . . . , Jn.

Let Ji1, Ji2, . . . , Jin be an optimum schedule with fewest
inversions.

If schedule has no inversions then it is identical to SJF schedule
and we are done.

Otherwise there is an 1 ≤ ` < n such that i` > i`+1 since
schedule has inversion among two adjacently scheduled jobs

Claim
The schedule obtained from Ji1, Ji2, . . . , Jin by exchanging/swapping
positions of jobs Ji` and Ji`+1

is also optimal and has one fewer
inversion.

Assuming claim we obtain a contradiction and hence optimum
schedule with fewest inversions must be the SJF schedule.

Chandra & Manoj (UIUC) CS374 10 Fall 2015 10 / 40

Part III

Scheduling to Minimize Lateness

Chandra & Manoj (UIUC) CS374 11 Fall 2015 11 / 40

Scheduling to Minimize Lateness

1 Given jobs J1, J2, . . . , Jn with deadlines and processing times to
be scheduled on a single resource.

2 If a job i starts at time si then it will finish at time fi = si + ti,
where ti is its processing time. di: deadline.

3 The lateness of a job is li = max(0, fi − di).
4 Schedule all jobs such that L = max li is minimized.

J1 J2 J3 J4 J5 J6
ti 3 2 1 4 3 2
di 6 8 9 9 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

J3 J2 J6 J1 J5 J4

l1 = 2 l5 = 0 l4 = 6

Chandra & Manoj (UIUC) CS374 12 Fall 2015 12 / 40

Scheduling to Minimize Lateness

1 Given jobs J1, J2, . . . , Jn with deadlines and processing times to
be scheduled on a single resource.

2 If a job i starts at time si then it will finish at time fi = si + ti,
where ti is its processing time. di: deadline.

3 The lateness of a job is li = max(0, fi − di).
4 Schedule all jobs such that L = max li is minimized.

J1 J2 J3 J4 J5 J6
ti 3 2 1 4 3 2
di 6 8 9 9 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

J3 J2 J6 J1 J5 J4

l1 = 2 l5 = 0 l4 = 6

Chandra & Manoj (UIUC) CS374 12 Fall 2015 12 / 40

Greedy Template

Initially R is the set of all requests

curr time = 0
max lateness = 0
while R is not empty do

choose i ∈ R
curr time = curr time + ti
if (curr time > di) then

max lateness = max(curr time− di,max lateness)

return max lateness

Main task: Decide the order in which to process jobs in R

Chandra & Manoj (UIUC) CS374 13 Fall 2015 13 / 40

Greedy Template

Initially R is the set of all requests

curr time = 0
max lateness = 0
while R is not empty do

choose i ∈ R
curr time = curr time + ti
if (curr time > di) then

max lateness = max(curr time− di,max lateness)

return max lateness

Main task: Decide the order in which to process jobs in R

Chandra & Manoj (UIUC) CS374 13 Fall 2015 13 / 40

Three Algorithms

1 Shortest job first — sort according to ti.

2 Shortest slack first — sort according to di − ti.

3 EDF = Earliest deadline first — sort according to di.

Counter examples for first two: exercise

Chandra & Manoj (UIUC) CS374 14 Fall 2015 14 / 40

Three Algorithms

1 Shortest job first — sort according to ti.

2 Shortest slack first — sort according to di − ti.

3 EDF = Earliest deadline first — sort according to di.

Counter examples for first two: exercise

Chandra & Manoj (UIUC) CS374 14 Fall 2015 14 / 40

Earliest Deadline First

Theorem
Greedy with EDF rule minimizes maximum lateness.

Proof via an exchange argument.

Idle time: time during which machine is not working.

Lemma
If there is a feasible schedule then there is one with no idle time
before all jobs are finished.

Chandra & Manoj (UIUC) CS374 15 Fall 2015 15 / 40

Earliest Deadline First

Theorem
Greedy with EDF rule minimizes maximum lateness.

