
BBM402-Lecture 7: NP and Polynomial Time

Reductions

Lecturer: Lale Özkahya

Resources for the presentation:
https://courses.engr.illinois.edu/cs473/fa2016/lectures.html

Part I

NP, Showing Problems to be in NP

Chandra & Manoj (UIUC) CS374 2 Fall 2015 2 / 64

NP

P: class of all languages that have a polynomial-time decision
algorithm

NP: class of all languages that have a non-deterministic
polynomial-time algorithm

It makes sense to care about P since this is the class of problems for
which we have efficient algorithms. Why should we care about NP?
Is it a natural class?

We will see that many useful, interesting, and important problems are
in NP but we do not know whether they are in P or not.

Chandra & Manoj (UIUC) CS374 3 Fall 2015 3 / 64

NP

P: class of all languages that have a polynomial-time decision
algorithm

NP: class of all languages that have a non-deterministic
polynomial-time algorithm

It makes sense to care about P since this is the class of problems for
which we have efficient algorithms. Why should we care about NP?
Is it a natural class?

We will see that many useful, interesting, and important problems are
in NP but we do not know whether they are in P or not.

Chandra & Manoj (UIUC) CS374 3 Fall 2015 3 / 64

NP

P: class of all languages that have a polynomial-time decision
algorithm

NP: class of all languages that have a non-deterministic
polynomial-time algorithm

It makes sense to care about P since this is the class of problems for
which we have efficient algorithms. Why should we care about NP?
Is it a natural class?

We will see that many useful, interesting, and important problems are
in NP but we do not know whether they are in P or not.

Chandra & Manoj (UIUC) CS374 3 Fall 2015 3 / 64

Some Classical Optimization Problems

Maximum Independent Set

Maximum Clique

Minimum Vertex Cover

Traveling Salesman Problem

Knapsack Problems

Integer Linear Programming

. . .

All of these optimization problems have a decision version which is an
NP problem. And there are many, many other problems too.

Chandra & Manoj (UIUC) CS374 4 Fall 2015 4 / 64

Maximum Independent Set in a Graph

Definition
Given undirected graph G = (V ,E) a subset of nodes S ⊆ V is an
independent set (also called a stable set) if for there are no edges
between nodes in S . That is, if u, v ∈ S then (u, v) 6∈ E .

A

B

C

DE

F

Some independent sets in graph above: {D}, {A,C}, {B,E ,F}

Chandra & Manoj (UIUC) CS374 5 Fall 2015 5 / 64

Maximum Independent Set Problem

Input Graph G = (V ,E)

Goal Find maximum sized independent set in G

A

B

C

DE

F

MIS is an optimization problem. How do we cast it as a decision
problem?

Chandra & Manoj (UIUC) CS374 6 Fall 2015 6 / 64

Decision version of Maximum Independent Set

Input Graph G = (V ,E) and integer k written as < G , k >
Question Is there an independent set in G of size at least k?

The answer to < G , k > is YES if G has an independent set of size
at least k . Otherwise the answer is NO. Sometimes we say
< G , k > is a YES instance or a NO instance.

The language associated with this decision problem is

LMIS = {< G , k >| G has an independent set of size ≥ k}

Chandra & Manoj (UIUC) CS374 7 Fall 2015 7 / 64

MIS is in NP

LMIS = {< G , k >| G has an independent set of size ≥ k}
A non-deterministic polynomial-time algorithm for LMIS .

Input: < G , k > encoding graph G = (V ,E) and integer k
1 Non-deterministically guess a subset S ⊆ V of vertices
2 Verify (deterministically) that

1 S forms an independent set in G by checking that there is no
edge in E between any pair of vertices in S

2 |S| ≥ k .
3 If S passes the above two tests output YES Else NO

Key points:

string encoding S , < S > has length polynomial in length of
input < G , k >
verification of guess is easily seen to be polynomial in length of
< S > and < G , k >.

Chandra & Manoj (UIUC) CS374 8 Fall 2015 8 / 64

MIS is in NP

LMIS = {< G , k >| G has an independent set of size ≥ k}
A non-deterministic polynomial-time algorithm for LMIS .

Input: < G , k > encoding graph G = (V ,E) and integer k
1 Non-deterministically guess a subset S ⊆ V of vertices
2 Verify (deterministically) that

1 S forms an independent set in G by checking that there is no
edge in E between any pair of vertices in S

2 |S| ≥ k .
3 If S passes the above two tests output YES Else NO

Key points:

string encoding S , < S > has length polynomial in length of
input < G , k >
verification of guess is easily seen to be polynomial in length of
< S > and < G , k >.

Chandra & Manoj (UIUC) CS374 8 Fall 2015 8 / 64

MIS is in NP

LMIS = {< G , k >| G has an independent set of size ≥ k}
The certificate/certifier view.

Input: < G , k > encoding graph G = (V ,E) and integer k
1 Certificate: subset S ⊆ V of vertices
2 Verifier: checks the following

1 S forms an independent set in G by checking that there is no
edge in E between any pair of vertices in S

2 |S| ≥ k .
3 If S passes the above two tests output YES Else NO

Key points:

string encoding S , < S > has length polynomial in length of
input < G , k >
verification of certificate easily seen to be polynomial in length
of < S > and < G , k >.

Chandra & Manoj (UIUC) CS374 9 Fall 2015 9 / 64

MIS is in NP

LMIS = {< G , k >| G has an independent set of size ≥ k}
The certificate/certifier view.

Input: < G , k > encoding graph G = (V ,E) and integer k
1 Certificate: subset S ⊆ V of vertices
2 Verifier: checks the following

1 S forms an independent set in G by checking that there is no
edge in E between any pair of vertices in S

2 |S| ≥ k .
3 If S passes the above two tests output YES Else NO

Key points:

string encoding S , < S > has length polynomial in length of
input < G , k >
verification of certificate easily seen to be polynomial in length
of < S > and < G , k >.

Chandra & Manoj (UIUC) CS374 9 Fall 2015 9 / 64

Minimum Vertex Cover

Definition
Given undirected graph G = (V ,E) a subset of nodes S ⊆ V is an
vertex cover if every edge (u, v) has at least one of its end points in
S . That is, every edge is covered by S .

A

B

C

DE

F

Examples of vertex covers in graph above:

Chandra & Manoj (UIUC) CS374 10 Fall 2015 10 / 64

Minimum Vertex Cover

Input Graph G = (V ,E)

Goal Find minimum sized vertex cover in G

A

B

C

DE

F

Decision version: given G and k , does G have a vertex cover of size
at most k?

LVC = {< G , k >| G has a vertex cover size ≤ k}

Chandra & Manoj (UIUC) CS374 11 Fall 2015 11 / 64

Minimum Vertex Cover is in NP

LVC = {< G , k >| G has a vertex cover size ≤ k}
A non-deterministic polynomial-time algorithm for LVC .

Input: < G , k > encoding graph G = (V ,E) and integer k
1 Certificate: a subset S ⊆ V of vertices
2 Verifier: check the following.

1 S forms a vertex cover in G by checking that for each edge
(u, v) ∈ E at least one of u, v is in S

2 |S| ≤ k .
3 If S passes the above two tests output YES Else NO

Key points:

certificate < S > has length polynomial in length of input
< G , k >
verification of certificate easily seen to be polynomial in length
of < S > and < G , k >.

