BBM402-Lecture 9: More NP-Complete Problems

Lecturer: Lale Özkahya

Resources for the presentation:
https://courses.engr.illinois.edu/cs473/fa2016/lectures.html https://courses.engr.illinois.edu/cs374/fa2015/lectures.html

Recap

NP: languages that have non-deterministic polynomial time algorithms

Recap

NP: languages that have non-deterministic polynomial time algorithms

A language L is NP-Complete iff

- L is in NP
- for every L^{\prime} in $N P, L^{\prime} \leq_{P} L$

Recap

NP: languages that have non-deterministic polynomial time algorithms

A language L is NP-Complete iff

- L is in NP
- for every L^{\prime} in $N P, L^{\prime} \leq_{P} L$
L is NP-Hard if for every L^{\prime} in NP, $L^{\prime} \leq_{P} L$.

Recap

NP: languages that have non-deterministic polynomial time algorithms

A language L is NP-Complete iff

- L is in NP
- for every L^{\prime} in $N P, L^{\prime} \leq_{P} L$
L is NP-Hard if for every L^{\prime} in NP, $L^{\prime} \leq_{P} L$.

Theorem (Cook-Levin)

 SAT is NP-Complete.
Pictorial View

P and NP

Possible scenarios:
(1) $P=N P$.
(c) $P \neq N P$

P and NP

Possible scenarios:
(1) $P=N P$.
(2) $P \neq N P$

Question: Suppose $P \neq N P$. Is every problem in NP $\backslash P$ also NP-Complete?

P and NP

Possible scenarios:
(1) $P=N P$.
(2) $P \neq N P$

Question: Suppose $P \neq N P$. Is every problem in NP $\backslash P$ also NP-Complete?

Theorem (Ladner)
 If $\mathrm{P} \neq \mathrm{NP}$ then there is a problem/language $\boldsymbol{X} \in \mathrm{NP} \backslash \mathrm{P}$ such that X is not NP-Complete.

Today

NP-Completeness of three problems:

- 3-Color
- Circuit SAT
- SAT (Cook-Levin Theorem)

Important: understanding the problems and that they are hard.
Proofs and reductions will be sketchy and mainly to give a flavor

Part I

NP-Completeness of Graph Coloring

Graph Coloring

Problem: Graph Coloring

Instance: $G=(V, E)$: Undirected graph, integer k. Question: Can the vertices of the graph be colored using k colors so that vertices connected by an edge do not get the same color?

Graph 3-Coloring

Problem: 3 Coloring

Instance: $G=(V, E)$: Undirected graph.
Question: Can the vertices of the graph be colored using 3 colors so that vertices connected by an edge do not get the same color?

Graph 3-Coloring

Problem: 3 Coloring

Instance: $G=(V, E)$: Undirected graph.
Question: Can the vertices of the graph be colored using 3 colors so that vertices connected by an edge do not get the same color?

Graph Coloring

Observation: If \boldsymbol{G} is colored with \boldsymbol{k} colors then each color class (nodes of same color) form an independent set in \boldsymbol{G}. Thus, \boldsymbol{G} can be partitioned into \boldsymbol{k} independent sets iff G is \boldsymbol{k}-colorable.

Graph Coloring

Observation: If \boldsymbol{G} is colored with \boldsymbol{k} colors then each color class (nodes of same color) form an independent set in \boldsymbol{G}. Thus, \boldsymbol{G} can be partitioned into k independent sets iff G is k-colorable.

Graph 2-Coloring can be decided in polynomial time.

Graph Coloring

Observation: If \boldsymbol{G} is colored with \boldsymbol{k} colors then each color class (nodes of same color) form an independent set in \boldsymbol{G}. Thus, G can be partitioned into \boldsymbol{k} independent sets iff \boldsymbol{G} is \boldsymbol{k}-colorable.

Graph 2-Coloring can be decided in polynomial time.
G is 2-colorable iff G is bipartite!

Graph Coloring

Observation: If \boldsymbol{G} is colored with k colors then each color class (nodes of same color) form an independent set in \boldsymbol{G}. Thus, \boldsymbol{G} can be partitioned into \boldsymbol{k} independent sets iff \boldsymbol{G} is \boldsymbol{k}-colorable.

Graph 2-Coloring can be decided in polynomial time.
G is 2-colorable iff G is bipartite! There is a linear time algorithm to check if G is bipartite using BFS

Graph Coloring and Register Allocation

Register Allocation

Assign variables to (at most) \boldsymbol{k} registers such that variables needed at the same time are not assigned to the same register

Interference Graph

Vertices are variables, and there is an edge between two vertices, if the two variables are "live" at the same time.

Observations

- [Chaitin] Register allocation problem is equivalent to coloring the interference graph with k colors
- Moreover, 3 -COLOR \leq_{p} k-Register Allocation, for any $k \geq 3$

Class Room Scheduling

Given \boldsymbol{n} classes and their meeting times, are \boldsymbol{k} rooms sufficient?

Class Room Scheduling

Given \boldsymbol{n} classes and their meeting times, are \boldsymbol{k} rooms sufficient?

Reduce to Graph \boldsymbol{k}-Coloring problem
Create graph G

- a node $\boldsymbol{v}_{\boldsymbol{i}}$ for each class \boldsymbol{i}
- an edge between $\boldsymbol{v}_{\boldsymbol{i}}$ and $\boldsymbol{v}_{\boldsymbol{j}}$ if classes \boldsymbol{i} and \boldsymbol{j} conflict

Class Room Scheduling

Given \boldsymbol{n} classes and their meeting times, are \boldsymbol{k} rooms sufficient?
Reduce to Graph k-Coloring problem
Create graph G

- a node $\boldsymbol{v}_{\boldsymbol{i}}$ for each class \boldsymbol{i}
- an edge between $\boldsymbol{v}_{\boldsymbol{i}}$ and $\boldsymbol{v}_{\boldsymbol{j}}$ if classes \boldsymbol{i} and \boldsymbol{j} conflict

Exercise: \boldsymbol{G} is \boldsymbol{k}-colorable iff \boldsymbol{k} rooms are sufficient

Frequency Assignments in Cellular Networks

Cellular telephone systems that use Frequency Division Multiple Access (FDMA) (example: GSM in Europe and Asia and AT\&T in USA)

- Breakup a frequency range $[a, b]$ into disjoint bands of frequencies $\left[a_{0}, b_{0}\right],\left[a_{1}, b_{1}\right], \ldots,\left[a_{k}, b_{k}\right]$
- Each cell phone tower (simplifying) gets one band
- Constraint: nearby towers cannot be assigned same band, otherwise signals will interference

Frequency Assignments in Cellular Networks

Cellular telephone systems that use Frequency Division Multiple Access (FDMA) (example: GSM in Europe and Asia and AT\&T in USA)

- Breakup a frequency range $[a, b]$ into disjoint bands of frequencies $\left[a_{0}, b_{0}\right],\left[a_{1}, b_{1}\right], \ldots,\left[a_{k}, b_{k}\right]$
- Each cell phone tower (simplifying) gets one band
- Constraint: nearby towers cannot be assigned same band, otherwise signals will interference
Problem: given \boldsymbol{k} bands and some region with \boldsymbol{n} towers, is there a way to assign the bands to avoid interference?

Can reduce to k-coloring by creating intereference/conflict graph on towers.

3 color this gadget.

You are given three colors: red, green and blue. Can the following graph be three colored in a valid way (assuming that some of the nodes are already colored as indicated).

(A) Yes.
(B) No.

3 color this gadget II

You are given three colors: red, green and blue. Can the following graph be three colored in a valid way (assuming that some of the nodes are already colored as indicated).

(A) Yes.
(B) No.

3-Coloring is NP-Complete

- 3-Coloring is in NP.
- Non-deterministically guess a 3-coloring for each node
- Check if for each edge $(\boldsymbol{u}, \boldsymbol{v})$, the color of \boldsymbol{u} is different from that of \boldsymbol{v}.
- Hardness: We will show 3-SAT $\leq_{p} 3$-Coloring.

Reduction Idea

Start with 3SAT formula (i.e., 3CNF formula) φ with n variables x_{1}, \ldots, x_{n} and m clauses C_{1}, \ldots, C_{m}. Create graph G_{φ} such that \boldsymbol{G}_{φ} is 3 -colorable iff φ is satisfiable

- need to establish truth assignment for x_{1}, \ldots, x_{n} via colors for some nodes in G_{φ}.