Proof via an exchange argument.

Idle time: time during which machine is not working.

Lemma
If there is a feasible schedule then there is one with no idle time
before all jobs are finished.

Chandra & Manoj (UIUC) CS374 15 Fall 2015 15 / 40

Earliest Deadline First

Theorem
Greedy with EDF rule minimizes maximum lateness.

Proof via an exchange argument.

Idle time: time during which machine is not working.

Lemma
If there is a feasible schedule then there is one with no idle time
before all jobs are finished.

Chandra & Manoj (UIUC) CS374 15 Fall 2015 15 / 40

Earliest Deadline First

Theorem
Greedy with EDF rule minimizes maximum lateness.

Proof via an exchange argument.

Idle time: time during which machine is not working.

Lemma
If there is a feasible schedule then there is one with no idle time
before all jobs are finished.

Chandra & Manoj (UIUC) CS374 15 Fall 2015 15 / 40

Inversions

Assume jobs are sorted such that d1 ≤ d2 ≤ . . . ≤ dn. Hence EDF
schedules them in this order.

Definition
A schedule S is said to have an inversion if there are jobs i and j such
that S schedules i before j, but di > dj.

Claim
If a schedule S has an inversion then there is an inversion between
two adjacently scheduled jobs.

Proof: exercise.

Chandra & Manoj (UIUC) CS374 16 Fall 2015 16 / 40

Inversions

Assume jobs are sorted such that d1 ≤ d2 ≤ . . . ≤ dn. Hence EDF
schedules them in this order.

Definition
A schedule S is said to have an inversion if there are jobs i and j such
that S schedules i before j, but di > dj.

Claim
If a schedule S has an inversion then there is an inversion between
two adjacently scheduled jobs.

Proof: exercise.

Chandra & Manoj (UIUC) CS374 16 Fall 2015 16 / 40

Proof sketch of Optimality of EDP

Let S be an optimum schedule with smallest number of
inversions.

If S has no inversions then this is same as EDF and we are done.

Else S has two adjacent jobs i and j with di > dj.

Swap positions of i and j to obtain a new schedule S′

Claim
Maximum lateness of S′ is no more than that of S. And S′ has
strictly fewer inversions than S.

Chandra & Manoj (UIUC) CS374 17 Fall 2015 17 / 40

Part IV

Maximum Weight Subset of Elements:
Cardinality and Beyond

Chandra & Manoj (UIUC) CS374 18 Fall 2015 18 / 40

Picking k elements to maximize total weight

1 Given n items each with non-negative weights/profits and
integer 1 ≤ k ≤ n.

2 Goal: pick k elements to maximize total weight of items picked.

e1 e2 e3 e4 e5 e6
weight 3 2 1 4 3 2

k = 2:
k = 3:
k = 4:

Chandra & Manoj (UIUC) CS374 19 Fall 2015 19 / 40

Greedy Template

N is the set of all elements X← ∅
(* X will store all the elements that will be picked *)

while |X| < k and N is not empty do
choose ej ∈ N of maximum weight

add ej to X
remove ej from N

return the set X

Remark: One can rephrase algorithm simply as sorting elements in
decreasing weight order and picking the top k elements but the above
template generalizes to other settings a bit more easily.

Theorem
Greedy is optimal for picking k elements of maximum weight.

Chandra & Manoj (UIUC) CS374 20 Fall 2015 20 / 40

Greedy Template

N is the set of all elements X← ∅
(* X will store all the elements that will be picked *)

while |X| < k and N is not empty do
choose ej ∈ N of maximum weight

add ej to X
remove ej from N

return the set X

Remark: One can rephrase algorithm simply as sorting elements in
decreasing weight order and picking the top k elements but the above
template generalizes to other settings a bit more easily.

Theorem
Greedy is optimal for picking k elements of maximum weight.