Chandra & Manoj (UIUC) CS374 12 Fall 2015 12 / 64

Minimum Vertex Cover is in NP

LVC = {< G , k >| G has a vertex cover size ≤ k}
A non-deterministic polynomial-time algorithm for LVC .

Input: < G , k > encoding graph G = (V ,E) and integer k
1 Certificate: a subset S ⊆ V of vertices
2 Verifier: check the following.

1 S forms a vertex cover in G by checking that for each edge
(u, v) ∈ E at least one of u, v is in S

2 |S| ≤ k .
3 If S passes the above two tests output YES Else NO

Key points:

certificate < S > has length polynomial in length of input
< G , k >
verification of certificate easily seen to be polynomial in length
of < S > and < G , k >.

Chandra & Manoj (UIUC) CS374 12 Fall 2015 12 / 64

Sudoku

Given n × n sudoku puzzle, does it have a solution?

Chandra & Manoj (UIUC) CS374 13 Fall 2015 13 / 64

Importance of NP

NP is “natural” because there are plenty of problems where
“verification” of solutions is easy. Hundreds of well-studied problems
are in NP.

Many natural problems we would like to solve are in NP.

Every problem in NP has an exponential time algorithm

P ⊆ NP
Some problems in NP are in P (example, shortest path problem)

Big Question: Does every problem in NP have an efficient
algorithm? Same as asking whether P = NP.

We don’t know the answer and many people believe that P 6= NP.

Chandra & Manoj (UIUC) CS374 14 Fall 2015 14 / 64

Importance of NP

NP is “natural” because there are plenty of problems where
“verification” of solutions is easy. Hundreds of well-studied problems
are in NP.

Many natural problems we would like to solve are in NP.

Every problem in NP has an exponential time algorithm

P ⊆ NP
Some problems in NP are in P (example, shortest path problem)

Big Question: Does every problem in NP have an efficient
algorithm? Same as asking whether P = NP.

We don’t know the answer and many people believe that P 6= NP.

Chandra & Manoj (UIUC) CS374 14 Fall 2015 14 / 64

Why is NP-Completeness useful?

Given some new problem L that we want to solve we can

Prove that L ∈ P, that is develop an efficient algorithm for it or

Prove that L ∈ NP and proving that L ∈ P would imply that
P = NP (that is, show that solving L would solve major open
problems) or

Prove that L is even harder (say undecidable, etc).

Proving “intractability” has benefits:

Save time searching for an algorithm

Think of heuristic approaches to solve the problem

Change the problem to make it simpler in some fashion

Use it in cryptography or puzzles etc.

Chandra & Manoj (UIUC) CS374 15 Fall 2015 15 / 64

Why is NP-Completeness useful?

Given some new problem L that we want to solve we can

Prove that L ∈ P, that is develop an efficient algorithm for it or

Prove that L ∈ NP and proving that L ∈ P would imply that
P = NP (that is, show that solving L would solve major open
problems) or

Prove that L is even harder (say undecidable, etc).

Proving “intractability” has benefits:

Save time searching for an algorithm

Think of heuristic approaches to solve the problem

Change the problem to make it simpler in some fashion

Use it in cryptography or puzzles etc.

Chandra & Manoj (UIUC) CS374 15 Fall 2015 15 / 64

Part II

Introduction to Reductions

Chandra & Manoj (UIUC) CS374 16 Fall 2015 16 / 64

Reductions

A reduction from Problem X to Problem Y means (informally) that
if we have an algorithm for Problem Y , we can use it to find an
algorithm for Problem X .

Using Reductions
1 We use reductions to find algorithms to solve problems.

Chandra & Manoj (UIUC) CS374 17 Fall 2015 17 / 64

Reductions

A reduction from Problem X to Problem Y means (informally) that
if we have an algorithm for Problem Y , we can use it to find an
algorithm for Problem X .

Using Reductions
1 We use reductions to find algorithms to solve problems.

Chandra & Manoj (UIUC) CS374 17 Fall 2015 17 / 64

Reductions

A reduction from Problem X to Problem Y means (informally) that
if we have an algorithm for Problem Y , we can use it to find an
algorithm for Problem X .

Using Reductions
1 We use reductions to find algorithms to solve problems.

2 We also use reductions to show that we can’t find algorithms for
some problems. (We say that these problems are hard.)

Chandra & Manoj (UIUC) CS374 17 Fall 2015 17 / 64

Reductions for decision problems/languages

For languages LX , LY , a reduction from LX to LY is:

1 An algorithm . . .

2 Input: w ∈ Σ∗

3 Output: w ′ ∈ Σ∗

4 Such that:
w ∈ LY ⇐⇒ w ′ ∈ LX

(Actually, this is only one type of reduction, but this is the one we’ll
use most often.) There are other kinds of reductions.

Chandra & Manoj (UIUC) CS374 18 Fall 2015 18 / 64

Reductions for decision problems/languages

For languages LX , LY , a reduction from LX to LY is:

1 An algorithm . . .

2 Input: w ∈ Σ∗

3 Output: w ′ ∈ Σ∗

4 Such that:
w ∈ LY ⇐⇒ w ′ ∈ LX

(Actually, this is only one type of reduction, but this is the one we’ll
use most often.) There are other kinds of reductions.

Chandra & Manoj (UIUC) CS374 18 Fall 2015 18 / 64

Reductions for decision problems/languages

For decision problems X ,Y , a reduction from X to Y is:

1 An algorithm . . .

2 Input: IX , an instance of X .

3 Output: IY an instance of Y .

4 Such that:
IY is YES instance of Y ⇐⇒ IX is YES instance of X

Chandra & Manoj (UIUC) CS374 19 Fall 2015 19 / 64

Using reductions to solve problems

1 R: Reduction X → Y
2 AY : algorithm for Y :

3 =⇒ New algorithm for X :
AX (IX):

// IX: instance of X.

IY ⇐R(IX)
return AY (IY)

If R and AY polynomial-time =⇒ AX polynomial-time.

Chandra & Manoj (UIUC) CS374 20 Fall 2015 20 / 64

Using reductions to solve problems

1 R: Reduction X → Y
2 AY : algorithm for Y :

3 =⇒ New algorithm for X :
AX (IX):

// IX: instance of X.

IY ⇐R(IX)
return AY (IY)

If R and AY polynomial-time =⇒ AX polynomial-time.

Chandra & Manoj (UIUC) CS374 20 Fall 2015 20 / 64

Using reductions to solve problems

1 R: Reduction X → Y
2 AY : algorithm for Y :

3 =⇒ New algorithm for X :
AX (IX):

// IX: instance of X.

IY ⇐R(IX)
return AY (IY)

AY

IY
YES

NO

IX
R

AX

If R and AY polynomial-time =⇒ AX polynomial-time.

Chandra & Manoj (UIUC) CS374 20 Fall 2015 20 / 64

Comparing Problems

1 “Problem X is no harder to solve than Problem Y ”.