Reduction Idea

Start with 3SAT formula (i.e., 3CNF formula) φ with n variables x_{1}, \ldots, x_{n} and m clauses C_{1}, \ldots, C_{m}. Create graph G_{φ} such that \boldsymbol{G}_{φ} is 3 -colorable iff φ is satisfiable

- need to establish truth assignment for x_{1}, \ldots, x_{n} via colors for some nodes in G_{φ}.
- create triangle with node True, False, Base

Reduction Idea

Start with 3SAT formula (i.e., 3CNF formula) φ with n variables x_{1}, \ldots, x_{n} and m clauses C_{1}, \ldots, C_{m}. Create graph G_{φ} such that G_{φ} is 3 -colorable iff φ is satisfiable

- need to establish truth assignment for x_{1}, \ldots, x_{n} via colors for some nodes in G_{φ}.
- create triangle with node True, False, Base
- for each variable x_{i} two nodes v_{i} and \bar{v}_{i} connected in a triangle with common Base

Reduction Idea

Start with 3SAT formula (i.e., 3CNF formula) φ with n variables x_{1}, \ldots, x_{n} and m clauses C_{1}, \ldots, C_{m}. Create graph G_{φ} such that G_{φ} is 3 -colorable iff φ is satisfiable

- need to establish truth assignment for x_{1}, \ldots, x_{n} via colors for some nodes in G_{φ}.
- create triangle with node True, False, Base
- for each variable x_{i} two nodes v_{i} and \bar{v}_{i} connected in a triangle with common Base
- If graph is 3-colored, either \boldsymbol{v}_{i} or \bar{v}_{i} gets the same color as True. Interpret this as a truth assignment to $\boldsymbol{v}_{\boldsymbol{i}}$

Reduction Idea

Start with 3SAT formula (i.e., 3CNF formula) φ with \boldsymbol{n} variables x_{1}, \ldots, x_{n} and m clauses C_{1}, \ldots, C_{m}. Create graph G_{φ} such that G_{φ} is 3 -colorable iff φ is satisfiable

- need to establish truth assignment for x_{1}, \ldots, x_{n} via colors for some nodes in G_{φ}.
- create triangle with node True, False, Base
- for each variable x_{i} two nodes v_{i} and \bar{v}_{i} connected in a triangle with common Base
- If graph is 3-colored, either $\boldsymbol{v}_{\boldsymbol{i}}$ or \bar{v}_{i} gets the same color as True. Interpret this as a truth assignment to $\boldsymbol{v}_{\boldsymbol{i}}$
- Need to add constraints to ensure clauses are satisfied (next phase)

Figure

Clause Satisfiability Gadget

For each clause $C_{j}=(\boldsymbol{a} \vee \boldsymbol{b} \vee \boldsymbol{c})$, create a small gadget graph

- gadget graph connects to nodes corresponding to a, b, c
- needs to implement OR

OR-gadget-graph:

OR-Gadget Graph

Property: if $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$ are colored False in a 3-coloring then output node of OR-gadget has to be colored False.

Property: if one of $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$ is colored True then OR-gadget can be 3-colored such that output node of OR-gadget is colored True.

Reduction

- create triangle with nodes True, False, Base
- for each variable $\boldsymbol{x}_{\boldsymbol{i}}$ two nodes $\boldsymbol{v}_{\boldsymbol{i}}$ and $\overline{\boldsymbol{v}}_{\boldsymbol{i}}$ connected in a triangle with common Base
- for each clause $C_{j}=(\boldsymbol{a} \vee \boldsymbol{b} \vee \boldsymbol{c})$, add OR-gadget graph with input nodes $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$ and connect output node of gadget to both False and Base

Reduction

Claim

No legal 3-coloring of above graph (with coloring of nodes T, F, B fixed) in which a, b, c are colored False. If any of a, b, c are colored True then there is a legal 3 -coloring of above graph.

3 coloring of the clause gadget

Reduction Outline

Example

$$
\varphi=(u \vee \neg v \vee w) \wedge(v \vee x \vee \neg y)
$$

Correctness of Reduction

φ is satisfiable implies G_{φ} is 3 -colorable

- if x_{i} is assigned True, color $v_{\boldsymbol{i}}$ True and $\bar{v}_{\boldsymbol{i}}$ False

Correctness of Reduction

φ is satisfiable implies G_{φ} is 3 -colorable

- if x_{i} is assigned True, color $\boldsymbol{v}_{\boldsymbol{i}}$ True and $\bar{v}_{\boldsymbol{i}}$ False
- for each clause $C_{j}=(\boldsymbol{a} \vee \boldsymbol{b} \vee \boldsymbol{c})$ at least one of a, b, c is colored True. OR-gadget for C_{j} can be 3-colored such that output is True.

Correctness of Reduction

φ is satisfiable implies G_{φ} is 3 -colorable

- if x_{i} is assigned True, color $\boldsymbol{v}_{\boldsymbol{i}}$ True and $\bar{v}_{\boldsymbol{i}}$ False
- for each clause $C_{j}=(\boldsymbol{a} \vee \boldsymbol{b} \vee \boldsymbol{c})$ at least one of a, b, c is colored True. OR-gadget for C_{j} can be 3-colored such that output is True.

Correctness of Reduction

φ is satisfiable implies G_{φ} is 3 -colorable

- if x_{i} is assigned True, color v_{i} True and \bar{v}_{i} False
- for each clause $C_{j}=(a \vee b \vee c)$ at least one of a, b, c is colored True. OR-gadget for C_{j} can be 3-colored such that output is True.
G_{φ} is 3 -colorable implies φ is satisfiable
- if v_{i} is colored True then set x_{i} to be True, this is a legal truth assignment

Correctness of Reduction

φ is satisfiable implies G_{φ} is 3-colorable

- if $x_{\boldsymbol{i}}$ is assigned True, color $\boldsymbol{v}_{\boldsymbol{i}}$ True and $\bar{v}_{\boldsymbol{i}}$ False
- for each clause $C_{j}=(\boldsymbol{a} \vee \boldsymbol{b} \vee \boldsymbol{c})$ at least one of a, b, c is colored True. OR-gadget for C_{j} can be 3-colored such that output is True.
G_{φ} is 3-colorable implies φ is satisfiable
- if $\boldsymbol{v}_{\boldsymbol{i}}$ is colored True then set $\boldsymbol{x}_{\boldsymbol{i}}$ to be True, this is a legal truth assignment
- consider any clause $C_{j}=(\boldsymbol{a} \vee \boldsymbol{b} \vee \boldsymbol{c})$. it cannot be that all a, b, c are False. If so, output of OR-gadget for C_{j} has to be colored False but output is connected to Base and False!

Graph generated in reduction...

... from 3SAT to 3COLOR

Part II

Circuit SAT

Circuits

Definition

A circuit is a directed acyclic graph with

(1) Input vertices (without incoming edges) labelled with 0, $\mathbf{1}$ or a distinct variable.
(2) Every other vertex is labelled \vee, \wedge or \neg.
(3) Single node output vertex with no outgoing edges.

Circuits

Definition

A circuit is a directed acyclic graph with

(1) Input vertices (without incoming edges) labelled with 0, $\mathbf{1}$ or a distinct variable.
(2) Every other vertex is labelled \vee, \wedge or \neg.
(3) Single node output vertex with no outgoing edges.

Circuits

Definition

A circuit is a directed acyclic graph with

(1) Input vertices (without incoming edges) labelled with 0, $\mathbf{1}$ or a distinct variable.
(2) Every other vertex is labelled \vee, \wedge or \neg.
(3) Single node output vertex with no outgoing edges.

CSAT: Circuit Satisfaction

Definition (Circuit Satisfaction (CSAT).)

Given a circuit as input, is there an assignment to the input variables that causes the output to get value $\mathbf{1}$?

CSAT: Circuit Satisfaction

Definition (Circuit Satisfaction (CSAT).)

Given a circuit as input, is there an assignment to the input variables that causes the output to get value $\mathbf{1}$?

Claim

CSAT is in NP.
(1) Certificate: Assignment to input variables.
(2) Certifier: Evaluate the value of each gate in a topological sort of DAG and check the output gate value.

Circuit SAT vs SAT

CNF formulas are a rather restricted form of Boolean formulas.
Circuits are a much more powerful (and hence easier) way to express Boolean formulas

Circuit SAT vs SAT

CNF formulas are a rather restricted form of Boolean formulas.
Circuits are a much more powerful (and hence easier) way to express Boolean formulas

However they are equivalent in terms of polynomial-time solvability.