Chandra & Manoj (UIUC) CS374 20 Fall 2015 20 / 40

A more interesting problem

1 Given n items N = {e1, e2, . . . , en}. Each item ei has a
non-negative weight wi.

2 Items partitioned into h sets N1,N2, . . . ,Nh. Think of each
item having one of h colors.

3 Given integers k1, k2, . . . , kh and another integer k

4 Goal: pick k elements such that no more than ki from Ni to
maximize total weight of items picked.

e1 e2 e3 e4 e5 e6, e7
weight 3 2 1 4 3 2, 1

N1 = {e1, e2, e3}, N2 = {e4, e5}, N3 = {e6, e7}
k = 5, k1 = 2, k2 = 2, k3 = 2

Chandra & Manoj (UIUC) CS374 21 Fall 2015 21 / 40

Greedy Template

N is the set of all elements X← ∅
(* X will store all the elements that will be picked *)

while N is not empty do
N′ = {ei ∈ N | X ∪ {ei} is feasible}
If N′ ← ∅ break

choose ej ∈ N′ of maximum weight

add ej to X
remove ej from N

return the set X

Theorem
Greedy is optimal for the problem on previous slide.

Proof: exercise after class.

Special case of the general phenomenon of Greedy working for
maximum weight indepedent set in a matroid. Beyond scope of
course.

Chandra & Manoj (UIUC) CS374 22 Fall 2015 22 / 40

Greedy Template

N is the set of all elements X← ∅
(* X will store all the elements that will be picked *)

while N is not empty do
N′ = {ei ∈ N | X ∪ {ei} is feasible}
If N′ ← ∅ break

choose ej ∈ N′ of maximum weight

add ej to X
remove ej from N

return the set X

Theorem
Greedy is optimal for the problem on previous slide.

Proof: exercise after class.

Special case of the general phenomenon of Greedy working for
maximum weight indepedent set in a matroid. Beyond scope of
course.Chandra & Manoj (UIUC) CS374 22 Fall 2015 22 / 40

Part V

Interval Scheduling

Chandra & Manoj (UIUC) CS374 23 Fall 2015 23 / 40

Interval Scheduling

Problem (Interval Scheduling)

Input: A set of jobs with start and finish times to be scheduled on a
resource (example: classes and class rooms).

Goal: Schedule as many jobs as possible

1 Two jobs with overlapping intervals cannot both be
scheduled!

Chandra & Manoj (UIUC) CS374 24 Fall 2015 24 / 40

Interval Scheduling

Problem (Interval Scheduling)

Input: A set of jobs with start and finish times to be scheduled on a
resource (example: classes and class rooms).

Goal: Schedule as many jobs as possible

1 Two jobs with overlapping intervals cannot both be
scheduled!

Chandra & Manoj (UIUC) CS374 24 Fall 2015 24 / 40

Greedy Template

R is the set of all requests

X← ∅ (* X will store all the jobs that will be scheduled *)

while R is not empty do
choose i ∈ R
add i to X
remove from R all requests that overlap with i

return the set X

Main task: Decide the order in which to process requests in R
ES SP FC EF

Chandra & Manoj (UIUC) CS374 25 Fall 2015 25 / 40

Greedy Template

R is the set of all requests

X← ∅ (* X will store all the jobs that will be scheduled *)

while R is not empty do
choose i ∈ R
add i to X
remove from R all requests that overlap with i

return the set X

Main task: Decide the order in which to process requests in R
ES SP FC EF

Chandra & Manoj (UIUC) CS374 25 Fall 2015 25 / 40

Earliest Start Time

Process jobs in the order of their starting times, beginning with those
that start earliest.

Chandra & Manoj (UIUC) CS374 26 Fall 2015 26 / 40

Earliest Start Time

Process jobs in the order of their starting times, beginning with those
that start earliest.

Chandra & Manoj (UIUC) CS374 26 Fall 2015 26 / 40

Earliest Start Time

Process jobs in the order of their starting times, beginning with those
that start earliest.