2 If Problem X reduces to Problem Y (we write X ≤ Y), then
X cannot be harder to solve than Y .

3 X ≤ Y :
1 X is no harder than Y , or
2 Y is at least as hard as X .

Chandra & Manoj (UIUC) CS374 21 Fall 2015 21 / 64

Part III

Examples of Reductions

Chandra & Manoj (UIUC) CS374 22 Fall 2015 22 / 64

Independent Sets and Cliques

Given a graph G , a set of vertices V ′ is:

1 independent set: no two vertices of V ′ connected by an edge.

Chandra & Manoj (UIUC) CS374 23 Fall 2015 23 / 64

Independent Sets and Cliques

Given a graph G , a set of vertices V ′ is:

1 independent set: no two vertices of V ′ connected by an edge.

Chandra & Manoj (UIUC) CS374 23 Fall 2015 23 / 64

Independent Sets and Cliques

Given a graph G , a set of vertices V ′ is:

1 independent set: no two vertices of V ′ connected by an edge.

2 clique: every pair of vertices in V ′ is connected by an edge of
G .

Chandra & Manoj (UIUC) CS374 23 Fall 2015 23 / 64

Independent Sets and Cliques

Given a graph G , a set of vertices V ′ is:

1 independent set: no two vertices of V ′ connected by an edge.

2 clique: every pair of vertices in V ′ is connected by an edge of
G .

Chandra & Manoj (UIUC) CS374 23 Fall 2015 23 / 64

Independent Sets and Cliques

Given a graph G , a set of vertices V ′ is:

1 independent set: no two vertices of V ′ connected by an edge.

2 clique: every pair of vertices in V ′ is connected by an edge of
G .

Chandra & Manoj (UIUC) CS374 23 Fall 2015 23 / 64

Independent Sets and Cliques

Given a graph G , a set of vertices V ′ is:

1 independent set: no two vertices of V ′ connected by an edge.

2 clique: every pair of vertices in V ′ is connected by an edge of
G .

Chandra & Manoj (UIUC) CS374 23 Fall 2015 23 / 64

The Independent Set and Clique Problems

Problem: Independent Set

Instance: A graph G and an integer k .
Question: Does G has an independent set of size ≥ k?

Problem: Clique

Instance: A graph G and an integer k .
Question: Does G has a clique of size ≥ k?

Chandra & Manoj (UIUC) CS374 24 Fall 2015 24 / 64

The Independent Set and Clique Problems

Problem: Independent Set

Instance: A graph G and an integer k .
Question: Does G has an independent set of size ≥ k?

Problem: Clique

Instance: A graph G and an integer k .
Question: Does G has a clique of size ≥ k?

Chandra & Manoj (UIUC) CS374 24 Fall 2015 24 / 64

Recall

For decision problems X ,Y , a reduction from X to Y is:

1 An algorithm . . .

2 that takes IX , an instance of X as input . . .

3 and returns IY , an instance of Y as output . . .

4 such that the solution (YES/NO) to IY is the same as the
solution to IX .

Chandra & Manoj (UIUC) CS374 25 Fall 2015 25 / 64

Reducing Independent Set to Clique

An instance of Independent Set is a graph G and an integer k .

Chandra & Manoj (UIUC) CS374 26 Fall 2015 26 / 64

Reducing Independent Set to Clique

An instance of Independent Set is a graph G and an integer k .

Chandra & Manoj (UIUC) CS374 26 Fall 2015 26 / 64

Reducing Independent Set to Clique

An instance of Independent Set is a graph G and an integer k .

Reduction given < G , k > outputs < G , k > where G is the
complement of G . G has an edge (u, v) if and only if (u, v) is not
an edge of G .

Chandra & Manoj (UIUC) CS374 26 Fall 2015 26 / 64

Reducing Independent Set to Clique

An instance of Independent Set is a graph G and an integer k .

Reduction given < G , k > outputs < G , k > where G is the
complement of G . G has an edge (u, v) if and only if (u, v) is not
an edge of G .

Chandra & Manoj (UIUC) CS374 26 Fall 2015 26 / 64

Reducing Independent Set to Clique

An instance of Independent Set is a graph G and an integer k .

Reduction given < G , k > outputs < G , k > where G is the
complement of G . G has an edge (u, v) if and only if (u, v) is not
an edge of G .

Chandra & Manoj (UIUC) CS374 26 Fall 2015 26 / 64

Reducing Independent Set to Clique

An instance of Independent Set is a graph G and an integer k .

Reduction given < G , k > outputs < G , k > where G is the
complement of G . G has an edge (u, v) if and only if (u, v) is not
an edge of G .

Chandra & Manoj (UIUC) CS374 26 Fall 2015 26 / 64

Correctness of reduction

Lemma

G has an independent set of size k if and only if G has a clique of
size k .

Proof.
Need to prove two facts:
G has independent set of size at least k implies that G has a clique
of size at least k .
G has a clique of size at least k implies that G has an independent
set of size at least k .
Easy to see both from the fact that S ⊆ V is an independent set in
G if and only if S is a clique in G .

Chandra & Manoj (UIUC) CS374 27 Fall 2015 27 / 64

Independent Set and Clique

1 Independent Set ≤ Clique.

What does this mean?

2 If have an algorithm for Clique, then we have an algorithm for
Independent Set.

3 Clique is at least as hard as Independent Set.

4 Also... Clique ≤ Independent Set. Why? Thus Clique and
Independent Set are polnomial-time equivalent.

Chandra & Manoj (UIUC) CS374 28 Fall 2015 28 / 64

Independent Set and Clique

1 Independent Set ≤ Clique.
What does this mean?

2 If have an algorithm for Clique, then we have an algorithm for
Independent Set.

3 Clique is at least as hard as Independent Set.

4 Also... Clique ≤ Independent Set. Why? Thus Clique and
Independent Set are polnomial-time equivalent.

Chandra & Manoj (UIUC) CS374 28 Fall 2015 28 / 64

Independent Set and Clique

1 Independent Set ≤ Clique.
What does this mean?

2 If have an algorithm for Clique, then we have an algorithm for
Independent Set.

3 Clique is at least as hard as Independent Set.

4 Also... Clique ≤ Independent Set. Why? Thus Clique and
Independent Set are polnomial-time equivalent.

Chandra & Manoj (UIUC) CS374 28 Fall 2015 28 / 64

Independent Set and Clique

1 Independent Set ≤ Clique.
What does this mean?

2 If have an algorithm for Clique, then we have an algorithm for
Independent Set.

3 Clique is at least as hard as Independent Set.

4 Also... Clique ≤ Independent Set. Why? Thus Clique and
Independent Set are polnomial-time equivalent.

Chandra & Manoj (UIUC) CS374 28 Fall 2015 28 / 64

Independent Set and Clique

Assume you can solve the Clique problem in T (n) time. Then you
can solve the Independent Set problem in

(A) O(T (n)) time.

(B) O(n log n + T (n)) time.

(C) O(n2T (n2)) time.

(D) O(n4T (n4)) time.

(E) O(n2 + T (n2)) time.

(F) Does not matter - all these are polynomial if T (n) is
polynomial, which is good enough for our purposes.

Chandra & Manoj (UIUC) CS374 29 Fall 2015 29 / 64

DFA Universality

A DFA M is universal if it accepts every string.
That is, L(M) = Σ∗, the set of all strings.