Theorem

SAT $\leq_{p} 3$ SAT \leq_{p} CSAT.

Theorem

CSAT \leq_{p} SAT $\leq_{p} 3$ SAT.

Converting a CNF formula into a Circuit

Given 3CNF formulat $\boldsymbol{\varphi}$ with \boldsymbol{n} variables and \boldsymbol{m} clauses, create a Circuit C.

- Inputs to C are the n boolean variables $x_{1}, x_{2}, \ldots, x_{n}$
- Use NOT gate to generate literal $\neg x_{i}$ for each variable x_{i}
- For each clause ($\ell_{1} \vee \ell_{2} \vee \ell_{3}$) use two OR gates to mimic formula
- Combine the outputs for the clauses using AND gates to obtain the final output

Example

$$
\varphi=\left(x_{1} \vee \vee x_{3} \vee x_{4}\right) \wedge\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{2} \vee \neg x_{3} \vee x_{4}\right)
$$

Converting a circuit into a CNF formula

 Label the nodes
(A) Input circuit

(B) Label the nodes.

Converting a circuit into a CNF formula

 Introduce a variable for each node
(B) Label the nodes.

(C) Introduce var for each node.

Converting a circuit into a CNF formula

Write a sub-formula for each variable that is true if the var is computed correctly.

Converting a circuit into a CNF formula

 Convert each sub-formula to an equivalent CNF formula| x_{k} | x_{k} |
| :---: | :---: |
| $x_{k}=x_{i} \wedge x_{j}$ | $\left(\neg x_{k} \vee x_{i}\right) \wedge\left(\neg x_{k} \vee x_{j}\right) \wedge\left(x_{k} \vee \neg x_{i} \vee \neg x_{j}\right)$ |
| $x_{j}=x_{g} \wedge x_{h}$ | $\left(\neg x_{j} \vee x_{g}\right) \wedge\left(\neg x_{j} \vee x_{h}\right) \wedge\left(x_{j} \vee \neg x_{g} \vee \neg x_{h}\right)$ |
| $x_{i}=\neg x_{f}$ | $\left(x_{i} \vee x_{f}\right) \wedge\left(\neg x_{i} \vee x_{f}\right)$ |
| $x_{h}=x_{d} \vee x_{e}$ | $\left(x_{h} \vee \neg x_{d}\right) \wedge\left(x_{h} \vee \neg x_{e}\right) \wedge\left(\neg x_{h} \vee x_{d} \vee x_{e}\right)$ |
| $x_{g}=x_{b} \vee x_{c}$ | $\left(x_{g} \vee \neg x_{b}\right) \wedge\left(x_{g} \vee \neg x_{c}\right) \wedge\left(\neg x_{g} \vee x_{b} \vee x_{c}\right)$ |
| $x_{f}=x_{a} \wedge x_{b}$ | $\left(\neg x_{f} \vee x_{a}\right) \wedge\left(\neg x_{f} \vee x_{b}\right) \wedge\left(x_{f} \vee \neg x_{a} \vee \neg x_{b}\right)$ |
| $x_{d}=0$ | $\neg x_{d}$ |
| $x_{a}=1$ | x_{a} |

Converting a circuit into a CNF formula

Take the conjunction of all the CNF sub-formulas

$$
\begin{aligned}
& x_{k} \wedge\left(\neg x_{k} \vee x_{i}\right) \wedge\left(\neg x_{k} \vee x_{j}\right) \\
& \wedge\left(x_{k} \vee \neg x_{i} \vee \neg x_{j}\right) \wedge\left(\neg x_{j} \vee x_{g}\right) \\
& \wedge\left(\neg x_{j} \vee x_{h}\right) \wedge\left(x_{j} \vee \neg x_{g} \vee \neg x_{h}\right) \\
& \wedge\left(x_{i} \vee x_{f}\right) \wedge\left(\neg x_{i} \vee x_{f}\right) \\
& \wedge\left(x_{h} \vee \neg x_{d}\right) \wedge\left(x_{h} \vee \neg x_{e}\right) \\
& \wedge\left(\neg x_{h} \vee x_{d} \vee x_{e}\right) \wedge\left(x_{g} \vee \neg x_{b}\right) \\
& \wedge\left(x_{g} \vee \neg x_{c}\right) \wedge\left(\neg x_{g} \vee x_{b} \vee x_{c}\right) \\
& \wedge\left(\neg x_{f} \vee x_{a}\right) \wedge\left(\neg x_{f} \vee x_{b}\right) \\
& \wedge\left(x_{f} \vee \neg x_{a} \vee \neg x_{b}\right) \wedge\left(\neg x_{d}\right) \wedge x_{a}
\end{aligned}
$$

We got a CNF formula that is satisfiable if and only if the original circuit is satisfiable.

Reduction: CSAT \leq_{p} SAT

(1) For each gate (vertex) v in the circuit, create a variable x_{v}
(2) Case $\neg: \boldsymbol{v}$ is labeled \neg and has one incoming edge from \boldsymbol{u} (so $\left.x_{v}=\neg x_{u}\right)$. In SAT formula generate, add clauses $\left(x_{u} \vee x_{v}\right)$, $\left(\neg x_{u} \vee \neg x_{v}\right)$. Observe that

$$
x_{v}=\neg x_{u} \text { is true } \Longleftrightarrow \begin{aligned}
& \left(x_{u} \vee x_{v}\right) \\
& \left(\neg x_{u} \vee \neg x_{v}\right)
\end{aligned} \text { both true. }
$$

Reduction: CSAT \leq_{p} SAT

Continued...

(1) Case V : So $x_{v}=x_{u} \vee x_{w}$. In SAT formula generated, add clauses $\left(x_{v} \vee \neg x_{u}\right),\left(x_{v} \vee \neg x_{w}\right)$, and $\left(\neg x_{v} \vee x_{u} \vee x_{w}\right)$. Again, observe that

$$
\left(x_{v}=x_{u} \vee x_{w}\right) \text { is true } \Longleftrightarrow \quad \begin{aligned}
& \left(x_{v} \vee \neg x_{u}\right), \\
& \left(x_{v} \vee \neg x_{w}\right), \\
& \left(\neg x_{v} \vee x_{u} \vee x_{w}\right)
\end{aligned} \quad \text { all true. }
$$

Reduction: CSAT \leq_{p} SAT

Continued...

(1) Case \wedge : So $x_{v}=x_{u} \wedge x_{w}$. In SAT formula generated, add clauses $\left(\neg x_{v} \vee x_{u}\right)$, $\left(\neg x_{v} \vee x_{w}\right)$, and $\left(x_{v} \vee \neg x_{u} \vee \neg x_{w}\right)$. Again observe that

$$
x_{v}=x_{u} \wedge x_{w} \text { is true } \Longleftrightarrow \quad \begin{aligned}
& \left(\neg x_{v} \vee x_{u}\right), \\
& \left(\neg x_{v} \vee x_{w}\right), \\
& \left(x_{v} \vee \neg x_{u} \vee \neg x_{w}\right)
\end{aligned} \quad \text { all true. }
$$

Reduction: CSAT \leq_{p} SAT

Continued...

(1) If v is an input gate with a fixed value then we do the following. If $x_{v}=\mathbf{1}$ add clause x_{v}. If $x_{v}=\mathbf{0}$ add clause $\neg x_{v}$
(2) Add the clause x_{v} where v is the variable for the output gate

Correctness of Reduction

Need to show circuit C is satisfiable iff φ_{C} is satisfiable
\Rightarrow Consider a satisfying assignment a for C
(1) Find values of all gates in \boldsymbol{C} under \boldsymbol{a}
(2) Give value of gate \boldsymbol{v} to variable $\boldsymbol{x}_{\boldsymbol{v}}$; call this assignment \boldsymbol{a}^{\prime}
(3) a^{\prime} satisfies φ_{C} (exercise)
\Leftarrow Consider a satisfying assignment a for φ_{C}
(1) Let \boldsymbol{a}^{\prime} be the restriction of \boldsymbol{a} to only the input variables
(2) Value of gate \boldsymbol{v} under \boldsymbol{a}^{\prime} is the same as value of $\boldsymbol{x}_{\boldsymbol{v}}$ in \boldsymbol{a}
(3) Thus, \boldsymbol{a}^{\prime} satisfies C

Part III

Proof of Cook-Levin Theorem

Cook-Levin Theorem

Theorem (Cook-Levin)

SAT is NP-Complete.