Chandra & Manoj (UIUC) CS374 26 Fall 2015 26 / 40

Earliest Start Time

Process jobs in the order of their starting times, beginning with those
that start earliest.

Chandra & Manoj (UIUC) CS374 26 Fall 2015 26 / 40

Earliest Start Time

Process jobs in the order of their starting times, beginning with those
that start earliest.

Chandra & Manoj (UIUC) CS374 26 Fall 2015 26 / 40

Earliest Start Time

Process jobs in the order of their starting times, beginning with those
that start earliest.

Chandra & Manoj (UIUC) CS374 26 Fall 2015 26 / 40

Earliest Start Time

Process jobs in the order of their starting times, beginning with those
that start earliest.

Figure : Counter example for earliest start time

Chandra & Manoj (UIUC) CS374 26 Fall 2015 26 / 40

Earliest Start Time

Process jobs in the order of their starting times, beginning with those
that start earliest.

Figure : Counter example for earliest start time

Chandra & Manoj (UIUC) CS374 26 Fall 2015 26 / 40

Earliest Start Time

Process jobs in the order of their starting times, beginning with those
that start earliest.

Figure : Counter example for earliest start time

Chandra & Manoj (UIUC) CS374 26 Fall 2015 26 / 40

Smallest Processing Time

Process jobs in the order of processing time, starting with jobs that
require the shortest processing.

Back Counter

Chandra & Manoj (UIUC) CS374 27 Fall 2015 27 / 40

Smallest Processing Time

Process jobs in the order of processing time, starting with jobs that
require the shortest processing.

Back Counter

Chandra & Manoj (UIUC) CS374 27 Fall 2015 27 / 40

Smallest Processing Time

Process jobs in the order of processing time, starting with jobs that
require the shortest processing.

Back Counter

Chandra & Manoj (UIUC) CS374 27 Fall 2015 27 / 40

Smallest Processing Time

Process jobs in the order of processing time, starting with jobs that
require the shortest processing.

Back Counter

Chandra & Manoj (UIUC) CS374 27 Fall 2015 27 / 40

Smallest Processing Time

Process jobs in the order of processing time, starting with jobs that
require the shortest processing.

Back Counter

Chandra & Manoj (UIUC) CS374 27 Fall 2015 27 / 40

Smallest Processing Time

Process jobs in the order of processing time, starting with jobs that
require the shortest processing.

Figure : Counter example for smallest processing time

Back Counter

Chandra & Manoj (UIUC) CS374 27 Fall 2015 27 / 40

Smallest Processing Time

Process jobs in the order of processing time, starting with jobs that
require the shortest processing.

Figure : Counter example for smallest processing time

Back Counter

Chandra & Manoj (UIUC) CS374 27 Fall 2015 27 / 40

Smallest Processing Time

Process jobs in the order of processing time, starting with jobs that
require the shortest processing.

Figure : Counter example for smallest processing time

Back Counter

Chandra & Manoj (UIUC) CS374 27 Fall 2015 27 / 40

Fewest Conflicts

Process jobs in that have the fewest “conflicts” first.

Back Counter

Chandra & Manoj (UIUC) CS374 28 Fall 2015 28 / 40

Fewest Conflicts

Process jobs in that have the fewest “conflicts” first.

Back Counter

Chandra & Manoj (UIUC) CS374 28 Fall 2015 28 / 40

Fewest Conflicts

Process jobs in that have the fewest “conflicts” first.

Back Counter

Chandra & Manoj (UIUC) CS374 28 Fall 2015 28 / 40

Fewest Conflicts

Process jobs in that have the fewest “conflicts” first.

Back Counter

Chandra & Manoj (UIUC) CS374 28 Fall 2015 28 / 40

Fewest Conflicts

Process jobs in that have the fewest “conflicts” first.

Back Counter

Chandra & Manoj (UIUC) CS374 28 Fall 2015 28 / 40

Fewest Conflicts

Process jobs in that have the fewest “conflicts” first.