Problem (DFA universality)

Input: A DFA M .
Goal: Is M universal?

How do we solve DFA Universality?
We check if M has any reachable non-final state.

Chandra & Manoj (UIUC) CS374 30 Fall 2015 30 / 64

DFA Universality

A DFA M is universal if it accepts every string.
That is, L(M) = Σ∗, the set of all strings.

Problem (DFA universality)

Input: A DFA M .
Goal: Is M universal?

How do we solve DFA Universality?
We check if M has any reachable non-final state.

Chandra & Manoj (UIUC) CS374 30 Fall 2015 30 / 64

DFA Universality

A DFA M is universal if it accepts every string.
That is, L(M) = Σ∗, the set of all strings.

Problem (DFA universality)

Input: A DFA M .
Goal: Is M universal?

How do we solve DFA Universality?

We check if M has any reachable non-final state.

Chandra & Manoj (UIUC) CS374 30 Fall 2015 30 / 64

DFA Universality

A DFA M is universal if it accepts every string.
That is, L(M) = Σ∗, the set of all strings.

Problem (DFA universality)

Input: A DFA M .
Goal: Is M universal?

How do we solve DFA Universality?
We check if M has any reachable non-final state.

Chandra & Manoj (UIUC) CS374 30 Fall 2015 30 / 64

NFA Universality

An NFA N is said to be universal if it accepts every string. That is,
L(N) = Σ∗, the set of all strings.

Problem (NFA universality)

Input: A NFA M .
Goal: Is M universal?

How do we solve NFA Universality?

Reduce it to DFA Universality?
Given an NFA N , convert it to an equivalent DFA M , and use the
DFA Universality Algorithm.
The reduction takes exponential time!
NFA Universality is known to be PSPACE-Complete and we do not
expect a polynomial-time algorithm.

Chandra & Manoj (UIUC) CS374 31 Fall 2015 31 / 64

NFA Universality

An NFA N is said to be universal if it accepts every string. That is,
L(N) = Σ∗, the set of all strings.

Problem (NFA universality)

Input: A NFA M .
Goal: Is M universal?

How do we solve NFA Universality?
Reduce it to DFA Universality?

Given an NFA N , convert it to an equivalent DFA M , and use the
DFA Universality Algorithm.
The reduction takes exponential time!
NFA Universality is known to be PSPACE-Complete and we do not
expect a polynomial-time algorithm.

Chandra & Manoj (UIUC) CS374 31 Fall 2015 31 / 64

NFA Universality

An NFA N is said to be universal if it accepts every string. That is,
L(N) = Σ∗, the set of all strings.

Problem (NFA universality)

Input: A NFA M .
Goal: Is M universal?

How do we solve NFA Universality?
Reduce it to DFA Universality?
Given an NFA N , convert it to an equivalent DFA M , and use the
DFA Universality Algorithm.

The reduction takes exponential time!
NFA Universality is known to be PSPACE-Complete and we do not
expect a polynomial-time algorithm.

Chandra & Manoj (UIUC) CS374 31 Fall 2015 31 / 64

NFA Universality

An NFA N is said to be universal if it accepts every string. That is,
L(N) = Σ∗, the set of all strings.

Problem (NFA universality)

Input: A NFA M .
Goal: Is M universal?

How do we solve NFA Universality?
Reduce it to DFA Universality?
Given an NFA N , convert it to an equivalent DFA M , and use the
DFA Universality Algorithm.
The reduction takes exponential time!
NFA Universality is known to be PSPACE-Complete and we do not
expect a polynomial-time algorithm.

Chandra & Manoj (UIUC) CS374 31 Fall 2015 31 / 64

Polynomial-time reductions

We say that an algorithm is efficient if it runs in polynomial-time.

To find efficient algorithms for problems, we are only interested in
polynomial-time reductions. Reductions that take longer are not
useful.

If we have a polynomial-time reduction from problem X to problem
Y (we write X ≤P Y), and a poly-time algorithm AY for Y , we
have a polynomial-time/efficient algorithm for X .

Ax

R AYIX IY YES

NO

Chandra & Manoj (UIUC) CS374 32 Fall 2015 32 / 64

Polynomial-time reductions

We say that an algorithm is efficient if it runs in polynomial-time.

To find efficient algorithms for problems, we are only interested in
polynomial-time reductions. Reductions that take longer are not
useful.

If we have a polynomial-time reduction from problem X to problem
Y (we write X ≤P Y), and a poly-time algorithm AY for Y , we
have a polynomial-time/efficient algorithm for X .

Ax

R AYIX IY YES

NO

Chandra & Manoj (UIUC) CS374 32 Fall 2015 32 / 64

Polynomial-time reductions

We say that an algorithm is efficient if it runs in polynomial-time.

To find efficient algorithms for problems, we are only interested in
polynomial-time reductions. Reductions that take longer are not
useful.

If we have a polynomial-time reduction from problem X to problem
Y (we write X ≤P Y), and a poly-time algorithm AY for Y , we
have a polynomial-time/efficient algorithm for X .

Ax

R AYIX IY YES

NO

Chandra & Manoj (UIUC) CS374 32 Fall 2015 32 / 64

Polynomial-time reductions

We say that an algorithm is efficient if it runs in polynomial-time.

To find efficient algorithms for problems, we are only interested in
polynomial-time reductions. Reductions that take longer are not
useful.

If we have a polynomial-time reduction from problem X to problem
Y (we write X ≤P Y), and a poly-time algorithm AY for Y , we
have a polynomial-time/efficient algorithm for X .

Ax

R AYIX IY YES

NO

Chandra & Manoj (UIUC) CS374 32 Fall 2015 32 / 64

Polynomial-time Reduction

A polynomial time reduction from a decision problem X to a decision
problem Y is an algorithm A that has the following properties:

1 given an instance IX of X , A produces an instance IY of Y
2 A runs in time polynomial in |IX |.
3 Answer to IX YES iff answer to IY is YES.

Proposition
If X ≤P Y then a polynomial time algorithm for Y implies a
polynomial time algorithm for X .

Such a reduction is called a Karp reduction. Most reductions we
will need are Karp reductions.Karp reductions are the same as
mapping reductions when specialized to polynomial time for the
reduction step.

Chandra & Manoj (UIUC) CS374 33 Fall 2015 33 / 64

Reductions again...

Let X and Y be two decision problems, such that X can be solved in
polynomial time, and X ≤P Y . Then

(A) Y can be solved in polynomial time.

(B) Y can NOT be solved in polynomial time.

(C) If Y is hard then X is also hard.

(D) None of the above.

(E) All of the above.

Chandra & Manoj (UIUC) CS374 34 Fall 2015 34 / 64

Polynomial-time reductions and hardness

For decision problems X and Y , if X ≤P Y , and Y has an efficient
algorithm, X has an efficient algorithm.

If you believe that Independent Set does not have an efficient
algorithm, why should you believe the same of Clique?

Because we showed Independent Set ≤P Clique. If Clique had an
efficient algorithm, so would Independent Set!

If X ≤P Y and X does not have an efficient algorithm, Y cannot
have an efficient algorithm!