We have already seen that SAT is in NP.

Need to prove that every language $L \in N P, L \leq_{P}$ SAT

Cook-Levin Theorem

Theorem (Cook-Levin)

SAT is NP-Complete.

We have already seen that SAT is in NP.

Need to prove that every language $L \in N P, L \leq_{P}$ SAT

Difficulty: Infinite number of languages in NP. Must simultaneously show a generic reduction strategy.

High-level Plan

What does it mean that $L \in N P$?
$L \in N P$ implies that there is a non-deterministic TM M and polynomial $\boldsymbol{p}()$ such that

$$
L=\left\{x \in \boldsymbol{\Sigma}^{*} \mid M \text { accepts } x \text { in at most } p(|x|) \text { steps }\right\}
$$

High-level Plan

What does it mean that $L \in N P$?
$L \in N P$ implies that there is a non-deterministic TM M and polynomial $\boldsymbol{p}()$ such that

$$
L=\left\{x \in \boldsymbol{\Sigma}^{*} \mid M \text { accepts } x \text { in at most } p(|x|) \text { steps }\right\}
$$

We will describe a reduction f_{M} that depends on M, p such that:

- f_{M} takes as input a string x and outputs a SAT formula $f_{M}(x)$
- f_{M} runs in time polynomial in $|x|$
- $x \in L$ if and only if $f_{M}(x)$ is satisfiable

Plan continued

$f_{M}(x)$ is satisfiable if and only if $x \in L$ $\boldsymbol{f}_{M}(\boldsymbol{x})$ is satisfiable if and only if non-det M accepts \boldsymbol{x} in $\boldsymbol{p}(|x|)$ steps

Plan continued

$f_{M}(x)$ is satisfiable if and only if $x \in L$
$f_{M}(x)$ is satisfiable if and only if non-det M accepts x in $p(|x|)$ steps

BIG IDEA

- $f_{M}(x)$ will express " M on input x accepts in $p(|x|)$ steps"
- $f_{M}(x)$ will encode a computation history of M on x
$f_{M}(x)$ will be a carefully constructed CNF formulat s.t if we have a satisfying assignment to it, then we will be able to see a complete accepting computation of M on x down to the last detail of where the head is, what transistion is chosen, what the tape contents are, at each step.

Tableu of Computation

M runs in time $\boldsymbol{p}(|x|)$ on x. Entire computation of M on x can be represented by a "tableau"

Row \boldsymbol{i} gives contents of all cells at time \boldsymbol{i}
At time $\mathbf{0}$ tape has input \boldsymbol{x} followed by blanks
Each row long enough to hold all cells M might ever have scanned.

Variable of $f_{M}(x)$

Four types of variable to describe computation of M on x

- $\boldsymbol{T}(\boldsymbol{b}, \boldsymbol{h}, \boldsymbol{i})$: tape cell at position \boldsymbol{h} holds symbol \boldsymbol{b} at time \boldsymbol{i}.

$$
\mathbf{1} \leq h \leq p(|x|), b \in \Gamma, 0 \leq i \leq p(|x|)
$$

- $H(h, i)$: read/write head is at position h at time i. $\mathbf{1} \leq \boldsymbol{h} \leq \boldsymbol{p}(|x|), \mathbf{0} \leq \boldsymbol{i} \leq \boldsymbol{p}(|x|)$
- $S(\boldsymbol{q}, \boldsymbol{i})$ state of M is \boldsymbol{q} at time $\boldsymbol{i} \boldsymbol{q} \in \boldsymbol{Q}, \mathbf{0} \leq \boldsymbol{i} \leq \boldsymbol{p}(|x|)$
- $I(j, i)$ instruction number j is executed at time \boldsymbol{i}
M is non-deterministic, need to specify transitions in some way.
Number transitions as $1,2, \ldots, \ell$ where j 'th transition is $<q_{j}, b_{j}, q_{j}^{\prime}, b_{j}^{\prime}, d_{j}>$ indication $\left(q_{j}^{\prime}, b_{j}^{\prime}, d_{j}\right) \in \delta\left(q_{j}, b_{j}\right)$, direction $d_{j} \in\{-\mathbf{1}, \mathbf{0}, 1\}$.
Number of variables is $O\left(p(|x|)^{2}\right)$ where constant in $O()$ hides dependence on fixed machine M.

Notation

Some abbreviations for ease of notation $\bigwedge_{k=1}^{m} x_{k}$ means $x_{1} \wedge x_{2} \wedge \ldots \wedge x_{m}$
$\bigvee_{k=1}^{m} x_{k}$ means $x_{1} \vee x_{2} \vee \ldots \vee x_{m}$
$\bigoplus\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ is a formula that means exactly one of $x_{1}, x_{2}, \ldots, x_{m}$ is true. Can be converted to CNF form

Clauses of $f_{M}(x)$

$f_{M}(x)$ is the conjunction of 8 clause groups:

$$
f_{M}(x)=\varphi_{1} \wedge \varphi_{2} \wedge \varphi_{3} \wedge \varphi_{4} \wedge \varphi_{5} \wedge \varphi_{6} \wedge \varphi_{7} \wedge \varphi_{8}
$$

where each φ_{i} is a CNF formula. Described in subsequent slides. Property: $f_{M}(x)$ is satisfied iff there is a truth assignment to the variables that simultaneously satisfy $\varphi_{1}, \ldots, \varphi_{8}$.
φ_{1} asserts (is true iff) the variables are set T / F indicating that M starts in state \boldsymbol{q}_{0} at time $\mathbf{0}$ with tape contents containing x followed by blanks.

$$
\text { Let } x=a_{1} a_{2} \ldots a_{n}
$$

$\varphi_{1}=S(q, 0)$ state at time 0 is q_{0}
\bigwedge and
$\bigwedge_{h=1}^{n} T\left(a_{h}, h, 0\right)$ at time 0 cells 1 to n have a_{1} to a_{n}
$\left.\bigwedge_{h=n+1}^{p(|x|}\right) T(B, h, 0)$ at time 0 cells $n+1$ to $p(|x|)$ have blanks
\bigwedge and
$H(1,0)$ head at time 0 is in position 1
φ_{2} asserts M in exactly one state at any time \boldsymbol{i}

$$
\varphi_{2}=\bigwedge_{i=0}^{p(|x|)}\left(\oplus\left(S\left(q_{0}, i\right), S\left(q_{1}, i\right), \ldots, S\left(q_{|Q|}, i\right)\right)\right)
$$

φ_{3} asserts that each tape cell holds a unique symbol at any given time.

$$
\varphi_{3}=\bigwedge_{i=0}^{p(|x|)} \bigwedge_{h=1}^{p(|x|)} \oplus\left(T\left(b_{1}, h, i\right), T\left(b_{2}, h, i\right), \ldots, T\left(b_{|\Gamma|}, h, i\right)\right)
$$

For each time \boldsymbol{i} and for each cell position \boldsymbol{h} exactly one symbol $\boldsymbol{b} \in \boldsymbol{\Gamma}$ at cell position \boldsymbol{h} at time \boldsymbol{i}
φ_{4} asserts that the read/write head of M is in exactly one position at any time \boldsymbol{i}

$$
\varphi_{4}=\bigwedge_{i=0}^{p(|x|)}(\oplus(H(1, i), H(2, i), \ldots, H(p(|x|), i)))
$$

φ_{5} asserts that M accepts

- Let q_{a} be unique accept state of M
- without loss of generality assume M runs all $\boldsymbol{p}(|x|)$ steps

$$
\varphi_{5}=S\left(q_{a}, p(|x|)\right)
$$

State at time $\boldsymbol{p}(|x|)$ is $\boldsymbol{q}_{\boldsymbol{a}}$ the accept state.

If we don't want to make assumption of running for all steps

$$
\varphi_{5}=\bigvee_{i=1}^{p(|x|)} S\left(q_{a}, i\right)
$$

which means M enters accepts state at some time.
φ_{6} asserts that M executes a unique instruction at each time

$$
\varphi_{6}=\bigwedge_{i=0}^{p(|x|)} \oplus(I(1, i), I(2, i), \ldots, I(m, i))
$$

where \boldsymbol{m} is max instruction number.
φ_{7} ensures that variables don't allow tape to change from one moment to next if the read/write head was not there.
"If head is not at position \boldsymbol{h} at time \boldsymbol{i} then at time $\boldsymbol{i}+\mathbf{1}$ the symbol at cell \boldsymbol{h} must be unchanged"

$$
\varphi_{7}=\bigwedge_{i} \bigwedge_{h} \bigwedge_{b \neq c}(\overline{H(h, i)} \Rightarrow \overline{T(b, h, i) \bigwedge T(c, h, i+1)})
$$

since $A \Rightarrow B$ is same as $\neg A \vee B$, rewrite above in CNF form

$$
\varphi_{7}=\bigwedge_{i} \bigwedge_{h} \bigwedge_{b \neq c}(H(h, i) \vee \neg T(b, h, i) \vee \neg T(c, h, i+1))
$$

φ_{8} asserts that changes in tableu/tape correspond to transitions of M (as Lenny says, this is the big cookie).

