BBM402-Lecture 9: More NP-Complete Problems

Lecturer: Lale Özkahya

Resources for the presentation: https://courses.engr.illinois.edu/cs473/fa2016/lectures.html https://courses.engr.illinois.edu/cs374/fa2015/lectures.html

- A language L is NP-Complete iff
 - L is in NP
 - for every L' in NP, $L' \leq_P L$

- A language L is NP-Complete iff
 - L is in NP
 - for every L' in NP, $L' \leq_P L$
- L is NP-Hard if for every L' in NP, $L' \leq_P L$.

- A language L is NP-Complete iff
 - L is in NP
 - for every L' in NP, $L' \leq_P L$
- L is NP-Hard if for every L' in NP, $L' \leq_P L$.

Theorem (Cook-Levin) SAT *is* NP-Complete.

Pictorial View

P and NP

Possible scenarios:

- $\bullet P = NP.$
- $\bigcirc P \neq NP$

P and NP

Possible scenarios:

- $\bullet P = NP.$
- $\bigcirc \mathsf{P} \neq \mathsf{NP}$

Question: Suppose $P \neq NP$. Is every problem in $NP \setminus P$ also NP-Complete?

P and NP

Possible scenarios:

- $\bullet P = NP.$
- $\bigcirc \mathsf{P} \neq \mathsf{NP}$

Question: Suppose $P \neq NP$. Is every problem in $NP \setminus P$ also NP-Complete?

Theorem (Ladner)

If $P \neq NP$ then there is a problem/language $X \in NP \setminus P$ such that X is not NP-Complete.

Today

NP-Completeness of three problems:

- 3-Color
- Circuit SAT
- SAT (Cook-Levin Theorem)

Important: understanding the problems and that they are hard.

Proofs and reductions will be sketchy and mainly to give a flavor

Part I

NP-Completeness of Graph Coloring

Problem: Graph Coloring

Instance: G = (V, E): Undirected graph, integer k. **Question:** Can the vertices of the graph be colored using k colors so that vertices connected by an edge do not get the same color?

Problem: 3 Coloring

Instance: G = (V, E): Undirected graph. **Question:** Can the vertices of the graph be colored using **3** colors so that vertices connected by an edge do not get the same color?

Problem: 3 Coloring

Instance: G = (V, E): Undirected graph. **Question:** Can the vertices of the graph be colored using **3** colors so that vertices connected by an edge do not get the same color?

Observation: If G is colored with k colors then each color class (nodes of same color) form an independent set in G. Thus, G can be partitioned into k independent sets iff G is k-colorable.

Observation: If G is colored with k colors then each color class (nodes of same color) form an independent set in G. Thus, G can be partitioned into k independent sets iff G is k-colorable.

Graph 2-Coloring can be decided in polynomial time.

Observation: If G is colored with k colors then each color class (nodes of same color) form an independent set in G. Thus, G can be partitioned into k independent sets iff G is k-colorable.

Graph 2-Coloring can be decided in polynomial time.

G is 2-colorable iff G is bipartite!

Observation: If G is colored with k colors then each color class (nodes of same color) form an independent set in G. Thus, G can be partitioned into k independent sets iff G is k-colorable.

Graph 2-Coloring can be decided in polynomial time.

G is 2-colorable iff G is bipartite! There is a linear time algorithm to check if G is bipartite using BFS

Graph Coloring and Register Allocation

Register Allocation

Assign variables to (at most) k registers such that variables needed at the same time are not assigned to the same register

Interference Graph

Vertices are variables, and there is an edge between two vertices, if the two variables are "live" at the same time.

Observations

- [Chaitin] Register allocation problem is equivalent to coloring the interference graph with k colors
- Moreover, 3-COLOR ≤_P k-Register Allocation, for any k ≥ 3

Class Room Scheduling

Given n classes and their meeting times, are k rooms sufficient?

Class Room Scheduling

Given n classes and their meeting times, are k rooms sufficient?

Reduce to Graph k-Coloring problem

Create graph **G**

- a node v; for each class i
- an edge between v_i and v_j if classes *i* and *j* conflict

Class Room Scheduling

Given n classes and their meeting times, are k rooms sufficient?

Reduce to Graph k-Coloring problem

Create graph **G**

- a node v_i for each class i
- an edge between v_i and v_j if classes *i* and *j* conflict

Exercise: G is k-colorable iff k rooms are sufficient

Frequency Assignments in Cellular Networks

Cellular telephone systems that use Frequency Division Multiple Access (FDMA) (example: GSM in Europe and Asia and AT&T in USA)

- Breakup a frequency range [a, b] into disjoint bands of frequencies [a₀, b₀], [a₁, b₁], ..., [a_k, b_k]
- Each cell phone tower (simplifying) gets one band
- Constraint: nearby towers cannot be assigned same band, otherwise signals will interference

Frequency Assignments in Cellular Networks

Cellular telephone systems that use Frequency Division Multiple Access (FDMA) (example: GSM in Europe and Asia and AT&T in USA)

- Breakup a frequency range [a, b] into disjoint bands of frequencies [a₀, b₀], [a₁, b₁], ..., [a_k, b_k]
- Each cell phone tower (simplifying) gets one band
- Constraint: nearby towers cannot be assigned same band, otherwise signals will interference

Problem: given k bands and some region with n towers, is there a way to assign the bands to avoid interference?

Can reduce to k-coloring by creating intereference/conflict graph on towers.

3 color this gadget.

You are given three colors: red, green and blue. Can the following graph be three colored in a valid way (assuming that some of the nodes are already colored as indicated).

(A) Yes.(B) No.

3 color this gadget II

You are given three colors: red, green and blue. Can the following graph be three colored in a valid way (assuming that some of the nodes are already colored as indicated).

(A) Yes.(B) No.

3-Coloring is NP-Complete

• 3-Coloring is in NP.