Figure : Counter example for fewest conflicts

Back Counter

Chandra & Manoj (UIUC) CS374 28 Fall 2015 28 / 40

Fewest Conflicts

Process jobs in that have the fewest “conflicts” first.

Figure : Counter example for fewest conflicts

Back Counter

Chandra & Manoj (UIUC) CS374 28 Fall 2015 28 / 40

Fewest Conflicts

Process jobs in that have the fewest “conflicts” first.

Figure : Counter example for fewest conflicts

Back Counter

Chandra & Manoj (UIUC) CS374 28 Fall 2015 28 / 40

Fewest Conflicts

Process jobs in that have the fewest “conflicts” first.

Figure : Counter example for fewest conflicts

Back Counter

Chandra & Manoj (UIUC) CS374 28 Fall 2015 28 / 40

Earliest Finish Time

Process jobs in the order of their finishing times, beginning with
those that finish earliest.

Chandra & Manoj (UIUC) CS374 29 Fall 2015 29 / 40

Earliest Finish Time

Process jobs in the order of their finishing times, beginning with
those that finish earliest.

Chandra & Manoj (UIUC) CS374 29 Fall 2015 29 / 40

Earliest Finish Time

Process jobs in the order of their finishing times, beginning with
those that finish earliest.

Chandra & Manoj (UIUC) CS374 29 Fall 2015 29 / 40

Earliest Finish Time

Process jobs in the order of their finishing times, beginning with
those that finish earliest.

Chandra & Manoj (UIUC) CS374 29 Fall 2015 29 / 40

Earliest Finish Time

Process jobs in the order of their finishing times, beginning with
those that finish earliest.

Chandra & Manoj (UIUC) CS374 29 Fall 2015 29 / 40

Earliest Finish Time

Process jobs in the order of their finishing times, beginning with
those that finish earliest.

Chandra & Manoj (UIUC) CS374 29 Fall 2015 29 / 40

Earliest Finish Time

Process jobs in the order of their finishing times, beginning with
those that finish earliest.

Chandra & Manoj (UIUC) CS374 29 Fall 2015 29 / 40

Optimal Greedy Algorithm

R is the set of all requests

X← ∅ (* X stores the jobs that will be scheduled *)

while R is not empty

choose i ∈ R such that finishing time of i is smallest

add i to X
remove from R all requests that overlap with i

return X

Theorem
The greedy algorithm that picks jobs in the order of their finishing
times is optimal.

Chandra & Manoj (UIUC) CS374 30 Fall 2015 30 / 40

Proving Optimality

1 Correctness: Clearly the algorithm returns a set of jobs that does
not have any conflicts

2 For a set of requests R, let O be an optimal set and let X be the
set returned by the greedy algorithm. Then O = X?

Not likely!

Instead we will show that |O| = |X|

Chandra & Manoj (UIUC) CS374 31 Fall 2015 31 / 40

Proving Optimality

1 Correctness: Clearly the algorithm returns a set of jobs that does
not have any conflicts

2 For a set of requests R, let O be an optimal set and let X be the
set returned by the greedy algorithm. Then O = X?

Not likely!

Instead we will show that |O| = |X|

Chandra & Manoj (UIUC) CS374 31 Fall 2015 31 / 40

Proving Optimality

1 Correctness: Clearly the algorithm returns a set of jobs that does
not have any conflicts

2 For a set of requests R, let O be an optimal set and let X be the
set returned by the greedy algorithm. Then O = X?Not likely!

Instead we will show that |O| = |X|

Chandra & Manoj (UIUC) CS374 31 Fall 2015 31 / 40

Proving Optimality

1 Correctness: Clearly the algorithm returns a set of jobs that does
not have any conflicts

2 For a set of requests R, let O be an optimal set and let X be the
set returned by the greedy algorithm. Then O = X?Not likely!