Let \boldsymbol{j}^{\prime} 'th instruction be $<\boldsymbol{q}_{\boldsymbol{j}}, \boldsymbol{b}_{\boldsymbol{j}}, \boldsymbol{q}_{\boldsymbol{j}}^{\prime}, \boldsymbol{b}_{\boldsymbol{j}}^{\prime}, \boldsymbol{d}_{\boldsymbol{j}}>$
$\varphi_{8}=\bigwedge_{i} \bigwedge_{j}\left(I(j, i) \Rightarrow S\left(q_{j}, i\right)\right)$ If instr j executed at time i then state must be correct to do j \wedge
 \wedge $\wedge_{i} \wedge_{h} \wedge_{j}\left[(I(j, i) \wedge H(h, i)) \Rightarrow T\left(b_{j}, h, i\right)\right]_{i j \text { was executed and head was at }}$ position h, then cell h has correct symbol for $j \bigwedge$
$\bigwedge_{i} \bigwedge_{j} \bigwedge_{h}\left[(I(j, i) \wedge H(h, i)) \Rightarrow T\left(b_{j}^{\prime}, h, i+1\right)\right]_{\text {if } j \text { was done then at time } i \text { with }}$ head at n then at next time step symbol b_{j}^{\prime} was indeed written in position $n \bigwedge$ $\bigwedge_{i} \bigwedge_{j} \bigwedge_{h}\left[(I(j, i) \wedge H(h, i)) \Rightarrow H\left(h+d_{j}, i+1\right)\right]$ and head is moved properly according to instr \boldsymbol{j}.

Proof of Correctness

(Sketch)

- Given M, x, poly-time algorithm to construct $f_{M}(x)$
- if $f_{M}(x)$ is satisfiable then the truth assignment completely specifies an accepting computation of M on x
- if M accepts x then the accepting computation leads to an "obvious" truth assignment to $f_{M}(x)$. Simply assign the variables according to the state of M and cells at each time \boldsymbol{i}.
Thus M accepts x if and only if $f_{M}(x)$ is satisfiable clive
G, k

Recap

NP: languages that have polynomial time certifiers/verifiers
A language L is NP-Complete iff

- L is in NP
- for every L^{\prime} in NP, $L^{\prime} \leq_{P} L$
L is NP-Hard if for every L^{\prime} in NP, $L^{\prime} \leq_{P} L$.

Theorem (Cook-Levin) SAT is NP-Complete.

Recap contd

Theorem (Cook-Levin)

 SAT is NP-Complete.Establish NP-Completeness via reductions:
(1) SAT is NP-Complete.
(2) SAT $\leq_{p} 3$-SAT and hence 3-SAT is NP-Complete.
(0) 3-SAT \leq_{p} Independent Set (which is in NP) and hence Independent Set is NP-Complete.
(1) Clique is NP-Complete

- Vertex Cover is NP-Complete
- Set Cover is NP-Complete
- Hamilton Cycle and Hamiltonian Path are NP-Complete
(0) 3-Color is NP-Complete

Today

Prove

- Hamiltonian Cycle is NP-Complete
- 3-Coloring is NP-Complete
- Subset Sum is NP-Complete

All via reductions from 3-SAT

Part I

NP-Completeness of Hamiltonian Cycle

Directed Hamiltonian Cycle

Input Given a directed graph $G=(V, E)$ with n vertices
Goal Does G have a Hamiltonian cycle?

Directed Hamiltonian Cycle

Input Given a directed graph $G=(V, E)$ with n vertices Goal Does G have a Hamiltonian cycle?

- A Hamiltonian cycle is a cycle in the graph that visits every vertex in G exactly once

Is the following graph Hamiltonianan?

(A) Yes.
(B) No.

Directed Hamiltonian Cycle is NP-Complete

- Directed Hamiltonian Cycle is in NP
- Certificate: Sequence of vertices
- Certifier: Check if every vertex (except the first) appears exactly once, and that consecutive vertices are connected by a directed edge
- Hardness: We will show

3-SAT \leq_{P} Directed Hamiltonian Cycle

Reduction

Given 3-SAT formula φ create a graph G_{φ} such that

- G_{φ} has a Hamiltonian cycle if and only if φ is satisfiable
- G_{φ} should be constructible from φ by a polynomial time algorithm \mathcal{A}

Notation: φ has n variables $x_{1}, x_{2}, \ldots, x_{n}$ and m clauses
$C_{1}, C_{2}, \ldots, C_{m}$.

Reduction: First Ideas

- Viewing SAT: Assign values to \boldsymbol{n} variables, and each clauses has 3 ways in which it can be satisfied.
- Construct graph with $\mathbf{2 n}^{\boldsymbol{n}}$ Hamiltonian cycles, where each cycle corresponds to some boolean assignment.
- Then add more graph structure to encode constraints on assignments imposed by the clauses.

The Reduction: Phase I

- Traverse path \boldsymbol{i} from left to right iff x_{i} is set to true
- Each path has $\mathbf{3}(\boldsymbol{m}+1)$ nodes where \boldsymbol{m} is number of clauses in φ; nodes numbered from left to right ($\mathbf{1}$ to $\mathbf{3 m}+3$)

The Reduction: Phase II

- Add vertex $\boldsymbol{c}_{\boldsymbol{j}}$ for clause $\boldsymbol{C}_{\boldsymbol{j}} . \boldsymbol{c}_{\boldsymbol{j}}$ has edge from vertex $3 \boldsymbol{j}$ and to vertex $3 \boldsymbol{j}+\mathbf{1}$ on path \boldsymbol{i} if $\boldsymbol{x}_{\boldsymbol{i}}$ appears in clause C_{j}, and has edge from vertex $3 j+1$ and to vertex $3 j$ if $\neg x_{\boldsymbol{i}}$ appears in C_{j}.

$$
x_{1} \vee \neg x_{2} \vee x_{4} \quad \neg x_{1} \vee \neg x_{2} \vee \neg x_{3}
$$

The Reduction: Phase II

- Add vertex $\boldsymbol{c}_{\boldsymbol{j}}$ for clause $C_{\boldsymbol{j}} . \boldsymbol{c}_{\boldsymbol{j}}$ has edge from vertex $3 \boldsymbol{j}$ and to vertex $3 \boldsymbol{j}+\mathbf{1}$ on path \boldsymbol{i} if $\boldsymbol{x}_{\boldsymbol{i}}$ appears in clause C_{j}, and has edge from vertex $3 j+1$ and to vertex $3 j$ if $\neg x_{\boldsymbol{i}}$ appears in C_{j}.

The Reduction: Phase II

- Add vertex $\boldsymbol{c}_{\boldsymbol{j}}$ for clause $\boldsymbol{C}_{\boldsymbol{j}} . \boldsymbol{c}_{\boldsymbol{j}}$ has edge from vertex $3 \boldsymbol{j}$ and to vertex $3 j+1$ on path i if x_{i} appears in clause C_{j}, and has edge from vertex $3 j+1$ and to vertex $3 j$ if $\neg x_{\boldsymbol{i}}$ appears in C_{j}.

The Reduction: Phase II

- Add vertex $\boldsymbol{c}_{\boldsymbol{j}}$ for clause $\boldsymbol{C}_{\boldsymbol{j}} . \boldsymbol{c}_{\boldsymbol{j}}$ has edge from vertex $3 \boldsymbol{j}$ and to vertex $3 \boldsymbol{j}+\mathbf{1}$ on path \boldsymbol{i} if $\boldsymbol{x}_{\boldsymbol{i}}$ appears in clause C_{j}, and has edge from vertex $3 j+1$ and to vertex $3 j$ if $\neg x_{\boldsymbol{i}}$ appears in C_{j}.