- Non-deterministically guess a 3-coloring for each node
- Check if for each edge (u, v), the color of u is different from that of v.
- Hardness: We will show 3-SAT \leq_P 3-Coloring.

Start with **3SAT** formula (i.e., **3**CNF formula) φ with *n* variables x_1, \ldots, x_n and *m* clauses C_1, \ldots, C_m . Create graph G_{φ} such that G_{φ} is 3-colorable iff φ is satisfiable

• need to establish truth assignment for x_1, \ldots, x_n via colors for some nodes in G_{φ} .

- need to establish truth assignment for x_1, \ldots, x_n via colors for some nodes in G_{φ} .
- create triangle with node True, False, Base

- need to establish truth assignment for x_1, \ldots, x_n via colors for some nodes in G_{φ} .
- create triangle with node True, False, Base

- need to establish truth assignment for x_1, \ldots, x_n via colors for some nodes in G_{φ} .
- create triangle with node True, False, Base
- If graph is 3-colored, either v_i or v
 _i gets the same color as True. Interpret this as a truth assignment to v_i

- need to establish truth assignment for x_1, \ldots, x_n via colors for some nodes in G_{φ} .
- create triangle with node True, False, Base
- If graph is 3-colored, either v_i or v
 i gets the same color as True. Interpret this as a truth assignment to v_i
- Need to add constraints to ensure clauses are satisfied (next phase)

Clause Satisfiability Gadget

For each clause $C_j = (a \lor b \lor c)$, create a small gadget graph

- gadget graph connects to nodes corresponding to *a*, *b*, *c*
- needs to implement OR

OR-gadget-graph:

OR-Gadget Graph

Property: if *a*, *b*, *c* are colored False in a 3-coloring then output node of OR-gadget has to be colored False.

Property: if one of a, b, c is colored True then OR-gadget can be 3-colored such that output node of OR-gadget is colored True.

Reduction

- create triangle with nodes True, False, Base
- for each variable x_i two nodes v_i and \bar{v}_i connected in a triangle with common Base
- for each clause $C_j = (a \lor b \lor c)$, add OR-gadget graph with input nodes a, b, c and connect output node of gadget to both False and Base

Reduction

Claim

No legal **3**-coloring of above graph (with coloring of nodes **T**, **F**, **B** fixed) in which **a**, **b**, **c** are colored False. If any of **a**, **b**, **c** are colored True then there is a legal **3**-coloring of above graph.

3 coloring of the clause gadget

Reduction Outline

Example

 $\varphi = (u \vee \neg v \vee w) \land (v \vee x \vee \neg y)$

arphi is satisfiable implies G_{arphi} is 3-colorable

• if x_i is assigned True, color v_i True and \bar{v}_i False

- arphi is satisfiable implies G_{arphi} is 3-colorable
 - if x_i is assigned True, color v_i True and \bar{v}_i False
 - for each clause $C_j = (a \lor b \lor c)$ at least one of a, b, c is colored True. OR-gadget for C_j can be 3-colored such that output is True.

- arphi is satisfiable implies G_{arphi} is 3-colorable
 - if x_i is assigned True, color v_i True and \bar{v}_i False
 - for each clause $C_j = (a \lor b \lor c)$ at least one of a, b, c is colored True. OR-gadget for C_j can be 3-colored such that output is True.

- arphi is satisfiable implies G_{arphi} is 3-colorable
 - if x_i is assigned True, color v_i True and \bar{v}_i False
 - for each clause C_j = (a ∨ b ∨ c) at least one of a, b, c is colored True. OR-gadget for C_j can be 3-colored such that output is True.
- G_{arphi} is 3-colorable implies arphi is satisfiable
 - if *v_i* is colored True then set *x_i* to be True, this is a legal truth assignment

- arphi is satisfiable implies G_{arphi} is 3-colorable
 - if x_i is assigned True, color v_i True and \bar{v}_i False
 - for each clause C_j = (a ∨ b ∨ c) at least one of a, b, c is colored True. OR-gadget for C_j can be 3-colored such that output is True.
- G_{φ} is 3-colorable implies φ is satisfiable
 - if *v_i* is colored True then set *x_i* to be True, this is a legal truth assignment
 - consider any clause C_j = (a ∨ b ∨ c). it cannot be that all a, b, c are False. If so, output of OR-gadget for C_j has to be colored False but output is connected to Base and False!

Graph generated in reduction... ... from 3SAT to 3COLOR

Part II

Circuit SAT

Circuits

Definition

A circuit is a directed *acyclic* graph with

- Input vertices (without incoming edges) labelled with
 0, 1 or a distinct variable.
- Every other vertex is labelled
 ∨, ∧ or ¬.
- Single node output vertex with no outgoing edges.

Circuits

Definition

A circuit is a directed *acyclic* graph with

- Input vertices (without incoming edges) labelled with
 0, 1 or a distinct variable.
- Every other vertex is labelled
 ∨, ∧ or ¬.
- Single node output vertex with no outgoing edges.

Circuits

Definition

A circuit is a directed *acyclic* graph with

- Input vertices (without incoming edges) labelled with
 0, 1 or a distinct variable.
- Every other vertex is labelled
 ∨, ∧ or ¬.
- Single node output vertex with no outgoing edges.

Definition (Circuit Satisfaction (CSAT).)

Given a circuit as input, is there an assignment to the input variables that causes the output to get value 1?

Definition (Circuit Satisfaction (CSAT).)

Given a circuit as input, is there an assignment to the input variables that causes the output to get value 1?

Claim

CSAT is in **NP**.

- Certificate: Assignment to input variables.
- Certifier: Evaluate the value of each gate in a topological sort of DAG and check the output gate value.

Circuit SAT vs SAT

CNF formulas are a rather restricted form of Boolean formulas.

Circuits are a much more powerful (and hence easier) way to express Boolean formulas

CNF formulas are a rather restricted form of Boolean formulas.