Chandra & Manoj (UIUC) CS374 35 Fall 2015 35 / 64

Polynomial-time reductions and hardness

For decision problems X and Y , if X ≤P Y , and Y has an efficient
algorithm, X has an efficient algorithm.

If you believe that Independent Set does not have an efficient
algorithm, why should you believe the same of Clique?

Because we showed Independent Set ≤P Clique. If Clique had an
efficient algorithm, so would Independent Set!

If X ≤P Y and X does not have an efficient algorithm, Y cannot
have an efficient algorithm!

Chandra & Manoj (UIUC) CS374 35 Fall 2015 35 / 64

Polynomial-time reductions and hardness

For decision problems X and Y , if X ≤P Y , and Y has an efficient
algorithm, X has an efficient algorithm.

If you believe that Independent Set does not have an efficient
algorithm, why should you believe the same of Clique?

Because we showed Independent Set ≤P Clique. If Clique had an
efficient algorithm, so would Independent Set!

If X ≤P Y and X does not have an efficient algorithm, Y cannot
have an efficient algorithm!

Chandra & Manoj (UIUC) CS374 35 Fall 2015 35 / 64

Polynomial-time reductions and hardness

For decision problems X and Y , if X ≤P Y , and Y has an efficient
algorithm, X has an efficient algorithm.

If you believe that Independent Set does not have an efficient
algorithm, why should you believe the same of Clique?

Because we showed Independent Set ≤P Clique. If Clique had an
efficient algorithm, so would Independent Set!

If X ≤P Y and X does not have an efficient algorithm, Y cannot
have an efficient algorithm!

Chandra & Manoj (UIUC) CS374 35 Fall 2015 35 / 64

Polynomial-time reductions and instance sizes

Proposition
Let R be a polynomial-time reduction from X to Y . Then for any
instance IX of X , the size of the instance IY of Y produced from IX
by R is polynomial in the size of IX .

Proof.
R is a polynomial-time algorithm and hence on input IX of size |IX |
it runs in time p(|IX |) for some polynomial p().
IY is the output of R on input IX .
R can write at most p(|IX |) bits and hence |IY | ≤ p(|IX |).

Note: Converse is not true. A reduction need not be polynomial-time
even if output of reduction is of size polynomial in its input.

Chandra & Manoj (UIUC) CS374 36 Fall 2015 36 / 64

Polynomial-time reductions and instance sizes

Proposition
Let R be a polynomial-time reduction from X to Y . Then for any
instance IX of X , the size of the instance IY of Y produced from IX
by R is polynomial in the size of IX .

Proof.
R is a polynomial-time algorithm and hence on input IX of size |IX |
it runs in time p(|IX |) for some polynomial p().
IY is the output of R on input IX .
R can write at most p(|IX |) bits and hence |IY | ≤ p(|IX |).

Note: Converse is not true. A reduction need not be polynomial-time
even if output of reduction is of size polynomial in its input.

Chandra & Manoj (UIUC) CS374 36 Fall 2015 36 / 64

Polynomial-time reductions and instance sizes

Proposition
Let R be a polynomial-time reduction from X to Y . Then for any
instance IX of X , the size of the instance IY of Y produced from IX
by R is polynomial in the size of IX .

Proof.
R is a polynomial-time algorithm and hence on input IX of size |IX |
it runs in time p(|IX |) for some polynomial p().
IY is the output of R on input IX .
R can write at most p(|IX |) bits and hence |IY | ≤ p(|IX |).

Note: Converse is not true. A reduction need not be polynomial-time
even if output of reduction is of size polynomial in its input.

Chandra & Manoj (UIUC) CS374 36 Fall 2015 36 / 64

Polynomial-time Reduction

A polynomial time reduction from a decision problem X to a decision
problem Y is an algorithm A that has the following properties:

1 Given an instance IX of X , A produces an instance IY of Y .

2 A runs in time polynomial in |IX |. This implies that |IY | (size of
IY) is polynomial in |IX |.

3 Answer to IX YES iff answer to IY is YES.

Proposition
If X ≤P Y then a polynomial time algorithm for Y implies a
polynomial time algorithm for X .

Chandra & Manoj (UIUC) CS374 37 Fall 2015 37 / 64

Transitivity of Reductions

Proposition
X ≤P Y and Y ≤P Z implies that X ≤P Z .

Note: X ≤P Y does not imply that Y ≤P X and hence it is very
important to know the FROM and TO in a reduction.

To prove X ≤P Y you need to show a reduction FROM X TO Y
That is, show that an algorithm for Y implies an algorithm for X .

Chandra & Manoj (UIUC) CS374 38 Fall 2015 38 / 64

Vertex Cover

Given a graph G = (V ,E), a set of vertices S is:

1 A vertex cover if every e ∈ E has at least one endpoint in S .

Chandra & Manoj (UIUC) CS374 39 Fall 2015 39 / 64

Vertex Cover

Given a graph G = (V ,E), a set of vertices S is:

1 A vertex cover if every e ∈ E has at least one endpoint in S .

Chandra & Manoj (UIUC) CS374 39 Fall 2015 39 / 64

Vertex Cover

Given a graph G = (V ,E), a set of vertices S is:

1 A vertex cover if every e ∈ E has at least one endpoint in S .

Chandra & Manoj (UIUC) CS374 39 Fall 2015 39 / 64

Vertex Cover

Given a graph G = (V ,E), a set of vertices S is:

1 A vertex cover if every e ∈ E has at least one endpoint in S .

Chandra & Manoj (UIUC) CS374 39 Fall 2015 39 / 64

Vertex Cover

Given a graph G = (V ,E), a set of vertices S is:

1 A vertex cover if every e ∈ E has at least one endpoint in S .

Chandra & Manoj (UIUC) CS374 39 Fall 2015 39 / 64

The Vertex Cover Problem

Problem (Vertex Cover)

Input: A graph G and integer k .
Goal: Is there a vertex cover of size ≤ k in G?

Can we relate Independent Set and Vertex Cover?

Chandra & Manoj (UIUC) CS374 40 Fall 2015 40 / 64

The Vertex Cover Problem

Problem (Vertex Cover)

Input: A graph G and integer k .
Goal: Is there a vertex cover of size ≤ k in G?

Can we relate Independent Set and Vertex Cover?

Chandra & Manoj (UIUC) CS374 40 Fall 2015 40 / 64

Relationship between...
Vertex Cover and Independent Set

Proposition

Let G = (V ,E) be a graph. S is an independent set if and only if
V \ S is a vertex cover.

Proof.
(⇒) Let S be an independent set

1 Consider any edge uv ∈ E .
2 Since S is an independent set, either u 6∈ S or v 6∈ S .
3 Thus, either u ∈ V \ S or v ∈ V \ S .
4 V \ S is a vertex cover.

(⇐) Let V \ S be some vertex cover:
1 Consider u, v ∈ S
2 uv is not an edge of G, as otherwise V \ S does not cover uv .
3 =⇒ S is thus an independent set.

Chandra & Manoj (UIUC) CS374 41 Fall 2015 41 / 64

Independent Set ≤P Vertex Cover

1 G : graph with n vertices, and an integer k be an instance of the
Independent Set problem.

2 G has an independent set of size ≥ k iff G has a vertex cover
of size ≤ n − k

3 (G , k) is an instance of Independent Set , and (G , n − k) is
an instance of Vertex Cover with the same answer.