The Reduction: Phase II

- Add vertex $\boldsymbol{c}_{\boldsymbol{j}}$ for clause $\boldsymbol{C}_{\boldsymbol{j}} . \boldsymbol{c}_{\boldsymbol{j}}$ has edge from vertex $3 \boldsymbol{j}$ and to vertex $3 \boldsymbol{j}+\mathbf{1}$ on path \boldsymbol{i} if $\boldsymbol{x}_{\boldsymbol{i}}$ appears in clause C_{j}, and has edge from vertex $3 j+1$ and to vertex $3 j$ if $\neg x_{\boldsymbol{i}}$ appears in C_{j}.

The Reduction: Phase II

- Add vertex $\boldsymbol{c}_{\boldsymbol{j}}$ for clause $\boldsymbol{C}_{\boldsymbol{j}} . \boldsymbol{c}_{\boldsymbol{j}}$ has edge from vertex $3 \boldsymbol{j}$ and to vertex $3 j+1$ on path i if x_{i} appears in clause C_{j}, and has edge from vertex $3 j+1$ and to vertex $3 j$ if $\neg x_{i}$ appears in C_{j}.

The Reduction: Phase II

- Add vertex $\boldsymbol{c}_{\boldsymbol{j}}$ for clause $\boldsymbol{C}_{\boldsymbol{j}} . \boldsymbol{c}_{\boldsymbol{j}}$ has edge from vertex $3 \boldsymbol{j}$ and to vertex $3 j+1$ on path i if x_{i} appears in clause C_{j}, and has edge from vertex $3 j+1$ and to vertex $3 j$ if $\neg x_{i}$ appears in C_{j}.

Correctness Proof

Proposition

φ has a satisfying assignment iff G_{φ} has a Hamiltonian cycle.

Proof.

\Rightarrow Let \boldsymbol{a} be the satisfying assignment for φ. Define Hamiltonian cycle as follows

- If $\boldsymbol{a}\left(\boldsymbol{x}_{\boldsymbol{i}}\right)=\mathbf{1}$ then traverse path \boldsymbol{i} from left to right
- If $\boldsymbol{a}\left(\boldsymbol{x}_{\boldsymbol{i}}\right)=\mathbf{0}$ then traverse path \boldsymbol{i} from right to left
- For each clause, path of at least one variable is in the "right" direction to splice in the node corresponding to clause

Hamiltonian Cycle \Rightarrow Satisfying assignment

Suppose $\boldsymbol{\Pi}$ is a Hamiltonian cycle in \boldsymbol{G}_{φ}

- If Π enters c_{j} (vertex for clause C_{j}) from vertex $3 j$ on path i then it must leave the clause vertex on edge to $3 j+1$ on the same path i
- If not, then only unvisited neighbor of $3 \boldsymbol{j}+1$ on path \boldsymbol{i} is $3 \boldsymbol{j}+\mathbf{2}$
- Thus, we don't have two unvisited neighbors (one to enter from, and the other to leave) to have a Hamiltonian Cycle
- Similarly, if Π enters $\boldsymbol{c}_{\boldsymbol{j}}$ from vertex $\mathbf{3} \boldsymbol{j}+\mathbf{1}$ on path \boldsymbol{i} then it must leave the clause vertex $\boldsymbol{c}_{\boldsymbol{j}}$ on edge to $3 \boldsymbol{j}$ on path \boldsymbol{i}

Example

Hamiltonian Cycle \Longrightarrow Satisfying assignment (contd)

- Thus, vertices visited immediately before and after C_{i} are connected by an edge
- We can remove $\boldsymbol{c}_{\boldsymbol{j}}$ from cycle, and get Hamiltonian cycle in $G-c_{j}$
- Consider Hamiltonian cycle in $G-\left\{c_{1}, \ldots c_{m}\right\}$; it traverses each path in only one direction, which determines the truth assignment

Is covering by cycles hard?

Given a directed graph G, deciding if G can be covered by vertex disjoint cycles (each of length at least two) is
(A) NP-Hard.
(B) NP-Complete.
(C) P.
(D) IDK.

Hamiltonian Cycle

Problem

Input Given undirected graph $G=(V, E)$

Goal Does G have a Hamiltonian cycle? That is, is there a cycle that visits every vertex exactly one (except start and end vertex)?

NP-Completeness

Theorem
Hamiltonian cycle problem for undirected graphs is NP-Complete.

Proof.

- The problem is in NP; proof left as exercise.
- Hardness proved by reducing Directed Hamiltonian Cycle to this problem

Reduction Sketch

Goal: Given directed graph G, need to construct undirected graph G^{\prime} such that G has Hamiltonian Path iff G^{\prime} has Hamiltonian path

Reduction

Reduction Sketch

Goal: Given directed graph G, need to construct undirected graph G^{\prime} such that G has Hamiltonian Path iff G^{\prime} has Hamiltonian path

Reduction

- Replace each vertex \boldsymbol{v} by 3 vertices: $\boldsymbol{v}_{\boldsymbol{i n}}, \boldsymbol{v}$, and $\boldsymbol{v}_{\text {out }}$

Reduction Sketch

Goal: Given directed graph G, need to construct undirected graph G^{\prime} such that G has Hamiltonian Path iff G^{\prime} has Hamiltonian path

Reduction

- Replace each vertex v by 3 vertices: $\boldsymbol{v}_{\boldsymbol{i n}}, \boldsymbol{v}$, and $\boldsymbol{v}_{\text {out }}$
- A directed edge $(\boldsymbol{a}, \boldsymbol{b})$ is replaced by edge $\left(\boldsymbol{a}_{\text {out }}, \boldsymbol{b}_{\boldsymbol{i n}}\right)$

Reduction Sketch

Goal: Given directed graph G, need to construct undirected graph G^{\prime} such that G has Hamiltonian Path iff G^{\prime} has Hamiltonian path

Reduction

- Replace each vertex v by 3 vertices: $\boldsymbol{v}_{\boldsymbol{i n}}, v$, and $\boldsymbol{v}_{\text {out }}$
- A directed edge $(\boldsymbol{a}, \boldsymbol{b})$ is replaced by edge $\left(\boldsymbol{a}_{\boldsymbol{o u t}}, \boldsymbol{b}_{\boldsymbol{i n}}\right)$

Reduction: Wrapup

- The reduction is polynomial time (exercise)
- The reduction is correct (exercise)

Hamiltonian Path

Input Given a directed graph $G=(V, E)$ with n vertices Goal Does G have a Hamiltonian path?

- A Hamiltonian path is a path in the graph that visits every vertex in G exactly once

Exercise: Modify the reduction from 3-SAT to Hamilton cycle to prove that 3-SAT reduces to Hamilton path.

Exercise: Also prove that Hamilton path in undirected graphs is NP-Complete.

Part II

NP-Completeness of Graph Coloring

Graph Coloring

Problem: Graph Coloring

Instance: $G=(V, E)$: Undirected graph, integer k. Question: Can the vertices of the graph be colored using k colors so that vertices connected by an edge do not get the same color?

Graph 3-Coloring

Problem: 3 Coloring

Instance: $G=(V, E)$: Undirected graph.
Question: Can the vertices of the graph be colored using 3 colors so that vertices connected by an edge do not get the same color?

Graph 3-Coloring

Problem: 3 Coloring

Instance: $G=(V, E)$: Undirected graph.
Question: Can the vertices of the graph be colored using 3 colors so that vertices connected by an edge do not get the same color?

Graph Coloring

Observation: If \boldsymbol{G} is colored with \boldsymbol{k} colors then each color class (nodes of same color) form an independent set in \boldsymbol{G}. Thus, \boldsymbol{G} can be partitioned into \boldsymbol{k} independent sets iff G is \boldsymbol{k}-colorable.

Graph Coloring

Observation: If \boldsymbol{G} is colored with \boldsymbol{k} colors then each color class (nodes of same color) form an independent set in \boldsymbol{G}. Thus, G can be partitioned into k independent sets iff G is k-colorable.

Graph 2-Coloring can be decided in polynomial time.

Graph Coloring

Observation: If \boldsymbol{G} is colored with \boldsymbol{k} colors then each color class (nodes of same color) form an independent set in \boldsymbol{G}. Thus, G can be partitioned into \boldsymbol{k} independent sets iff \boldsymbol{G} is \boldsymbol{k}-colorable.

Graph 2-Coloring can be decided in polynomial time.
G is 2-colorable iff G is bipartite!

Graph Coloring

Observation: If \boldsymbol{G} is colored with k colors then each color class (nodes of same color) form an independent set in \boldsymbol{G}. Thus, \boldsymbol{G} can be partitioned into \boldsymbol{k} independent sets iff \boldsymbol{G} is \boldsymbol{k}-colorable.