Circuits are a much more powerful (and hence easier) way to express Boolean formulas

However they are equivalent in terms of polynomial-time solvability.

Theorem SAT \leq_P 3SAT \leq_P CSAT. Theorem $CSAT <_{P} SAT <_{P} 3SAT$.

Converting a CNF formula into a Circuit

Given 3CNF formulat φ with *n* variables and *m* clauses, create a Circuit *C*.

- Inputs to C are the n boolean variables x_1, x_2, \ldots, x_n
- Use NOT gate to generate literal $\neg x_i$ for each variable x_i
- For each clause (ℓ₁ ∨ ℓ₂ ∨ ℓ₃) use two OR gates to mimic formula
- Combine the outputs for the clauses using AND gates to obtain the final output

$$\varphi = \left(x_1 \lor \lor x_3 \lor x_4\right) \land \left(x_1 \lor \neg x_2 \lor \neg x_3\right) \land \left(\neg x_2 \lor \neg x_3 \lor x_4\right)$$

Converting a circuit into a $\ensuremath{\mathbf{CNF}}$ formula Label the nodes

Converting a circuit into a CNF formula Introduce a variable for each node

Converting a circuit into a CNF formula Write a sub-formula for each variable that is true if the var is computed correctly.

(C) Introduce var for each node.

(D) Write a sub-formula for each variable that is true if the var is computed correctly.

Converting a circuit into a CNF formula Convert each sub-formula to an equivalent CNF formula

Converting a circuit into a CNF formula Take the conjunction of all the CNF sub-formulas

$$x_{k} \land (\neg x_{k} \lor x_{i}) \land (\neg x_{k} \lor x_{j}) \\ \land (x_{k} \lor \neg x_{i} \lor \neg x_{j}) \land (\neg x_{j} \lor x_{g}) \\ \land (\neg x_{j} \lor x_{h}) \land (x_{j} \lor \neg x_{g} \lor \neg x_{h}) \\ \land (x_{i} \lor x_{f}) \land (\neg x_{i} \lor x_{f}) \\ \land (x_{h} \lor \neg x_{d}) \land (x_{h} \lor \neg x_{e}) \\ \land (\neg x_{h} \lor x_{d} \lor x_{e}) \land (x_{g} \lor \neg x_{b}) \\ \land (x_{g} \lor \neg x_{c}) \land (\neg x_{g} \lor x_{b} \lor x_{c}) \\ \land (\neg x_{f} \lor x_{a}) \land (\neg x_{f} \lor x_{b}) \\ \land (x_{f} \lor \neg x_{a} \lor \neg x_{b}) \land (\neg x_{d}) \land x_{a}$$

We got a ${\bf CNF}$ formula that is satisfiable if and only if the original circuit is satisfiable.

- For each gate (vertex) \mathbf{v} in the circuit, create a variable $\mathbf{x}_{\mathbf{v}}$
- **2** Case \neg : v is labeled \neg and has one incoming edge from u (so $x_v = \neg x_u$). In SAT formula generate, add clauses $(x_u \lor x_v)$, $(\neg x_u \lor \neg x_v)$. Observe that

$$x_v = \neg x_u$$
 is true \iff

$$egin{aligned} (x_u ee x_v) \ (\neg x_u ee \neg x_v) \end{aligned} ext{ both true}$$

Continued...

• Case \lor : So $x_v = x_u \lor x_w$. In SAT formula generated, add clauses $(x_v \lor \neg x_u)$, $(x_v \lor \neg x_w)$, and $(\neg x_v \lor x_u \lor x_w)$. Again, observe that

$$\begin{pmatrix} x_{v} = x_{u} \lor x_{w} \end{pmatrix} \text{ is true } \iff \begin{pmatrix} (x_{v} \lor \neg x_{u}), \\ (x_{v} \lor \neg x_{w}), \\ (\neg x_{v} \lor x_{u} \lor x_{w}) \end{pmatrix} \text{ all true.}$$

Continued...

• Case \land : So $x_v = x_u \land x_w$. In SAT formula generated, add clauses $(\neg x_v \lor x_u)$, $(\neg x_v \lor x_w)$, and $(x_v \lor \neg x_u \lor \neg x_w)$. Again observe that

$$\begin{aligned} x_v &= x_u \wedge x_w \text{ is true } \iff \begin{array}{ll} (\neg x_v \lor x_u), \\ (\neg x_v \lor x_w), \\ (x_v \lor \neg x_u \lor \neg x_w) \end{array} \text{ all true.} \end{aligned}$$

Continued...

- If v is an input gate with a fixed value then we do the following. If $x_v = 1$ add clause x_v . If $x_v = 0$ add clause $\neg x_v$
- 2 Add the clause x_v where v is the variable for the output gate

Need to show circuit C is satisfiable iff φ_C is satisfiable

- \Rightarrow Consider a satisfying assignment *a* for *C*
 - Find values of all gates in C under a
 - **2** Give value of gate v to variable x_v ; call this assignment a'
 - **3** a' satisfies φ_{C} (exercise)
- \Leftarrow Consider a satisfying assignment *a* for φ_{C}
 - Let a' be the restriction of a to only the input variables
 - **2** Value of gate v under a' is the same as value of x_v in a
 - Thus, a' satisfies C

Part III

Proof of Cook-Levin Theorem

Cook-Levin Theorem

Theorem (Cook-Levin)

SAT is NP-Complete.

We have already seen that **SAT** is in **NP**.

Need to prove that every language $L \in NP$, $L \leq_P SAT$

Cook-Levin Theorem

Theorem (Cook-Levin)

SAT is NP-Complete.

We have already seen that **SAT** is in **NP**.

Need to prove that *every* language $L \in NP$, $L \leq_P SAT$

Difficulty: Infinite number of languages in **NP**. Must *simultaneously* show a *generic* reduction strategy.