4 Therefore, Independent Set ≤P Vertex Cover. Also Vertex
Cover ≤P Independent Set.

Chandra & Manoj (UIUC) CS374 42 Fall 2015 42 / 64

Independent Set ≤P Vertex Cover

1 G : graph with n vertices, and an integer k be an instance of the
Independent Set problem.

2 G has an independent set of size ≥ k iff G has a vertex cover
of size ≤ n − k

3 (G , k) is an instance of Independent Set , and (G , n − k) is
an instance of Vertex Cover with the same answer.

4 Therefore, Independent Set ≤P Vertex Cover. Also Vertex
Cover ≤P Independent Set.

Chandra & Manoj (UIUC) CS374 42 Fall 2015 42 / 64

Independent Set ≤P Vertex Cover

1 G : graph with n vertices, and an integer k be an instance of the
Independent Set problem.

2 G has an independent set of size ≥ k iff G has a vertex cover
of size ≤ n − k

3 (G , k) is an instance of Independent Set , and (G , n − k) is
an instance of Vertex Cover with the same answer.

4 Therefore, Independent Set ≤P Vertex Cover. Also Vertex
Cover ≤P Independent Set.

Chandra & Manoj (UIUC) CS374 42 Fall 2015 42 / 64

Independent Set ≤P Vertex Cover

1 G : graph with n vertices, and an integer k be an instance of the
Independent Set problem.

2 G has an independent set of size ≥ k iff G has a vertex cover
of size ≤ n − k

3 (G , k) is an instance of Independent Set , and (G , n − k) is
an instance of Vertex Cover with the same answer.

4 Therefore, Independent Set ≤P Vertex Cover. Also Vertex
Cover ≤P Independent Set.

Chandra & Manoj (UIUC) CS374 42 Fall 2015 42 / 64

Proving Correctness of Reductions

To prove that X ≤P Y you need to give an algorithm A that:

1 Transforms an instance IX of X into an instance IY of Y .
2 Satisfies the property that answer to IX is YES iff IY is YES.

1 typical easy direction to prove: answer to IY is YES if answer to
IX is YES

2 typical difficult direction to prove: answer to IX is YES if
answer to IY is YES (equivalently answer to IX is NO if answer
to IY is NO).

3 Runs in polynomial time.

Chandra & Manoj (UIUC) CS374 43 Fall 2015 43 / 64

Part IV

The Satisfiability Problem (SAT)

Chandra & Manoj (UIUC) CS374 44 Fall 2015 44 / 64

Propositional Formulas

Definition
Consider a set of boolean variables x1, x2, . . . xn.

1 A literal is either a boolean variable xi or its negation ¬xi .

2 A clause is a disjunction of literals.
For example, x1 ∨ x2 ∨ ¬x4 is a clause.

3 A formula in conjunctive normal form (CNF) is
propositional formula which is a conjunction of clauses

1 (x1 ∨ x2 ∨ ¬x4) ∧ (x2 ∨ ¬x3) ∧ x5 is a CNF formula.

4 A formula ϕ is a 3CNF:
A CNF formula such that every clause has exactly 3 literals.

1 (x1 ∨ x2 ∨ ¬x4) ∧ (x2 ∨ ¬x3 ∨ x1) is a 3CNF formula, but
(x1 ∨ x2 ∨ ¬x4) ∧ (x2 ∨ ¬x3) ∧ x5 is not.

Chandra & Manoj (UIUC) CS374 45 Fall 2015 45 / 64

Propositional Formulas

Definition
Consider a set of boolean variables x1, x2, . . . xn.

1 A literal is either a boolean variable xi or its negation ¬xi .

2 A clause is a disjunction of literals.
For example, x1 ∨ x2 ∨ ¬x4 is a clause.

3 A formula in conjunctive normal form (CNF) is
propositional formula which is a conjunction of clauses

1 (x1 ∨ x2 ∨ ¬x4) ∧ (x2 ∨ ¬x3) ∧ x5 is a CNF formula.

4 A formula ϕ is a 3CNF:
A CNF formula such that every clause has exactly 3 literals.

1 (x1 ∨ x2 ∨ ¬x4) ∧ (x2 ∨ ¬x3 ∨ x1) is a 3CNF formula, but
(x1 ∨ x2 ∨ ¬x4) ∧ (x2 ∨ ¬x3) ∧ x5 is not.

Chandra & Manoj (UIUC) CS374 45 Fall 2015 45 / 64

Satisfiability

Problem: SAT

Instance: A CNF formula ϕ.
Question: Is there a truth assignment to the variable of
ϕ such that ϕ evaluates to true?

Problem: 3SAT

Instance: A 3CNF formula ϕ.
Question: Is there a truth assignment to the variable of
ϕ such that ϕ evaluates to true?

Chandra & Manoj (UIUC) CS374 46 Fall 2015 46 / 64

Satisfiability

SAT
Given a CNF formula ϕ, is there a truth assignment to variables
such that ϕ evaluates to true?

Example
1 (x1 ∨ x2 ∨ ¬x4) ∧ (x2 ∨ ¬x3) ∧ x5 is satisfiable; take

x1, x2, . . . x5 to be all true

2 (x1 ∨ ¬x2) ∧ (¬x1 ∨ x2) ∧ (¬x1 ∨ ¬x2) ∧ (x1 ∨ x2) is not
satisfiable.

3SAT
Given a 3CNF formula ϕ, is there a truth assignment to variables
such that ϕ evaluates to true?

(More on 2SAT in a bit...)
Chandra & Manoj (UIUC) CS374 47 Fall 2015 47 / 64

Importance of SAT and 3SAT

1 SAT and 3SAT are basic constraint satisfaction problems.

2 Many different problems can reduced to them because of the
simple yet powerful expressively of logical constraints.

3 Arise naturally in many applications involving hardware and
software verification and correctness.

4 As we will see, it is a fundamental problem in theory of
NP-Completeness.

Chandra & Manoj (UIUC) CS374 48 Fall 2015 48 / 64

z = x

Given two bits x, z which of the following SAT formulas is
equivalent to the formula z = x :

(A) (z ∨ x) ∧ (z ∨ x).

(B) (z ∨ x) ∧ (z ∨ x).

(C) (z ∨ x) ∧ (z ∨ x) ∧ (z ∨ x).

(D) z ⊕ x .

(E) (z ∨ x) ∧ (z ∨ x) ∧ (z ∨ x) ∧ (z ∨ x).

Chandra & Manoj (UIUC) CS374 49 Fall 2015 49 / 64

z = x ∧ y

Given three bits x, y , z which of the following SAT formulas is
equivalent to the formula z = x ∧ y :

(A) (z ∨ x ∨ y) ∧ (z ∨ x ∨ y).

(B) (z ∨ x ∨ y) ∧ (z ∨ x ∨ y) ∧ (z ∨ x ∨ y).

(C) (z ∨ x ∨ y)∧(z ∨ x ∨ y)∧(z ∨ x ∨ y)∧(z ∨ x ∨ y).