Graph 2-Coloring can be decided in polynomial time.
G is 2-colorable iff G is bipartite! There is a linear time algorithm to check if G is bipartite using BFS (we saw this earlier).

Graph Coloring and Register Allocation

Register Allocation

Assign variables to (at most) \boldsymbol{k} registers such that variables needed at the same time are not assigned to the same register

Interference Graph

Vertices are variables, and there is an edge between two vertices, if the two variables are "live" at the same time.

Observations

- [Chaitin] Register allocation problem is equivalent to coloring the interference graph with k colors
- Moreover, 3-COLOR \leq_{P} k-Register Allocation, for any $k \geq 3$

Class Room Scheduling

Given \boldsymbol{n} classes and their meeting times, are \boldsymbol{k} rooms sufficient?

Class Room Scheduling

Given \boldsymbol{n} classes and their meeting times, are \boldsymbol{k} rooms sufficient?

Reduce to Graph \boldsymbol{k}-Coloring problem
Create graph G

- a node $\boldsymbol{v}_{\boldsymbol{i}}$ for each class \boldsymbol{i}
- an edge between $\boldsymbol{v}_{\boldsymbol{i}}$ and $\boldsymbol{v}_{\boldsymbol{j}}$ if classes \boldsymbol{i} and \boldsymbol{j} conflict

Class Room Scheduling

Given \boldsymbol{n} classes and their meeting times, are \boldsymbol{k} rooms sufficient?
Reduce to Graph k-Coloring problem
Create graph G

- a node $\boldsymbol{v}_{\boldsymbol{i}}$ for each class \boldsymbol{i}
- an edge between $\boldsymbol{v}_{\boldsymbol{i}}$ and $\boldsymbol{v}_{\boldsymbol{j}}$ if classes \boldsymbol{i} and \boldsymbol{j} conflict

Exercise: \boldsymbol{G} is \boldsymbol{k}-colorable iff \boldsymbol{k} rooms are sufficient

Frequency Assignments in Cellular Networks

Cellular telephone systems that use Frequency Division Multiple Access (FDMA) (example: GSM in Europe and Asia and AT\&T in USA)

- Breakup a frequency range $[a, b]$ into disjoint bands of frequencies $\left[a_{0}, b_{0}\right],\left[a_{1}, b_{1}\right], \ldots,\left[a_{k}, b_{k}\right]$
- Each cell phone tower (simplifying) gets one band
- Constraint: nearby towers cannot be assigned same band, otherwise signals will interference

Frequency Assignments in Cellular Networks

Cellular telephone systems that use Frequency Division Multiple Access (FDMA) (example: GSM in Europe and Asia and AT\&T in USA)

- Breakup a frequency range $[a, b]$ into disjoint bands of frequencies $\left[a_{0}, b_{0}\right],\left[a_{1}, b_{1}\right], \ldots,\left[a_{k}, b_{k}\right]$
- Each cell phone tower (simplifying) gets one band
- Constraint: nearby towers cannot be assigned same band, otherwise signals will interference
Problem: given \boldsymbol{k} bands and some region with \boldsymbol{n} towers, is there a way to assign the bands to avoid interference?

Can reduce to k-coloring by creating intereference/conflict graph on towers.

3 color this gadget.

You are given three colors: red, green and blue. Can the following graph be three colored in a valid way (assuming the two nodes are already colored as indicated).

(A) Yes.
(B) No.

3 color this gadget II

You are given three colors: red, green and blue. Can the following graph be three colored in a valid way (assuming the two nodes are already colored as indicated).

(A) Yes.
(B) No.

3-Coloring is NP-Complete

- 3-Coloring is in NP.
- Certificate: for each node a color from $\{\mathbf{1}, \mathbf{2}, \mathbf{3}\}$.
- Certifier: Check if for each edge ($\boldsymbol{u}, \boldsymbol{v}$), the color of \boldsymbol{u} is different from that of \boldsymbol{v}.
- Hardness: We will show 3-SAT $\leq_{p} 3$-Coloring.

Reduction Idea

Start with 3SAT formula (i.e., 3CNF formula) φ with n variables x_{1}, \ldots, x_{n} and m clauses C_{1}, \ldots, C_{m}. Create graph G_{φ} such that \boldsymbol{G}_{φ} is 3 -colorable iff φ is satisfiable

- need to establish truth assignment for x_{1}, \ldots, x_{n} via colors for some nodes in G_{φ}.

Reduction Idea

Start with 3SAT formula (i.e., 3CNF formula) φ with n variables x_{1}, \ldots, x_{n} and m clauses C_{1}, \ldots, C_{m}. Create graph G_{φ} such that \boldsymbol{G}_{φ} is 3 -colorable iff φ is satisfiable

- need to establish truth assignment for x_{1}, \ldots, x_{n} via colors for some nodes in G_{φ}.
- create triangle with node True, False, Base

Reduction Idea

Start with 3SAT formula (i.e., 3CNF formula) φ with n variables x_{1}, \ldots, x_{n} and m clauses C_{1}, \ldots, C_{m}. Create graph G_{φ} such that G_{φ} is 3 -colorable iff φ is satisfiable

- need to establish truth assignment for x_{1}, \ldots, x_{n} via colors for some nodes in G_{φ}.
- create triangle with node True, False, Base
- for each variable x_{i} two nodes v_{i} and \bar{v}_{i} connected in a triangle with common Base

Reduction Idea

Start with 3SAT formula (i.e., 3CNF formula) φ with n variables x_{1}, \ldots, x_{n} and m clauses C_{1}, \ldots, C_{m}. Create graph G_{φ} such that G_{φ} is 3 -colorable iff φ is satisfiable

- need to establish truth assignment for x_{1}, \ldots, x_{n} via colors for some nodes in G_{φ}.
- create triangle with node True, False, Base
- for each variable x_{i} two nodes v_{i} and \bar{v}_{i} connected in a triangle with common Base
- If graph is 3-colored, either \boldsymbol{v}_{i} or \bar{v}_{i} gets the same color as True. Interpret this as a truth assignment to $\boldsymbol{v}_{\boldsymbol{i}}$

Reduction Idea

Start with 3SAT formula (i.e., 3CNF formula) φ with \boldsymbol{n} variables x_{1}, \ldots, x_{n} and m clauses C_{1}, \ldots, C_{m}. Create graph G_{φ} such that G_{φ} is 3 -colorable iff φ is satisfiable

- need to establish truth assignment for x_{1}, \ldots, x_{n} via colors for some nodes in G_{φ}.
- create triangle with node True, False, Base
- for each variable x_{i} two nodes v_{i} and \bar{v}_{i} connected in a triangle with common Base
- If graph is 3-colored, either $\boldsymbol{v}_{\boldsymbol{i}}$ or \bar{v}_{i} gets the same color as True. Interpret this as a truth assignment to $\boldsymbol{v}_{\boldsymbol{i}}$
- Need to add constraints to ensure clauses are satisfied (next phase)

Figure

Clause Satisfiability Gadget

For each clause $C_{j}=(\boldsymbol{a} \vee \boldsymbol{b} \vee \boldsymbol{c})$, create a small gadget graph

- gadget graph connects to nodes corresponding to a, b, c
- needs to implement OR

OR-gadget-graph:

OR-Gadget Graph

Property: if $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$ are colored False in a 3-coloring then output node of OR-gadget has to be colored False.

Property: if one of $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$ is colored True then OR-gadget can be 3-colored such that output node of OR-gadget is colored True.

Reduction

- create triangle with nodes True, False, Base
- for each variable $\boldsymbol{x}_{\boldsymbol{i}}$ two nodes $\boldsymbol{v}_{\boldsymbol{i}}$ and $\overline{\boldsymbol{v}}_{\boldsymbol{i}}$ connected in a triangle with common Base
- for each clause $C_{j}=(\boldsymbol{a} \vee \boldsymbol{b} \vee \boldsymbol{c})$, add OR-gadget graph with input nodes a, b, c and connect output node of gadget to both False and Base

Reduction

Claim

No legal 3-coloring of above graph (with coloring of nodes T, F, B fixed) in which a, b, c are colored False. If any of a, b, c are colored True then there is a legal 3 -coloring of above graph.