High-level Plan

What does it mean that $L \in NP$?

 $L \in NP$ implies that there is a non-deterministic TM M and polynomial p() such that

 $L = \{x \in \mathbf{\Sigma}^* \mid M \text{ accepts } x \text{ in at most } p(|x|) \text{ steps} \}$

High-level Plan

What does it mean that $L \in NP$?

 $L \in NP$ implies that there is a non-deterministic TM M and polynomial p() such that

 $L = \{x \in \mathbf{\Sigma}^* \mid M \text{ accepts } x \text{ in at most } p(|x|) \text{ steps} \}$

We will describe a reduction f_M that depends on M, p such that:

- f_M takes as input a string x and outputs a SAT formula $f_M(x)$
- f_M runs in time polynomial in |x|
- $x \in L$ if and only if $f_M(x)$ is satisfiable

Plan continued

$f_M(x)$ is satisfiable if and only if $x \in L$ $f_M(x)$ is satisfiable if and only if non-det M accepts x in p(|x|) steps

Plan continued

 $f_M(x)$ is satisfiable if and only if $x \in L$ $f_M(x)$ is satisfiable if and only if non-det M accepts x in p(|x|) steps

BIG IDEA

- $f_M(x)$ will express "M on input x accepts in p(|x|) steps"
- $f_M(x)$ will encode a computation history of M on x

 $f_M(x)$ will be a carefully constructed CNF formulat s.t if we have a satisfying assignment to it, then we will be able to see a complete accepting computation of M on x down to the last detail of where the head is, what transistion is chosen, what the tape contents are, at each step.

Tableu of Computation

M runs in time p(|x|) on *x*. Entire computation of *M* on *x* can be represented by a "tableau"

Row i gives contents of all cells at time iAt time **0** tape has input x followed by blanks Each row long enough to hold all cells M might ever have scanned.

CS374

46

Variable of $f_M(x)$

Four types of variable to describe computation of M on x

- T(b, h, i): tape cell at position h holds symbol b at time i. $1 \le h \le p(|x|), b \in \Gamma, 0 \le i \le p(|x|)$
- H(h, i): read/write head is at position h at time i. $1 \le h \le p(|x|), \ 0 \le i \le p(|x|)$
- S(q,i) state of M is q at time $i \ q \in Q$, $0 \le i \le p(|x|)$
- I(j, i) instruction number j is executed at time i M is non-deterministic, need to specify transitions in some way. Number transitions as $1, 2, \ldots, \ell$ where j'th transition is $\langle q_j, b_j, q'_j, b'_j, d_j \rangle$ indication $(q'_j, b'_j, d_j) \in \delta(q_j, b_j)$, direction $d_j \in \{-1, 0, 1\}$.

Number of variables is $O(p(|x|)^2)$ where constant in O() hides dependence on fixed machine M.

Notation

Some abbreviations for ease of notation $\bigwedge_{k=1}^{m} x_k$ means $x_1 \land x_2 \land \ldots \land x_m$

 $\bigvee_{k=1}^m x_k$ means $x_1 \lor x_2 \lor \ldots \lor x_m$

 \bigoplus (x_1, x_2, \ldots, x_k) is a formula that means exactly one of x_1, x_2, \ldots, x_m is true. Can be converted to CNF form

 $f_M(x)$ is the conjunction of 8 clause groups:

 $f_{\mathcal{M}}(x) = \varphi_1 \land \varphi_2 \land \varphi_3 \land \varphi_4 \land \varphi_5 \land \varphi_6 \land \varphi_7 \land \varphi_8$

where each φ_i is a CNF formula. Described in subsequent slides. **Property:** $f_M(x)$ is satisfied iff there is a truth assignment to the variables that simultaneously satisfy $\varphi_1, \ldots, \varphi_8$. φ_1 asserts (is true iff) the variables are set T/F indicating that M starts in state q_0 at time **0** with tape contents containing x followed by blanks.

Let $x = a_1 a_2 \dots a_n$

```
\begin{array}{l} \varphi_1 = S(q,0) \text{ state at time 0 is } q_0 \\ \bigwedge_{n=1}^n T(a_h,h,0) \text{ at time 0 cells 1 to } n \text{ have } a_1 \text{ to } a_n \\ \bigwedge_{h=n+1}^{p(|x|)} T(B,h,0) \text{ at time 0 cells } n+1 \text{ to } p(|x|) \text{ have blanks} \\ \bigwedge_{n=1}^{q_0(|x|)} H(1,0) \text{ head at time 0 is in position 1} \end{array}
```

 φ_2 asserts *M* in exactly one state at any time *i*

```
\varphi_2 = \bigwedge_{i=0}^{p(|\mathbf{x}|)} \left( \oplus (S(q_0, i), S(q_1, i), \dots, S(q_{|Q|}, i)) \right)
```

 φ_{3} asserts that each tape cell holds a unique symbol at any given time.

$$\varphi_3 = \bigwedge_{i=0}^{p(|x|)} \bigwedge_{h=1}^{p(|x|)} \oplus (T(b_1, h, i), T(b_2, h, i), \dots, T(b_{|\Gamma|}, h, i))$$

For each time i and for each cell position h exactly one symbol $b \in \Gamma$ at cell position h at time i

 φ_{4} asserts that the read/write head of \pmb{M} is in exactly one position at any time \pmb{i}

$$\varphi_4 = \bigwedge_{i=0}^{p(|x|)} (\oplus (H(1,i), H(2,i), \ldots, H(p(|x|),i)))$$

 φ_5 asserts that M accepts

- Let q_a be unique accept state of M
- without loss of generality assume M runs all p(|x|) steps

 $\varphi_5 = S(q_a, p(|x|))$

State at time p(|x|) is q_a the accept state.