Instead we will show that |O| = |X|

Chandra & Manoj (UIUC) CS374 31 Fall 2015 31 / 40

Proving Optimality

1 Correctness: Clearly the algorithm returns a set of jobs that does
not have any conflicts

2 For a set of requests R, let O be an optimal set and let X be the
set returned by the greedy algorithm. Then O = X?Not likely!

Instead we will show that |O| = |X|

Chandra & Manoj (UIUC) CS374 31 Fall 2015 31 / 40

Proving Optimality

1 Correctness: Clearly the algorithm returns a set of jobs that does
not have any conflicts

2 For a set of requests R, let O be an optimal set and let X be the
set returned by the greedy algorithm. Then O = X?Not likely!

Instead we will show that |O| = |X|

Chandra & Manoj (UIUC) CS374 31 Fall 2015 31 / 40

Proof of Optimality: Key Lemma

Lemma
Let i1 be first interval picked by Greedy. There exists an optimum
solution that contains i1.

Proof.
Let O be an arbitrary optimum solution. If i1 ∈ O we are done.

Claim: If i1 6∈ O then there is exactly one interval j1 ∈ O that
conflicts with i1. (proof later)

1 Form a new set O′ by removing j1 from O and adding i1, that is
O′ = (O− {j1}) ∪ {i1}.

2 From claim, O′ is a feasible solution (no conflicts).

3 Since |O′| = |O|, O′ is also an optimum solution and it
contains i1.

Chandra & Manoj (UIUC) CS374 32 Fall 2015 32 / 40

Proof of Optimality: Key Lemma

Lemma
Let i1 be first interval picked by Greedy. There exists an optimum
solution that contains i1.

Proof.
Let O be an arbitrary optimum solution. If i1 ∈ O we are done.
Claim: If i1 6∈ O then there is exactly one interval j1 ∈ O that
conflicts with i1. (proof later)

1 Form a new set O′ by removing j1 from O and adding i1, that is
O′ = (O− {j1}) ∪ {i1}.

2 From claim, O′ is a feasible solution (no conflicts).

3 Since |O′| = |O|, O′ is also an optimum solution and it
contains i1.

Chandra & Manoj (UIUC) CS374 32 Fall 2015 32 / 40

Proof of Optimality: Key Lemma

Lemma
Let i1 be first interval picked by Greedy. There exists an optimum
solution that contains i1.

Proof.
Let O be an arbitrary optimum solution. If i1 ∈ O we are done.
Claim: If i1 6∈ O then there is exactly one interval j1 ∈ O that
conflicts with i1. (proof later)

1 Form a new set O′ by removing j1 from O and adding i1, that is
O′ = (O− {j1}) ∪ {i1}.

2 From claim, O′ is a feasible solution (no conflicts).

3 Since |O′| = |O|, O′ is also an optimum solution and it
contains i1.

Chandra & Manoj (UIUC) CS374 32 Fall 2015 32 / 40

Proof of Claim

Claim
If i1 6∈ O, there is exactly one interval j1 ∈ O that conflicts with i1.

Proof.
1 If no j ∈ O conflicts with i1 then O is not optimal!

2 Suppose j1, j2 ∈ O such that j1 6= j2 and both j1 and j2 conflict
with i1.

3 Since i1 has earliest finish time, j1 and i1 overlap at f(i1).

4 For same reason j2 also overlaps with i1 at f(i1).

5 Implies that j1, j2 overlap at f(i1) but intervals in O cannot
overlap.

See figure in next slide.

Chandra & Manoj (UIUC) CS374 33 Fall 2015 33 / 40

Figure for proof of Claim

f(i1) f(j1)

i1

j1

j2

f(j2) time

Figure : Since i1 has the earliest finish time, any interval that conflicts
with it does so at f(i1). This implies j1 and j2 conflict.