3 coloring of the clause gadget

Reduction Outline

Example

$$
\varphi=(u \vee \neg v \vee w) \wedge(v \vee x \vee \neg y)
$$

Correctness of Reduction

φ is satisfiable implies G_{φ} is 3 -colorable

- if x_{i} is assigned True, color v_{i} True and $\overline{v_{i}}$ False

Correctness of Reduction

φ is satisfiable implies G_{φ} is 3 -colorable

- if x_{i} is assigned True, color $\boldsymbol{v}_{\boldsymbol{i}}$ True and $\bar{v}_{\boldsymbol{i}}$ False
- for each clause $C_{j}=(\boldsymbol{a} \vee \boldsymbol{b} \vee \boldsymbol{c})$ at least one of a, b, c is colored True. OR-gadget for C_{j} can be 3-colored such that output is True.

Correctness of Reduction

φ is satisfiable implies G_{φ} is 3 -colorable

- if x_{i} is assigned True, color $\boldsymbol{v}_{\boldsymbol{i}}$ True and $\bar{v}_{\boldsymbol{i}}$ False
- for each clause $C_{j}=(\boldsymbol{a} \vee \boldsymbol{b} \vee \boldsymbol{c})$ at least one of a, b, c is colored True. OR-gadget for C_{j} can be 3-colored such that output is True.

Correctness of Reduction

φ is satisfiable implies G_{φ} is 3 -colorable

- if x_{i} is assigned True, color v_{i} True and \bar{v}_{i} False
- for each clause $C_{j}=(a \vee b \vee c)$ at least one of a, b, c is colored True. OR-gadget for C_{j} can be 3-colored such that output is True.
G_{φ} is 3 -colorable implies φ is satisfiable
- if v_{i} is colored True then set x_{i} to be True, this is a legal truth assignment

Correctness of Reduction

φ is satisfiable implies G_{φ} is 3-colorable

- if $x_{\boldsymbol{i}}$ is assigned True, color $\boldsymbol{v}_{\boldsymbol{i}}$ True and $\bar{v}_{\boldsymbol{i}}$ False
- for each clause $C_{j}=(\boldsymbol{a} \vee \boldsymbol{b} \vee \boldsymbol{c})$ at least one of a, b, c is colored True. OR-gadget for C_{j} can be 3-colored such that output is True.
G_{φ} is 3-colorable implies φ is satisfiable
- if $\boldsymbol{v}_{\boldsymbol{i}}$ is colored True then set $\boldsymbol{x}_{\boldsymbol{i}}$ to be True, this is a legal truth assignment
- consider any clause $C_{j}=(\boldsymbol{a} \vee \boldsymbol{b} \vee \boldsymbol{c})$. it cannot be that all a, b, c are False. If so, output of OR-gadget for C_{j} has to be colored False but output is connected to Base and False!

Graph generated in reduction...

... from 3SAT to 3COLOR

Part III

Hardness of

Subset Sum

Problem: Subset Sum

Instance: S - set of positive integers, t : - an integer number (Target)
Question: Is there a subset $X \subseteq S$ such that $\sum_{x \in X} x=t ?$

Claim

Subset Sum is NP-Complete.

Vec Subset Sum

We will prove following problem is NP-Complete...
Problem: Vec Subset Sum
Instance: \boldsymbol{S} - set of \boldsymbol{n} vectors of dimension \boldsymbol{k}, each vector has non-negative numbers for its coordinates, and a target vector $\overrightarrow{\boldsymbol{t}}$.
Question: Is there a subset $X \subseteq S$ such that $\sum_{\vec{x} \in X} \vec{x}=\vec{t}$?

Reduction from 3SAT.

Vec Subset Sum

Handling a single clause

Think about vectors as being lines in a table.

First gadget

Selecting between two lines.

Target	$? ?$	$? ?$	01	$? ? ?$
a_{1}	$? ?$	$? ?$	01	$? ?$
a_{2}	$? ?$	$? ?$	01	$? ?$

Two rows for every variable x : selecting either $x=0$ or $x=1$.

Handling a clause...

We will have a column for every clause...

numbers	\ldots	$\boldsymbol{C} \equiv \boldsymbol{a} \vee \boldsymbol{b} \vee \overline{\boldsymbol{c}}$	\ldots
\boldsymbol{a}	\ldots	01	\ldots
$\overline{\boldsymbol{a}}$	\ldots	00	\ldots
\boldsymbol{b}	\ldots	01	\ldots
$\overline{\boldsymbol{b}}$	\ldots	00	\ldots
\boldsymbol{c}	\ldots	00	\ldots
$\overline{\boldsymbol{c}}$	\ldots	01	\ldots
\boldsymbol{C} fix-up 1	000	07	000
\boldsymbol{C} fix-up 2	000	08	000
\boldsymbol{C} fix-up 3	000	09	000
TARGET		10	

3SAT to Vec Subset Sum

numbers	$\boldsymbol{a} \vee \overline{\mathbf{a}}$	$\boldsymbol{b} \vee \overline{\boldsymbol{b}}$	$\boldsymbol{c} \vee \overline{\boldsymbol{c}}$	$\boldsymbol{d} \vee \overline{\boldsymbol{d}}$	$\boldsymbol{D} \equiv \overline{\boldsymbol{b}} \vee \boldsymbol{c} \vee \overline{\boldsymbol{d}}$	$\boldsymbol{C} \equiv \boldsymbol{a} \vee \boldsymbol{b} \vee \overline{\boldsymbol{c}}$
\boldsymbol{a}	1	0	0	0	00	01
$\overline{\boldsymbol{a}}$	1	0	0	0	00	00
\boldsymbol{b}	0	1	0	0	00	01
$\overline{\boldsymbol{b}}$	0	1	0	0	01	00
\boldsymbol{c}	0	0	1	0	01	00
$\overline{\boldsymbol{c}}$	0	0	1	0	00	01
\boldsymbol{d}	0	0	0	1	00	00
$\overline{\boldsymbol{d}}$	0	0	0	1	01	01
\boldsymbol{C} fix-up 1	0	0	0	0	00	07
\boldsymbol{C} fix-up 2	0	0	0	0	00	08
\boldsymbol{C} fix-up 3	0	0	0	0	00	09
\boldsymbol{D} fix-up 1	0	0	0	0	07	00
\boldsymbol{D} fix-up 2	0	0	0	0	08	00
\boldsymbol{D} fix-up 3	0	0	0	0	09	00
TARGET	1	1	1	1	10	10

Vec Subset Sum to Subset Sum

numbers
010000000001 010000000000 000100000001 000100000100 000001000100 000001000001 000000010000 000000010101 000000000007 000000000008 000000000009 000000000700 000000000800 000000000900

Other NP-Complete Problems

- 3-Dimensional Matching
- 3-Partition

Read book.

Subset Sum and Knapsack

Knapsack: Given \boldsymbol{n} items with item \boldsymbol{i} having non-negative integer size s_{i} and non-negative integer profit p_{i}, a knapsack of capacity B, and a target profit P, is there a subset S of items that can be packed in the knapsack and the profit of S is at least P ?

Exercise: Show Knapsack is NP-Complete via reduction from Subset Sum

Subset Sum and Knapsack

Subset Sum can be solved in $O(n B)$ time using dynamic programming (exercise).

Subset Sum and Knapsack

Subset Sum can be solved in $O(n B)$ time using dynamic programming (exercise).

Implies that problem is hard only when numbers $a_{1}, a_{2}, \ldots, a_{n}$ are exponentially large compared to \boldsymbol{n}. That is, each $\boldsymbol{a}_{\boldsymbol{i}}$ requires polynomial in n bits.

Number problems of the above type are said to be weakly NP-Complete.

Number problems which are NP-Complete even when the numbers are written in unary are strongly NP-Complete.

A Strongly NP-Complete Number Problem

3-Partition: Given $3 n$ numbers $a_{1}, a_{2}, \ldots, a_{3 n}$ and target B can the numbers be partitioned into \boldsymbol{n} groups of $\mathbf{3}$ each such that the sum of numbers in each group is exactly \boldsymbol{B} ?

Can further assume that each number a_{i} is between $B / 3$ and $2 B / 3$.
Can reduce 3-D-Matching to 3-Partition in polynomial time such that each number $\boldsymbol{a}_{\boldsymbol{i}}$ can be written in unary.

Need to Know NP-Complete Problems

- SAT and 3-SAT
- Independent Set
- Vertex Cover
- Clique
- Set Cover
- Hamiltonian Cycle in Directed/Undirected Graphs
- 3-Coloring
- 3-D Matching
- Subset Sum and Knapsack