If we don't want to make assumption of running for all steps

$$\varphi_5 = \bigvee_{i=1}^{p(|x|)} S(q_a, i)$$

which means M enters accepts state at some time.

 $arphi_6$ asserts that M executes a unique instruction at each time

$$\varphi_6 = \bigwedge_{i=0}^{p(|x|)} \oplus (I(1,i), I(2,i), \ldots, I(m,i))$$

where m is max instruction number.

 φ_7 ensures that variables don't allow tape to change from one moment to next if the read/write head was not there.

"If head is **not** at position h at time i then at time i + 1 the symbol at cell h must be unchanged"

$$\varphi_{7} = \bigwedge_{i} \bigwedge_{h} \bigwedge_{b \neq c} \left(\overline{H(h, i)} \Rightarrow \overline{T(b, h, i)} \land \overline{T(c, h, i+1)} \right)$$

since $A \Rightarrow B$ is same as $\neg A \lor B$, rewrite above in CNF form

$$\varphi_{7} = \bigwedge_{i} \bigwedge_{h} \bigwedge_{b \neq c} (H(h, i) \vee \neg T(b, h, i) \vee \neg T(c, h, i + 1))$$

 φ_8 asserts that changes in tableu/tape correspond to transitions of M (as Lenny says, this is the big cookie).

Let j'th instruction be $< q_j, b_j, q_j', b_j', d_j >$

 $arphi_8=igwedge_iigwedge_j(I(j,i)\Rightarrow S(q_j,i))$ If instrj executed at time i then state must be correct to do j $igwedge_i \bigwedge_j (I(j,i) \Rightarrow S(q'_j,i+1))$ and at next time unit, state must be the proper next state for instrj $\bigwedge_i \bigwedge_h \bigwedge_i [(I(j,i) \land H(h,i)) \Rightarrow T(b_j,h,i)]$ if j was executed and head was at position h, then cell h has correct symbol for j $\bigwedge_i \bigwedge_i \bigwedge_h [(I(j,i) \land H(h,i)) \Rightarrow T(b'_i,h,i+1)]$ if j was done then at time i with head at h then at next time step symbol b_i' was indeed written in position h $\bigwedge_i \bigwedge_i \bigwedge_h [(I(j,i) \land H(h,i)) \Rightarrow H(h+d_i,i+1)]$ and head is moved properly according to instr i.

(Sketch)

- Given M, x, poly-time algorithm to construct $f_M(x)$
- if $f_M(x)$ is satisfiable then the truth assignment completely specifies an accepting computation of M on x
- if M accepts x then the accepting computation leads to an "obvious" truth assignment to $f_M(x)$. Simply assign the variables according to the state of M and cells at each time i.

Thus M accepts x if and only if $f_M(x)$ is satisfiable

Recap

NP: languages that have polynomial time certifiers/verifiers

A language L is NP-Complete iff

- L is in NP
- for every L' in NP, $L' \leq_P L$

L is NP-Hard if for every L' in NP, $L' \leq_P L$.

Theorem (Cook-Levin)

SAT is NP-Complete.

Recap contd

Theorem (Cook-Levin) SAT *is* NP-Complete.

Establish NP-Completeness via reductions:

- **SAT** is NP-Complete.
- **SAT** \leq_P **3-SAT** and hence 3-SAT is **NP-Complete**.
- ③ 3-SAT ≤_P Independent Set (which is in NP) and hence Independent Set is NP-Complete.
- Olique is NP-Complete
- Vertex Cover is NP-Complete
- Set Cover is NP-Complete
- Hamilton Cycle and Hamiltonian Path are NP-Complete
- 3-Color is NP-Complete

```
3
```

Today

Prove

- Hamiltonian Cycle is NP-Complete
- 3-Coloring is NP-Complete
- Subset Sum is NP-Complete
- All via reductions from 3-SAT

Part I

NP-Completeness of Hamiltonian Cycle

Directed Hamiltonian Cycle

Input Given a directed graph G = (V, E) with *n* vertices Goal Does *G* have a Hamiltonian cycle?

Directed Hamiltonian Cycle

Input Given a directed graph G = (V, E) with *n* vertices Goal Does *G* have a Hamiltonian cycle?

• A Hamiltonian cycle is a cycle in the graph that visits every vertex in *G* exactly once

Is the following graph Hamiltonianan?

(A) Yes.(B) No.

Directed Hamiltonian Cycle is NP-Complete

- Directed Hamiltonian Cycle is in NP
 - Certificate: Sequence of vertices
 - Certifier: Check if every vertex (except the first) appears exactly once, and that consecutive vertices are connected by a directed edge
- Hardness: We will show

3-SAT ≤_P Directed Hamiltonian Cycle

Reduction

Given 3-SAT formula φ create a graph G_{φ} such that

- G_{arphi} has a Hamiltonian cycle if and only if arphi is satisfiable
- G_{φ} should be constructible from φ by a polynomial time algorithm \mathcal{A}

Notation: φ has *n* variables x_1, x_2, \ldots, x_n and *m* clauses C_1, C_2, \ldots, C_m .

Reduction: First Ideas

- Viewing SAT: Assign values to *n* variables, and each clauses has 3 ways in which it can be satisfied.
- Construct graph with 2ⁿ Hamiltonian cycles, where each cycle corresponds to some boolean assignment.
- Then add more graph structure to encode constraints on assignments imposed by the clauses.

- Traverse path *i* from left to right iff *x_i* is set to true
- Each path has 3(m + 1) nodes where m is number of clauses in φ; nodes numbered from left to right (1 to 3m + 3)

Add vertex c_j for clause C_j. c_j has edge from vertex 3j and to vertex 3j + 1 on path i if x_i appears in clause C_j, and has edge from vertex 3j + 1 and to vertex 3j if ¬x_i appears in C_i.