(D) (z ∨ x ∨ y)∧(z ∨ x ∨ y)∧(z ∨ x ∨ y)∧(z ∨ x ∨ y).

(E) (z ∨ x ∨ y)∧(z ∨ x ∨ y)∧(z ∨ x ∨ y)∧(z ∨ x ∨ y)∧
(z ∨ x ∨ y)∧(z ∨ x ∨ y)∧(z ∨ x ∨ y)∧(z ∨ x ∨ y).

Chandra & Manoj (UIUC) CS374 50 Fall 2015 50 / 64

z = x ∨ y

Given three bits x, y , z which of the following SAT formulas is
equivalent to the formula z = x ∨ y :

(A) (z ∨ x ∨ y) ∧ (z ∨ x ∨ y) ∧ (z ∨ x ∨ y).

(B) (z ∨ x ∨ y)∧(z ∨ x ∨ y)∧(z ∨ x ∨ y)∧(z ∨ x ∨ y).

(C) (z ∨ x ∨ y)∧(z ∨ x ∨ y)∧(z ∨ x ∨ y)∧(z ∨ x ∨ y).

(D) (z ∨ x ∨ y)∧(z ∨ x ∨ y)∧(z ∨ x ∨ y)∧(z ∨ x ∨ y)∧
(z ∨ x ∨ y)∧(z ∨ x ∨ y)∧(z ∨ x ∨ y)∧(z ∨ x ∨ y).

(E) (z ∨ x ∨ y)∧(z ∨ x ∨ y)∧(z ∨ x ∨ y)∧(z ∨ x ∨ y).

Chandra & Manoj (UIUC) CS374 51 Fall 2015 51 / 64

SAT ≤P 3SAT

How SAT is different from 3SAT?
In SAT clauses might have arbitrary length: 1, 2, 3, . . . variables:

(
x ∨ y ∨ z ∨ w ∨ u

)
∧
(
¬x ∨ ¬y ∨ ¬z ∨ w ∨ u

)
∧
(
¬x

)

In 3SAT every clause must have exactly 3 different literals.

To reduce from an instance of SAT to an instance of 3SAT, we
must make all clauses to have exactly 3 variables...

Basic idea
1 Pad short clauses so they have 3 literals.

2 Break long clauses into shorter clauses.

3 Repeat the above till we have a 3CNF.

Chandra & Manoj (UIUC) CS374 52 Fall 2015 52 / 64

SAT ≤P 3SAT

How SAT is different from 3SAT?
In SAT clauses might have arbitrary length: 1, 2, 3, . . . variables:

(
x ∨ y ∨ z ∨ w ∨ u

)
∧
(
¬x ∨ ¬y ∨ ¬z ∨ w ∨ u

)
∧
(
¬x

)

In 3SAT every clause must have exactly 3 different literals.

To reduce from an instance of SAT to an instance of 3SAT, we
must make all clauses to have exactly 3 variables...

Basic idea
1 Pad short clauses so they have 3 literals.

2 Break long clauses into shorter clauses.

3 Repeat the above till we have a 3CNF.

Chandra & Manoj (UIUC) CS374 52 Fall 2015 52 / 64

3SAT ≤P SAT

1 3SAT ≤P SAT.

2 Because...
A 3SAT instance is also an instance of SAT.

Chandra & Manoj (UIUC) CS374 53 Fall 2015 53 / 64

SAT ≤P 3SAT

Claim
SAT ≤P 3SAT.

Given ϕ a SAT formula we create a 3SAT formula ϕ′ such that

1 ϕ is satisfiable iff ϕ′ is satisfiable.

2 ϕ′ can be constructed from ϕ in time polynomial in |ϕ|.

Idea: if a clause of ϕ is not of length 3, replace it with several
clauses of length exactly 3.

Chandra & Manoj (UIUC) CS374 54 Fall 2015 54 / 64

SAT ≤P 3SAT

Claim
SAT ≤P 3SAT.

Given ϕ a SAT formula we create a 3SAT formula ϕ′ such that

1 ϕ is satisfiable iff ϕ′ is satisfiable.

2 ϕ′ can be constructed from ϕ in time polynomial in |ϕ|.

Idea: if a clause of ϕ is not of length 3, replace it with several
clauses of length exactly 3.

Chandra & Manoj (UIUC) CS374 54 Fall 2015 54 / 64

SAT ≤P 3SAT

Claim
SAT ≤P 3SAT.

Given ϕ a SAT formula we create a 3SAT formula ϕ′ such that

1 ϕ is satisfiable iff ϕ′ is satisfiable.

2 ϕ′ can be constructed from ϕ in time polynomial in |ϕ|.

Idea: if a clause of ϕ is not of length 3, replace it with several
clauses of length exactly 3.

Chandra & Manoj (UIUC) CS374 54 Fall 2015 54 / 64

SAT ≤P 3SAT
A clause with two literals

Reduction Ideas: clause with 2 literals
1 Case clause with 2 literals: Let c = `1 ∨ `2. Let u be a new

variable. Consider

c ′ =
(
`1 ∨ `2 ∨ u

)
∧

(
`1 ∨ `2 ∨ ¬u

)
.

2 Suppose ϕ = ψ ∧ c . Then ϕ′ = ψ ∧ c ′ is satisfiable iff ϕ is
satisfiable.

Chandra & Manoj (UIUC) CS374 55 Fall 2015 55 / 64

SAT ≤P 3SAT
A clause with a single literal

Reduction Ideas: clause with 1 literal
1 Case clause with one literal: Let c be a clause with a single

literal (i.e., c = `). Let u, v be new variables. Consider

c ′ =
(
` ∨ u ∨ v

)
∧
(
` ∨ u ∨ ¬v

)

∧
(
` ∨ ¬u ∨ v

)
∧
(
` ∨ ¬u ∨ ¬v

)
.

2 Suppose ϕ = ψ ∧ c . Then ϕ′ = ψ ∧ c ′ is satisfiable iff ϕ is
satisfiable.

Chandra & Manoj (UIUC) CS374 56 Fall 2015 56 / 64

SAT ≤P 3SAT
A clause with more than 3 literals

Reduction Ideas: clause with more than 3 literals
1 Case clause with five literals: Let c = `1 ∨ `2 ∨ `3 ∨ `4 ∨ `5.

Let u be a new variable. Consider

c ′ =
(
`1 ∨ `2 ∨ `3 ∨ u

)
∧

(
`4 ∨ `5 ∨ ¬u

)
.

2 Suppose ϕ = ψ ∧ c . Then ϕ′ = ψ ∧ c ′ is satisfiable iff ϕ is
satisfiable.

Chandra & Manoj (UIUC) CS374 57 Fall 2015 57 / 64

SAT ≤P 3SAT
A clause with more than 3 literals

Reduction Ideas: clause with more than 3 literals
1 Case clause with k > 3 literals: Let c = `1 ∨ `2 ∨ . . . ∨ `k .

Let u be a new variable. Consider

c ′ =
(
`1 ∨ `2 . . . `k−2 ∨ u

)
∧

(
`k−1 ∨ `k ∨ ¬u

)
.