Chandra & Manoj (UIUC) CS374 34 Fall 2015 34 / 40

Proof of Optimality of Earliest Finish Time First

Proof by Induction on number of intervals.
Base Case: n = 1. Trivial since Greedy picks one interval.
Induction Step: Assume theorem holds for i < n.
Let I be an instance with n intervals
I′: I with i1 and all intervals that overlap with i1 removed
G(I),G(I′): Solution produced by Greedy on I and I′

From Lemma, there is an optimum solution O to I and i1 ∈ O.
Let O′ = O− {i1}. O′ is a solution to I′.

|G(I)| = 1 + |G(I′)| (from Greedy description)

≥ 1 + |O′| (By induction, G(I′) is optimum for I′)

= |O|

Chandra & Manoj (UIUC) CS374 35 Fall 2015 35 / 40

Implementation and Running Time

Initially R is the set of all requests

X← ∅ (* X stores the jobs that will be scheduled *)

while R is not empty

choose i ∈ R such that finishing time of i is least

if i does not overlap with requests in X
add i to X

remove i from R
return the set X

Presort all requests based on finishing time. O(n log n) time

Now choosing least finishing time is O(1)

Keep track of the finishing time of the last request added to A.
Then check if starting time of i later than that

Thus, checking non-overlapping is O(1)

Total time O(n log n + n) = O(n log n)

Chandra & Manoj (UIUC) CS374 36 Fall 2015 36 / 40

Comments

1 Interesting Exercise: smallest interval first picks at least half the
optimum number of intervals.

2 All requests need not be known at the beginning. Such online
algorithms are a subject of research

Chandra & Manoj (UIUC) CS374 37 Fall 2015 37 / 40

Weighted Interval Scheduling

Suppose we are given n jobs. Each job i has a start time si, a finish
time fi, and a weight wi. We would like to find a set S of compatible
jobs whose total weight is maximized. Which of the following greedy
algorithms finds the optimum schedule?

(A) Earliest start time first.

(B) Earliest finish time fist.

(C) Highest weight first.

(D) None of the above.

(E) IDK.

Weighted problem can be solved via dynamic prog. See notes.

Chandra & Manoj (UIUC) CS374 38 Fall 2015 38 / 40

Weighted Interval Scheduling

Suppose we are given n jobs. Each job i has a start time si, a finish
time fi, and a weight wi. We would like to find a set S of compatible
jobs whose total weight is maximized. Which of the following greedy
algorithms finds the optimum schedule?

(A) Earliest start time first.

(B) Earliest finish time fist.

(C) Highest weight first.

(D) None of the above.

(E) IDK.

Weighted problem can be solved via dynamic prog. See notes.

Chandra & Manoj (UIUC) CS374 38 Fall 2015 38 / 40

Greedy Analysis: Overview

1 Greedy’s first step leads to an optimum solution. Show that
there is an optimum solution leading from the first step of
Greedy and then use induction. Example, Interval Scheduling.

2 Greedy algorithm stays ahead. Show that after each step the
solution of the greedy algorithm is at least as good as the
solution of any other algorithm. Example, Interval scheduling.

3 Structural property of solution. Observe some structural bound
of every solution to the problem, and show that greedy algorithm
achieves this bound. Example, Interval Partitioning (see
Kleinberg-Tardos book).

4 Exchange argument. Gradually transform any optimal solution
to the one produced by the greedy algorithm, without hurting its
optimality. Example, Minimizing lateness.

Chandra & Manoj (UIUC) CS374 39 Fall 2015 39 / 40

Takeaway Points

1 Greedy algorithms come naturally but often are incorrect. A
proof of correctness is an absolute necessity.

2 Exchange arguments are often the key proof ingredient. Focus
on why the first step of the algorithm is correct: need to show
that there is an optimum/correct solution with the first step of
the algorithm.

3 Thinking about correctness is also a good way to figure out
which of the many greedy strategies is likely to work.

Chandra & Manoj (UIUC) CS374 40 Fall 2015 40 / 40