Chandra & Ruta (UIUC)

Add vertex c_j for clause C_j. c_j has edge from vertex 3j and to vertex 3j + 1 on path i if x_i appears in clause C_j, and has edge from vertex 3j + 1 and to vertex 3j if ¬x_i appears in C_i.

Add vertex c_j for clause C_j. c_j has edge from vertex 3j and to vertex 3j + 1 on path i if x_i appears in clause C_j, and has edge from vertex 3j + 1 and to vertex 3j if ¬x_i appears in C_j.

Add vertex c_j for clause C_j. c_j has edge from vertex 3j and to vertex 3j + 1 on path i if x_i appears in clause C_j, and has edge from vertex 3j + 1 and to vertex 3j if ¬x_i appears in C_i.

Add vertex c_j for clause C_j. c_j has edge from vertex 3j and to vertex 3j + 1 on path i if x_i appears in clause C_j, and has edge from vertex 3j + 1 and to vertex 3j if ¬x_i appears in C_j.

Add vertex c_j for clause C_j. c_j has edge from vertex 3j and to vertex 3j + 1 on path i if x_i appears in clause C_j, and has edge from vertex 3j + 1 and to vertex 3j if ¬x_i appears in C_i.

Add vertex c_j for clause C_j. c_j has edge from vertex 3j and to vertex 3j + 1 on path i if x_i appears in clause C_j, and has edge from vertex 3j + 1 and to vertex 3j if ¬x_i appears in C_i.

Correctness Proof

Proposition

arphi has a satisfying assignment iff G_{arphi} has a Hamiltonian cycle.

Proof.

- \Rightarrow Let a be the satisfying assignment for $\varphi.$ Define Hamiltonian cycle as follows
 - If $a(x_i) = 1$ then traverse path *i* from left to right
 - If $a(x_i) = 0$ then traverse path *i* from right to left
 - For each clause, path of at least one variable is in the "right" direction to splice in the node corresponding to clause

Hamiltonian Cycle \Rightarrow Satisfying assignment

Suppose Π is a Hamiltonian cycle in G_{φ}

- If Π enters c_j (vertex for clause C_j) from vertex 3j on path i then it must leave the clause vertex on edge to 3j + 1 on the same path i
 - If not, then only unvisited neighbor of 3j + 1 on path *i* is 3j + 2
 - Thus, we don't have two unvisited neighbors (one to enter from, and the other to leave) to have a Hamiltonian Cycle
- Similarly, if Π enters c_j from vertex 3j + 1 on path i then it must leave the clause vertex c_j on edge to 3j on path i

Example

Hamiltonian Cycle \implies Satisfying assignment (contd)

- Thus, vertices visited immediately before and after *C_i* are connected by an edge
- We can remove c_j from cycle, and get Hamiltonian cycle in $G c_j$
- Consider Hamiltonian cycle in $G \{c_1, \ldots c_m\}$; it traverses each path in only one direction, which determines the truth assignment

Is covering by cycles hard?

Given a directed graph G, deciding if G can be covered by vertex disjoint cycles (each of length at least two) is

- (A) NP-Hard.
- (B) NP-Complete.
- (C) P.
- (D) IDK.

Hamiltonian Cycle

Problem

Input Given undirected graph G = (V, E)

Goal Does *G* have a Hamiltonian cycle? That is, is there a cycle that visits every vertex exactly one (except start and end vertex)?

NP-Completeness

Theorem

Hamiltonian cycle problem for undirected graphs is NP-Complete.

Proof.

- The problem is in NP; proof left as exercise.
- Hardness proved by reducing Directed Hamiltonian Cycle to this problem

Goal: Given directed graph G, need to construct undirected graph G' such that G has Hamiltonian Path iff G' has Hamiltonian path

Goal: Given directed graph G, need to construct undirected graph G' such that G has Hamiltonian Path iff G' has Hamiltonian path

Reduction

• Replace each vertex v by 3 vertices: v_{in}, v, and v_{out}

Goal: Given directed graph G, need to construct undirected graph G' such that G has Hamiltonian Path iff G' has Hamiltonian path

Reduction

- Replace each vertex v by 3 vertices: vin, v, and vout
- A directed edge (a, b) is replaced by edge (a_{out}, b_{in})

Goal: Given directed graph G, need to construct undirected graph G' such that G has Hamiltonian Path iff G' has Hamiltonian path

Reduction

- Replace each vertex v by 3 vertices: v_{in}, v, and v_{out}
- A directed edge (a, b) is replaced by edge (a_{out}, b_{in})

Reduction: Wrapup

- The reduction is polynomial time (exercise)
- The reduction is correct (exercise)

Input Given a directed graph G = (V, E) with *n* vertices Goal Does *G* have a Hamiltonian path?

• A Hamiltonian path is a path in the graph that visits every vertex in *G* exactly once

Exercise: Modify the reduction from **3-SAT** to **Hamilton cycle** to prove that **3-SAT** reduces to **Hamilton path**.

Exercise: Also prove that **Hamilton path** in undirected graphs is **NP-Complete**.

Part II

NP-Completeness of Graph Coloring

Problem: Graph Coloring

Instance: G = (V, E): Undirected graph, integer k. **Question:** Can the vertices of the graph be colored using k colors so that vertices connected by an edge do not get the same color?

Problem: 3 Coloring

Instance: G = (V, E): Undirected graph. **Question:** Can the vertices of the graph be colored using **3** colors so that vertices connected by an edge do not get the same color?

Problem: 3 Coloring

Instance: G = (V, E): Undirected graph. **Question:** Can the vertices of the graph be colored using **3** colors so that vertices connected by an edge do not get the same color?

Observation: If G is colored with k colors then each color class (nodes of same color) form an independent set in G. Thus, G can be partitioned into k independent sets iff G is k-colorable.

Observation: If G is colored with k colors then each color class (nodes of same color) form an independent set in G. Thus, G can be partitioned into k independent sets iff G is k-colorable.