2 Suppose ϕ = ψ ∧ c . Then ϕ′ = ψ ∧ c ′ is satisfiable iff ϕ is
satisfiable.

Chandra & Manoj (UIUC) CS374 58 Fall 2015 58 / 64

Breaking a clause

Lemma
For any boolean formulas X and Y and z a new boolean variable.
Then

X ∨ Y is satisfiable

if and only if, z can be assigned a value such that

(
X ∨ z

)
∧

(
Y ∨ ¬z

)
is satisfiable

(with the same assignment to the variables appearing in X and Y).

Chandra & Manoj (UIUC) CS374 59 Fall 2015 59 / 64

SAT ≤P 3SAT (contd)
Clauses with more than 3 literals

Let c = `1 ∨ · · · ∨ `k . Let u1, . . . uk−3 be new variables. Consider

c ′ =
(
`1 ∨ `2 ∨ u1

)
∧

(
`3 ∨ ¬u1 ∨ u2

)

∧
(
`4 ∨ ¬u2 ∨ u3

)
∧

· · · ∧
(
`k−2 ∨ ¬uk−4 ∨ uk−3

)
∧

(
`k−1 ∨ `k ∨ ¬uk−3

)
.

Claim
ϕ = ψ ∧ c is satisfiable iff ϕ′ = ψ ∧ c ′ is satisfiable.

Another way to see it — reduce size of clause by one:

c ′ =
(
`1 ∨ `2 . . . ∨ `k−2 ∨ uk−3

)
∧

(
`k−1 ∨ `k ∨ ¬uk−3

)
.

Chandra & Manoj (UIUC) CS374 60 Fall 2015 60 / 64

An Example

Example

ϕ =
(
¬x1 ∨ ¬x4

)
∧

(
x1 ∨ ¬x2 ∨ ¬x3

)

∧
(
¬x2 ∨ ¬x3 ∨ x4 ∨ x1

)
∧

(
x1

)
.

Equivalent form:

ψ = (¬x1 ∨ ¬x4 ∨ z) ∧ (¬x1 ∨ ¬x4 ∨ ¬z)

∧ (x1 ∨ ¬x2 ∨ ¬x3)

∧ (¬x2 ∨ ¬x3 ∨ y1) ∧ (x4 ∨ x1 ∨ ¬y1)

∧ (x1 ∨ u ∨ v) ∧ (x1 ∨ u ∨ ¬v)

∧ (x1 ∨ ¬u ∨ v) ∧(x1 ∨ ¬u ∨ ¬v) .

Chandra & Manoj (UIUC) CS374 61 Fall 2015 61 / 64

An Example

Example

ϕ =
(
¬x1 ∨ ¬x4

)
∧

(
x1 ∨ ¬x2 ∨ ¬x3

)

∧
(
¬x2 ∨ ¬x3 ∨ x4 ∨ x1

)
∧

(
x1

)
.

Equivalent form:

ψ = (¬x1 ∨ ¬x4 ∨ z) ∧ (¬x1 ∨ ¬x4 ∨ ¬z)

∧ (x1 ∨ ¬x2 ∨ ¬x3)

∧ (¬x2 ∨ ¬x3 ∨ y1) ∧ (x4 ∨ x1 ∨ ¬y1)

∧ (x1 ∨ u ∨ v) ∧ (x1 ∨ u ∨ ¬v)

∧ (x1 ∨ ¬u ∨ v) ∧(x1 ∨ ¬u ∨ ¬v) .

Chandra & Manoj (UIUC) CS374 61 Fall 2015 61 / 64

An Example

Example

ϕ =
(
¬x1 ∨ ¬x4

)
∧

(
x1 ∨ ¬x2 ∨ ¬x3

)

∧
(
¬x2 ∨ ¬x3 ∨ x4 ∨ x1

)
∧

(
x1

)
.

Equivalent form:

ψ = (¬x1 ∨ ¬x4 ∨ z) ∧ (¬x1 ∨ ¬x4 ∨ ¬z)

∧ (x1 ∨ ¬x2 ∨ ¬x3)

∧ (¬x2 ∨ ¬x3 ∨ y1) ∧ (x4 ∨ x1 ∨ ¬y1)

∧ (x1 ∨ u ∨ v) ∧ (x1 ∨ u ∨ ¬v)

∧ (x1 ∨ ¬u ∨ v) ∧(x1 ∨ ¬u ∨ ¬v) .

Chandra & Manoj (UIUC) CS374 61 Fall 2015 61 / 64

An Example

Example

ϕ =
(
¬x1 ∨ ¬x4

)
∧

(
x1 ∨ ¬x2 ∨ ¬x3

)

∧
(
¬x2 ∨ ¬x3 ∨ x4 ∨ x1

)
∧

(
x1

)
.

Equivalent form:

ψ = (¬x1 ∨ ¬x4 ∨ z) ∧ (¬x1 ∨ ¬x4 ∨ ¬z)

∧ (x1 ∨ ¬x2 ∨ ¬x3)

∧ (¬x2 ∨ ¬x3 ∨ y1) ∧ (x4 ∨ x1 ∨ ¬y1)

∧ (x1 ∨ u ∨ v) ∧ (x1 ∨ u ∨ ¬v)

∧ (x1 ∨ ¬u ∨ v) ∧(x1 ∨ ¬u ∨ ¬v) .

Chandra & Manoj (UIUC) CS374 61 Fall 2015 61 / 64

Overall Reduction Algorithm
Reduction from SAT to 3SAT

ReduceSATTo3SAT(ϕ):
// ϕ: CNF formula.

for each clause c of ϕ do
if c does not have exactly 3 literals then

construct c ′ as before

else
c ′ = c

ψ is conjunction of all c ′ constructed in loop

return Solver3SAT(ψ)

Correctness (informal)

ϕ is satisfiable iff ψ is satisfiable because for each clause c , the new
3CNF formula c ′ is logically equivalent to c .

Chandra & Manoj (UIUC) CS374 62 Fall 2015 62 / 64

What about 2SAT?

2SAT can be solved in polynomial time! (specifically, linear time!)

No known polynomial time reduction from SAT (or 3SAT) to
2SAT. If there was, then SAT and 3SAT would be solvable in
polynomial time.

Why the reduction from 3SAT to 2SAT fails?

Consider a clause (x ∨ y ∨ z). We need to reduce it to a collection
of 2CNF clauses. Introduce a face variable α, and rewrite this as

(x ∨ y ∨ α) ∧ (¬α ∨ z) (bad! clause with 3 vars)

or (x ∨ α) ∧ (¬α ∨ y ∨ z) (bad! clause with 3 vars).

(In animal farm language: 2SAT good, 3SAT bad.)
Chandra & Manoj (UIUC) CS374 63 Fall 2015 63 / 64

What about 2SAT?

A challenging exercise: Given a 2SAT formula show to compute its
satisfying assignment...
(Hint: Create a graph with two vertices for each variable (for a
variable x there would be two vertices with labels x = 0 and
x = 1). For ever 2CNF clause add two directed edges in the graph.
The edges are implication edges: They state that if you decide to
assign a certain value to a variable, then you must assign a certain
value to some other variable.
Now compute the strong connected components in this graph, and
continue from there...)

Chandra & Manoj (UIUC) CS374 64 Fall 2015 64 / 64