Graph 2-Coloring can be decided in polynomial time.

Observation: If G is colored with k colors then each color class (nodes of same color) form an independent set in G. Thus, G can be partitioned into k independent sets iff G is k-colorable.

Graph 2-Coloring can be decided in polynomial time.

G is 2-colorable iff G is bipartite!

Observation: If G is colored with k colors then each color class (nodes of same color) form an independent set in G. Thus, G can be partitioned into k independent sets iff G is k-colorable.

Graph 2-Coloring can be decided in polynomial time.

G is 2-colorable iff G is bipartite! There is a linear time algorithm to check if G is bipartite using BFS (we saw this earlier).

Graph Coloring and Register Allocation

Register Allocation

Assign variables to (at most) k registers such that variables needed at the same time are not assigned to the same register

Interference Graph

Vertices are variables, and there is an edge between two vertices, if the two variables are "live" at the same time.

Observations

- [Chaitin] Register allocation problem is equivalent to coloring the interference graph with k colors
- Moreover, 3-COLOR ≤_P k-Register Allocation, for any k ≥ 3

Class Room Scheduling

Given n classes and their meeting times, are k rooms sufficient?

Class Room Scheduling

Given n classes and their meeting times, are k rooms sufficient?

Reduce to Graph k-Coloring problem

Create graph **G**

- a node v; for each class i
- an edge between v_i and v_j if classes *i* and *j* conflict

Class Room Scheduling

Given n classes and their meeting times, are k rooms sufficient?

Reduce to Graph k-Coloring problem

Create graph **G**

- a node v_i for each class i
- an edge between v_i and v_j if classes *i* and *j* conflict

Exercise: G is k-colorable iff k rooms are sufficient

Frequency Assignments in Cellular Networks

Cellular telephone systems that use Frequency Division Multiple Access (FDMA) (example: GSM in Europe and Asia and AT&T in USA)

- Breakup a frequency range [a, b] into disjoint bands of frequencies [a₀, b₀], [a₁, b₁], ..., [a_k, b_k]
- Each cell phone tower (simplifying) gets one band
- Constraint: nearby towers cannot be assigned same band, otherwise signals will interference

Frequency Assignments in Cellular Networks

Cellular telephone systems that use Frequency Division Multiple Access (FDMA) (example: GSM in Europe and Asia and AT&T in USA)

- Breakup a frequency range [a, b] into disjoint bands of frequencies [a₀, b₀], [a₁, b₁], ..., [a_k, b_k]
- Each cell phone tower (simplifying) gets one band
- Constraint: nearby towers cannot be assigned same band, otherwise signals will interference

Problem: given k bands and some region with n towers, is there a way to assign the bands to avoid interference?

Can reduce to k-coloring by creating intereference/conflict graph on towers.

3 color this gadget.

You are given three colors: red, green and blue. Can the following graph be three colored in a valid way (assuming the two nodes are already colored as indicated).

(A) Yes.(B) No.

3 color this gadget II

You are given three colors: red, green and blue. Can the following graph be three colored in a valid way (assuming the two nodes are already colored as indicated).

(A) Yes.(B) No.

3-Coloring is NP-Complete

• 3-Coloring is in NP.

- Certificate: for each node a color from {1, 2, 3}.
- Certifier: Check if for each edge (u, v), the color of u is different from that of v.
- Hardness: We will show 3-SAT \leq_P 3-Coloring.

Start with **3SAT** formula (i.e., **3**CNF formula) φ with *n* variables x_1, \ldots, x_n and *m* clauses C_1, \ldots, C_m . Create graph G_{φ} such that G_{φ} is 3-colorable iff φ is satisfiable

• need to establish truth assignment for x_1, \ldots, x_n via colors for some nodes in G_{φ} .

- need to establish truth assignment for x_1, \ldots, x_n via colors for some nodes in G_{φ} .
- create triangle with node True, False, Base

- need to establish truth assignment for x_1, \ldots, x_n via colors for some nodes in G_{φ} .
- create triangle with node True, False, Base

- need to establish truth assignment for x_1, \ldots, x_n via colors for some nodes in G_{φ} .
- create triangle with node True, False, Base
- If graph is 3-colored, either v_i or v
 _i gets the same color as True. Interpret this as a truth assignment to v_i

- need to establish truth assignment for x_1, \ldots, x_n via colors for some nodes in G_{φ} .
- create triangle with node True, False, Base
- If graph is 3-colored, either v_i or v
 i gets the same color as True. Interpret this as a truth assignment to v_i
- Need to add constraints to ensure clauses are satisfied (next phase)

Clause Satisfiability Gadget

For each clause $C_j = (a \lor b \lor c)$, create a small gadget graph

- gadget graph connects to nodes corresponding to *a*, *b*, *c*
- needs to implement OR

OR-gadget-graph:

OR-Gadget Graph

Property: if *a*, *b*, *c* are colored False in a 3-coloring then output node of OR-gadget has to be colored False.

Property: if one of a, b, c is colored True then OR-gadget can be 3-colored such that output node of OR-gadget is colored True.

Reduction

- create triangle with nodes True, False, Base
- for each variable x_i two nodes v_i and \bar{v}_i connected in a triangle with common Base
- for each clause $C_j = (a \lor b \lor c)$, add OR-gadget graph with input nodes a, b, c and connect output node of gadget to both False and Base

Reduction

Claim

No legal **3**-coloring of above graph (with coloring of nodes **T**, **F**, **B** fixed) in which **a**, **b**, **c** are colored False. If any of **a**, **b**, **c** are colored True then there is a legal **3**-coloring of above graph.

3 coloring of the clause gadget

Reduction Outline

Example

 $\varphi = (u \vee \neg v \vee w) \land (v \vee x \vee \neg y)$

arphi is satisfiable implies G_{arphi} is 3-colorable

• if x_i is assigned True, color v_i True and \bar{v}_i False

- arphi is satisfiable implies G_{arphi} is 3-colorable
 - if x_i is assigned True, color v_i True and \bar{v}_i False
 - for each clause $C_j = (a \lor b \lor c)$ at least one of a, b, c is colored True. OR-gadget for C_j can be 3-colored such that output is True.

- arphi is satisfiable implies G_{arphi} is 3-colorable
 - if x_i is assigned True, color v_i True and \bar{v}_i False
 - for each clause $C_j = (a \lor b \lor c)$ at least one of a, b, c is colored True. OR-gadget for C_j can be 3-colored such that output is True.

- arphi is satisfiable implies G_{arphi} is 3-colorable
 - if x_i is assigned True, color v_i True and \bar{v}_i False
 - for each clause $C_j = (a \lor b \lor c)$ at least one of a, b, c is colored True. OR-gadget for C_j can be 3-colored such that output is True.
- G_{arphi} is 3-colorable implies arphi is satisfiable
 - if *v_i* is colored True then set *x_i* to be True, this is a legal truth assignment

- arphi is satisfiable implies G_{arphi} is 3-colorable
 - if x_i is assigned True, color v_i True and \bar{v}_i False
 - for each clause $C_j = (a \lor b \lor c)$ at least one of a, b, c is colored True. OR-gadget for C_j can be 3-colored such that output is True.
- G_{φ} is 3-colorable implies φ is satisfiable
 - if *v_i* is colored True then set *x_i* to be True, this is a legal truth assignment
 - consider any clause C_j = (a ∨ b ∨ c). it cannot be that all a, b, c are False. If so, output of OR-gadget for C_j has to be colored False but output is connected to Base and False!

Graph generated in reduction... ... from 3SAT to 3COLOR

Part III

Hardness of Subset Sum

Problem: Subset Sum

Instance: S - set of positive integers, t: - an integer number (Target) Question: Is there a subset $X \subseteq S$ such that $\sum_{x \in X} x = t$?

Claim

Subset Sum is NP-Complete.

We will prove following problem is NP-Complete...

Problem: Vec Subset Sum

Instance: S - set of *n* vectors of dimension *k*, each vector has non-negative numbers for its coordinates, and a target vector \vec{t} . Question: Is there a subset $X \subseteq S$ such that $\sum_{\vec{x} \in X} \vec{x} = \vec{t}$?

Reduction from **3SAT**.

Think about vectors as being lines in a table.

First gadget

Selecting between two lines.

Target	??	??	01	???
<i>a</i> 1	??	??	01	??
<i>a</i> ₂	??	??	01	??

Two rows for every variable x: selecting either x = 0 or x = 1.

Handling a clause...

we will have a column for every clause				
numbers		$C \equiv a \lor b \lor \overline{c}$		
а		01		
ā		00		
b		01		
b		00		
С		00		
C		01		
C fix-up 1	000	07	000	
C fix-up 2	000	08	000	
C fix-up 3	000	09	000	
TARGET		10		

We will have a column for every clause...

3SAT to Vec Subset Sum

numbers	a∨ā	$b \vee \overline{b}$	$c \vee \overline{c}$	$d \vee \overline{d}$	$D \equiv \overline{b} \lor c \lor \overline{d}$	$C \equiv a \lor b \lor \overline{c}$
а	1	0	0	0	00	01
a	1	0	0	0	00	00
Ь	0	1	0	0	00	01
Б	0	1	0	0	01	00
С	0	0	1	0	01	00
c	0	0	1	0	00	01
d	0	0	0	1	00	00
d	0	0	0	1	01	01
C fix-up 1	0	0	0	0	00	07
C fix-up 2	0	0	0	0	00	08
C fix-up 3	0	0	0	0	00	09
D fix-up 1	0	0	0	0	07	00
D fix-up 2	0	0	0	0	08	00
D fix-up 3	0	0	0	0	09	00
TARGET	1	1	1	1	10	10

Vec Subset Sum to Subset Sum

numbers
01000000001
01000000000
00010000001
000100000100
000001000100
000001000001
00000010000
00000010101
00000000007
80000000000
00000000009
00000000700
00000000800
00000000900

Other **NP-Complete** Problems

- 3-Dimensional Matching
- 3-Partition

Read book.

Subset Sum and Knapsack

Knapsack: Given *n* items with item *i* having non-negative integer size s_i and non-negative integer profit p_i , a knapsack of capacity *B*, and a target profit *P*, is there a subset *S* of items that can be packed in the knapsack and the profit of *S* is at least *P*?

Exercise: Show Knapsack is NP-Complete via reduction from Subset Sum

Subset Sum and Knapsack

Subset Sum can be solved in O(nB) time using dynamic programming (exercise).

Subset Sum and Knapsack

Subset Sum can be solved in O(nB) time using dynamic programming (exercise).

Implies that problem is hard only when numbers a_1, a_2, \ldots, a_n are exponentially large compared to n. That is, each a_i requires polynomial in n bits.

Number problems of the above type are said to be **weakly NP-Complete**.

Number problems which are **NP-Complete** even when the numbers are written in unary are **strongly NP-Complete**.

A Strongly NP-Complete Number Problem

3-Partition: Given **3***n* numbers a_1, a_2, \ldots, a_{3n} and target *B* can the numbers be partitioned into *n* groups of **3** each such that the sum of numbers in each group is exactly *B*?

Can further assume that each number a_i is between B/3 and 2B/3.

Can reduce **3-D-Matching** to **3-Partition** in polynomial time such that each number a_i can be written in unary.

Need to Know NP-Complete Problems

- SAT and 3-SAT
- Independent Set
- Vertex Cover
- Clique
- Set Cover
- Hamiltonian Cycle in Directed/Undirected Graphs
- 3-Coloring
- 3-D Matching
- Subset Sum and Knapsack